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Abstract

Model explanations are generated by XAI (explainable AI)
methods to help people understand and interpret machine
learning models. To study XAI methods from the human per-
spective, we propose a human-based benchmark dataset, i.e.,
human saliency benchmark (HSB), for evaluating saliency-
based XAI methods. Different from existing human saliency
annotations where class-related features are manually and
subjectively labeled, this benchmark collects more objective
human attention on vision information with a precise eye-
tracking device and a novel crowdsourcing experiment. Tak-
ing the labor cost of human experiment into consideration, we
further explore the potential of utilizing a prediction model
trained on HSB to mimic saliency annotating by humans.
Hence, a dense prediction problem is formulated, and we pro-
pose an encoder-decoder architecture which combines multi-
modal and multi-scale features to produce the human saliency
maps. Accordingly, a pretraining-finetuning method is de-
signed to address the model training problem. Finally, we ar-
rive at a model trained on HSB named human saliency imita-
tor (HSI). We show, through an extensive evaluation, that HSI
can successfully predict human saliency on our HSB dataset,
and the HSI-generated human saliency dataset on ImageNet
showcases the ability of benchmarking XAI methods both
qualitatively and quantitatively.

Introduction
In the past decades, there have been continuing break-
throughs in the capability of machine learning models. The
rapidly developed deep neural networks (DNNs) have shown
great predictive ability on various learning tasks. However,
DNNs are built upon deep structures and non-linear func-
tions, in which information representation and decision ra-
tionale are not explicitly observable. As a result, DNN mod-
els are criticized for not being understandable, raising con-
cerns about the deployment in critical systems such as med-
ical diagnosis (Bakator and Radosav 2018) and autonomous
driving (Grigorescu et al. 2020).

Due to the cognitive gap, explainable artificial intelli-
gence (XAI), which is a discipline focused on bringing inter-
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Figure 1: (a) A sample image that is classified as ‘goldfish’.
(b-d) Saliency-based explanations of the listed XAI meth-
ods. Best viewed in color.

pretability to machine learning, is emerging in recent years
(Gunning 2017). Towards the goal of XAI, methods have
been designed to generate explanations for reasoning about
model behavior. Since the rise of convolutional neural net-
works (CNNs), numerous saliency-based explanation meth-
ods have been proposed for explaining an image classifier’s
output. As shown in Figure 1, important image pixels/re-
gions for the classification result are identified by popular
XAI methods, i.e., Guided Backpropagation (GBP) (Sprin-
genberg et al. 2015), Grad-CAM (Selvaraju et al. 2017) and
RISE (Petsiuk, Das, and Saenko 2018).

As different XAI methods are emerging, a question arises:
how do we assess the quality of model explanations? Differ-
ent dimensions to design XAI metrics, e.g., human trust and
task performance, have been proposed in recent research of
cognitive science (Hoffman et al. 2018; Hsiao et al. 2021d).
However, practical experiments for these metrics are highly
labor-intensive, as the judgements or states of human sub-
jects need to be measured for each explanation. A recent
work (Mohseni, Block, and Ragan 2021) proposed to col-
lect human-grounded important features and quantitatively
benchmark XAI methods. The intuition of this benchmark-
ing idea is that good explainers should identify features of
importance with similar strategies to humans.

In this paper, we propose to use eye-tracking techniques
to measure human attention on image data features as the
grounded saliency map. Research in cognitive science has
shown that eye movement can reflect humans’ underlying
cognition objectively. Our preliminary study verifies that our
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data collection method and user task design can obtain an-
notations relevant to the important features for the task of
image classification. We construct a human saliency bench-
mark, HSB, the first eye-tracking based human attention
dataset for the evaluation of model explanations and make
it publicly available for the related research1. Moreover, we
propose to model the generation of human saliency annota-
tion in the eye-tracking experiments. As a possible replace-
ment of real human subjects to annotate new data, this model
is aimed to provide a trade-off between the cost of crowd-
sourcing experiments and the accuracy of annotations.

As illustrated in Figure 2, our modeling task aligns with
the human task in the eye-tracking experiment. We formu-
late a new dense prediction task, where the input is multi-
modal (image and text label) information and the output is
an input-sized fixation map showing the spatial distribution
of human attention. In spite of that the encoder-decoder ar-
chitecture has been proven to be effective in dense predic-
tion tasks, including saliency prediction, they mainly focus
on learning the relationship between visual features and out-
put. The problem of exploiting multimodal information and
generating label-specific human attention is barely studied.

To accomplish the new task, we adapt a vision-language
pre-training model CLIP (Radford et al. 2021) to encode the
multimodal input. Inspired by (Rao et al. 2022), the image
and text are embedded separately with the pre-trained en-
coders, and a pixel-text alignment is calculated at several
stages of embedding. The alignment fuses the visual and tex-
tual features. We then fuse multi-level images feature maps
with the pixel-text alignment and feed them to a simple de-
coder to predict human saliency maps.

Conventionally, pre-training and fine-tuning strategies are
widely used for the attention prediction task due to the
scarcity of eye-tracking data. We consider pre-training our

1The HSB datasets including the original images, human atten-
tion saliency mask, and human attention saliency overlay can be
found here: https://OSF.IO/F3BAW/.

model on SALICON (Jiang et al. 2015) dataset, which is the
largest eye movement dataset containing human attention
on the images from a large-scale object detection dataset,
COCO dataset (Lin et al. 2014b). However, the collection of
the SALICON dataset involves passive viewing, i.e., asking
subjects freely viewing the pictures, instead of goal-directed
viewing, such as image classification and explanation in our
dataset collection. To better utilize the SALICON dataset
and the multimodal correlations, we propose to construct
pseudo-labelled fixations/saliency maps on the dataset for
model to learn the knowledge of label-specific attention in
the pre-training stage. We also tailor our loss functions based
on a mathematical model to learn both of them.

To prove the effectiveness of our model, we design ex-
tensive evaluations. First, we evaluate the fine-tuned model
on our benchmark dataset and obtain high prediction accu-
racy. Second, we test the model on the ImageNet valida-
tion set, and the results show that the generated human at-
tention maps have good visual quality. We also conduct an
XAI evaluation study by comparing similarity between the
saliency maps generated by HSI and XAI methods, and find
that RISE (Petsiuk, Das, and Saenko 2018) ranks the first
place among the three XAI methods.

The main contributions of our paper are as follows:

• We collect, to the best of our knowledge, the first
attention-based human saliency benchmark for evaluat-
ing XAI from the cognitive science perspective: whether
the saliency maps generated by XAI explainers are close
to human saliency maps for explanation.

• We propose a model architecture which utilizes the
image-vision multi-modal encoder, CLIP, to better align
the human attentions with the location of the objects in-
tended for classification.

• We design a novel pretraining-finetuning method to ad-
dress the scarcity of eye-tracking data in training the pre-
diction model for human saliency annotation.

Related Work
In this section, we first introduce representative saliency-
based XAI methods. Next, we briefly review current human
attention datasets and their applications. Lastly, we review
and compare human attention prediction models with ours.

Saliency-Based Model Explanations
Different strategies are employed to generate model expla-
nations. They can be grouped into two categories. Back-
propagation: they calculate gradients and assume that im-
portant regions are at locations with high gradient magni-
tude. Perturbation: they perturb the input samples and as-
sume that the occlusion of important regions will result in
drop of output probability. In this paper, we select three rep-
resentative methods to evaluate.

Guided Backpropagation (GBP): The vanilla backprop-
agation method generates noisy saliency maps (Simonyan,
Vedaldi, and Zisserman 2014). Therefore, GBP sets nega-
tive gradient entries to zero while backpropagating the out-
put through a ReLU unit (Springenberg et al. 2015). The
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saliency map mostly captures important edges in images
(Figure 1b).

Grad-CAM: It uses the class-specific gradient in the last
convolutional layer of a CNN model. The method is a gen-
eralization of Class Activation Mapping (CAM) (Zhou et al.
2016) and can be applied to CNN models without a global
average pooling layer (Selvaraju et al. 2017). The saliency
map focuses more on important regions rather than edges
(Figure 1c).

RISE: The input image is masked randomly and fed into
the model to get a prediction. The final saliency map is the
weighted sum of all random masks, with the correspond-
ing prediction scores as weights (Petsiuk, Das, and Saenko
2018). The saliency map is smooth but irregular noises may
exist due to the distribution bias of masks (Figure 1d).

Human Attention Datasets and Applications
Previous studies have commonly used passive viewing
paradigms to collect human attention data for human atten-
tion prediction (e.g., Wang and Shen 2017; Borji and Itti
2015; Jiang et al. 2015). More recent studies have also de-
veloped task-driven human attention datasets for training AI
models to predict human attention in similar tasks, such as
DR(eye)VE dataset with eye gaze data in naturalistic driv-
ing settings (Alletto et al. 2016) and CUB-VWSW dataset
for image classification (Karessli et al. 2017). Zheng and his
colleagues (Zheng et al. 2018) further showed that training
an AI model with both task-specific and task-free human at-
tention could achieve state-of-art prediction performance.

In addition to prediction purposes, human attention data
have been used to enhance AI models’ performance (Lai
et al. 2020). For example, in more fine-grained classification
tasks, using human attention in the same task during model
training is shown to facilitate the focus on discriminative re-
gions for the task and boost the models’ performance (Rong
et al. 2021).

Human attention data also play an important role in
XAI research, in particular to be compared with saliency-
based XAI for evaluation purposes. For example, Hwu et al.
(2021) compared heatmap-based XAI methods, LRP, with
human attention data and reported a higher similarity to
task-driven attentive human attention than inattentive atten-
tion. Note however that cogntive science research has con-
sistently shown that human attention during image viewing
are both task-specific (e.g., Borji and Itti 2015; Kanan et al.
2015) and person-specific (e.g., Hsiao et al. 2021a; An and
Hsiao 2021; Hsiao et al. 2021b; Hsiao, Liao, and Tso 2022).
As the purpose of XAI is to provide explanations, comparing
saliency-based XAI with human attention that are associated
with better performance during an explanation task will pro-
vide more insights into the quality of XAI.

Human Attention Prediction
In the literature, the computational model for human atten-
tion prediction is tackled by saliency models. These models
predict the distribution of human fixations in the form of a
saliency map, where a brighter pixel value indicates it has
higher probability of gaining human attention.

Feature representation of the input image is an essential
problem for saliency models. Early attempts adopted hand-
crafted features (e.g., intensity, color, and edge orientation)
to present images. With the development of deep learn-
ing, different model structures have been proposed to im-
prove the capabilities of feature representation. For exam-
ple, (Wang and Shen 2018; Kümmerer et al. 2017; Reddy
et al. 2020; Kroner et al. 2020) explored the combination of
multi-resolution features, (Cornia et al. 2018) applied recur-
rent architecture and (Lou et al. 2022) integrated transformer
to refine the learnt features.

Despite the models are increasingly complex, none of
the previous work explored the label-specific prediction task
and the integration of text information into image features.
Our model differentiates itself from existing methods by
leveraging a recent vision-language pre-training model to
encode and combine multi-modal input features.

Eye Tracking Experiment and Dataset
Pilot Study: Passive Viewing vs. Explanation Tasks
Here we examined whether human eye movement patterns
differ between passive viewing and explanation tasks in
viewing images with a single foreground object category.

Methods 20 participants (17 females), aged 18-31 years
(M = 23.18, SD = 4.04), were recruited from a local univer-
sity to complete an explanation task and a passive viewing
task in two separate sessions (Figure 3). All participants had
normal or corrected-to-normal vision. During the first ses-
sion, they freely viewed 160 images one at a time, each for
5 seconds. During the second session, they were presented
with the same 160 images one at a time together with a cat-
egory label and asked to type explanations on why the fore-
ground object could be labeled with the given category in
a textbox. Their dominant eye was tracked during both ses-
sions. The 160 images were from 20 object classes, includ-
ing ant, zebra, horse, lion, jellyfish, snail, lemon, mushroom,

Figure 3: (a) Eye tracker set-up: We used an EyeLink
Portable Duo eye tracker (SR Research) to record eye move-
ments. (b) Data collection procedure: Step 1 shows the pre-
sentation of a fixation cross, where a class label would ap-
pear in the explanation task. Step 2 shows the display for
passive viewing and explanation tasks respectively. In the
explanation task, participants typed their explanations in the
gray textbox.
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corn, pizza, laptop, cellphone, microphone, sofa, broom,
shovel, umbrella, harp, tennis ball, and fountain. Each class
had 8 images. Images of horse and sofa were obtained from
PASCAL VOC, while the rest 144 images were obtained
from ImageNet. The selected classes were from human basic
level categories (Markman and Wisniewski 1997) and also
commonly used as output categories of image classification
AI models. The selected images constituted a representative
set with different levels of foreground object complexity and
background saliency. All images were resized to fit into a
400 × 520 pixel frame on a blank canvas for image presenta-
tion and data analysis. The experiment was conducted using
E-Prime Extensions for EyeLink on a 255 mm × 195 mm
laptop with 1024 × 768 pixel resolution. The images were
presented in 9.51 degrees of visual angle (dva) horizontally
and 12.36 dva vertically on the screen. A chinrest was placed
at a 60 cm viewing distance to minimize head movement.

Results Eye fixations on the image area during the tasks
were analyzed using Eye Movement analysis with Hidden
Markov Models (EMHMM) (Chuk, Chan, and Hsiao 2014)
with co-clustering (Hsiao et al. 2021c), since it allowed us
to quantify eye movement pattern similarities among indi-
viduals or conditions across images with varying layouts.
Specifically, a participant’s eye movements for each im-
age when doing a task were summarized using an HMM,
with person-specific regions of interest (ROIs) and transi-
tion probabilities among the ROIs. In each HMM, the op-
timal number of ROIs (within a preset range 1 to 10) was
determined using the variational Bayesian method. Thus,
for each image, there were 40 different eye movement pat-
terns/HMMs, corresponding to 40 different participant-task
combinations. Co-clustering clustered these participant-task
combinations into two groups such that the combinations in
each group had similar eye movement patterns to one an-
other across the 160 images. In each group, a representative
HMM was generated for each image (with the number of
ROIs set to be the median number of ROIs among the in-
dividual HMMs), resulting in two representative eye move-
ment pattern groups derived from these 40 participant-task

Figure 4: Pilot study: Explorative and focused pattern
groups resulting from co-clustering with example images
and HMMs. Ellipses show ROIs as 2-D Gaussian emissions.
The table shows transition probabilities among the ROIs.
Priors show the probabilities that a fixation sequence starts
from the ellipse. The image shows the ROI assignments of
the raw fixations. Best viewed in color.

Figure 5: Saliency map (with a Gaussian distribution with
SD equivalent to 0.5 dva or 21 pixels applied on each fixa-
tion) comparisons between (a) passive viewing and (b) ex-
planation tasks. Best viewed in color.

combinations. As shown in Figure 4, the pattern group on
the top, referred to as the explorative pattern group, had large
ROIs with eye fixations widely distributed on different fea-
tures. In contrast, the pattern group on the bottom, referred
to as the focused pattern group, had small ROIs focusing on
a few key features. The two pattern groups differed signifi-
cantly: Data from the explorative group were significantly
more likely to be generated by the representative explo-
rative HMMs than the representative focused HMMs, t(27)
= 8.478, p < .001, d = 1.602, and vice versa for data from
the focused group, t(11) = 8.499, p < .001, d = 2.453 (Chuk,
Chan, and Hsiao 2014). Following previous studies (e.g.,
Chan et al. 2018; Zheng, Ye, and Hsiao 2022), we quanti-
fied each participant’s eye movements in each task along the
dimension contrasting the two representative pattern groups
using EF scale, defined as (E − F )/(|E| + |F |), where E
and F represent the log-likelihood of the participant’s eye
movement data being generated by the explorative and fo-
cused pattern group respectively. A more positive EF scale
indicates a higher similarity to the explorative pattern group.

When comparing participants’ EF scale between the two
tasks, we found that their eye movements were more sim-
ilar to the focused pattern group, t(19) = -5.01, p < .001,
d = -1.12, in the explanation task than the passive view-
ing task. In other words, human attention differed signifi-
cantly between the two tasks (Figure 5). Accordingly, trans-
fer learning may be necessary for generating explanation-
oriented XAI benchmark based on a large-scale passive
viewing dataset.

HSB Dataset from Human Explanation Behavior
Here we aimed to collect human attention data from an
explanation task to generate an XAI benchmark with eye
movement patterns that are associated with better human
explanation performance. We recruited additional 42 partic-
ipants from the University of Hong Kong to complete the
explanation task in Human study 1, resulting in a total of
62 participants (52 females), aged 18 to 37 (M = 22.5, SD
= 3.8). Their English proficiency was assessed using a stan-
dardized test LaxTale (Lemhöfer and Broersma 2012).
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Figure 6: HSB dataset: Explorative and focused pattern
groups resulting from co-clustering with example images,
saliency map and HMMs. For each image, the figure on the
left shows the saliency map with a Gaussian distribution (SD
= 0.5 dva) applied on each fixation. The figure on the right
shows the HMM model with the ROI assignments of the raw
fixations. Ellipses show ROIs and the table shows transition
probabilities among the ROIs. Priors show the probabilities
that a fixation sequence starts from the ellipse. Best viewed
in color.

Results EMHMM with co-clustering on the explanation
eye movement data showed similar explorative and focused
pattern groups (Figure 6). The two groups differed sig-
nificantly: data from the explorative pattern group were
more likely to be generated by the representative explorative
HMMs, t(46) = 15.47, p < .001, d = 2.26, and vice versa
for those from the focused group, t(14) = 6.94, p < .001,
d = 1.79. Each participant’s eye movement pattern in the
task was then quantified in EF scale. The quality of their ex-
planations was evaluated by two data scientists with exper-
tise in computer vision using a 7-point Likert scale. The two
raters had a good inter-rater reliability (Cronbach’s alpha =
.858). The average rating was used as participants’ expla-
nation performance. Partial correlation analysis controlling
for English proficiency showed a significant correlation be-
tween EF scale and explanation performance, r(59) = .48,
p < .001, indicating that participants with a more explo-
rative eye movement pattern had better explanation perfor-
mance. Accordingly, here we used fixations from the explo-
rative pattern group to produce human attention benchmark
for XAI.

HSI: Computational Model
Our HSI model is aimed to solve a new dense prediction
task, where the input is multi-modal (image and text label)
information. In this section, we elaborate the design of our
model architecture and the training method for utilizing the
knowledge of a large-scale human attention dataset.

Architecture
Our model takes the encoder-decoder structure which is
common for dense prediction. The overall architecture is
shown in Figure 7.

Multi-Modal Encoder We refer to a recent contrastive
language-image pre-training model CLIP (Radford et al.

2021) to encode text and image information. Through pre-
training on 400 million image-text pairs with constrastive
objectives, the embedding spaces of visual and language are
aligned for its encoders.

CLIP consists of two alternative image encoders, i.e.,
ResNet-50 (He et al. 2016) or ViT (Dosovitskiy et al. 2021).
Here we leverage the ResNet-based encoder (denoted as
Gimage) to extract multi-resolution image features. Given
an input image, we take feature maps at the last two stages
of the encoder, which are denoted as u4 and u5. They are
the outputs of the fourth and the fifth convolutional blocks.
Later, we down-sample u4 to u4

′ by the factor of two, so
that u4

′ can be concatenated with other feature maps.
Originally, CLIP outputs an embedding z̄ ∈ R1024 which

aligns with the language embedding space. Instead, we ex-
tract the feature map from another output of the final at-
tention pooling layer z ∈ R1024×7×7, as it retains spatial
information and can be regarded as a language-compatible
feature map (Rao et al. 2022).

For text encoder Gtext , the input label l is first formulated
to T (l) as is suggest by (Radford et al. 2021). T is a default
prompt template as “a photo of a [l]”. The encoder
consists of a Transformer (Vaswani et al. 2017) and outputs
text embedding s ∈ R1024. Note that Gtext is fixed during
our whole experiments.

Furthermore, we use a score map calculated from the low-
resolution image embedding z and the text embedding s to
represent the relations between image pixel information and
the text information. Note that z consists of 49 pixels, and
each pixel has an embedding zi,j ∈ R1024. The inner prod-
uct between the normalized zi,j and the normalized s repre-
sents the cosine similarity between the image pixel at (i, j)
location and the text. We denote it as ai,j .

ai,j = ⟨ zi,j
∥zi,j∥

,
s

∥s∥
⟩. (1)

We use a to denote the score map where the element at
(i, j) location is ai,j . a = I(z, s), where I denotes the func-
tion in Equation 1.

Finally, we merge all the feature maps (i.e., u4
′, u5, z)

and the score map a, by passing them through a concatena-
tion layer at the end of the multi-modal encoder.

Decoder We employ a minimal decoder architecture with
only convolutional layers. Gdecoder consists of a convolu-
tional layer with 3 × 3 kernels , a convolutional layer with
1 × 1 kernels and a sigmoid function. We use bilinear up-
sampling to produce the final output p ∈ R1×224×224.

Training Method
Given the same image, we think a person will generate dis-
tinct saliency maps when performing two different tasks:
one is passive viewing, another is explanatory classification
task specified to an object in this image. The gaze map in the
latter case is conditioned on the object, and may vary when
the conditioned object changes. Therefore, we propose the
marginal saliency map for the first task (passive viewing)
and the conditional saliency map for the second task (object
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Figure 7: Overview of our model architecture. A multi-modal encoder is designed to extract multi-resolution visual information
and text information. A decoder network takes the concatenated feature maps to produce predicted human saliency map.

Figure 8: Overview of the training pipeline.

classification). We also analyse their relations and tailor our
loss functions to learn both of them.

The pipeline of our approach is shown in Figure 8. First,
we pre-train our model on the passive-viewing saliency
dataset. Although the passive-viewing dataset does not have
conditional saliency map ground truth, we can create pseudo
labels, so that our model can predict both the marginal and
the conditional saliency maps. After pretraining, we finetune
our model on the collected dataset in order to make the pre-
dictions of conditional saliency map closer to real human
attentions.

Conditional vs. Marginal Saliency Map We suppose an
input image contains N objects that may attract human at-
tentions. We denote each object as objn and the set of objects
in this image is denoted as Tobj = {objn}Nn=1. The marginal
saliency map is the saliency when human are freely view-
ing all the objects in the image. We denote it as P (S|xi,j),
which means the probability of human attention assigned to

this pixel located at (i, j). In the contrast, the conditional
saliency map is the saliency conditioned on a certain ob-
ject: P (S|objn, xi,j). It can be interpreted as the probability
of human attention assigned to the pixel at (i, j) location
when the target object is objn. We show that the marginal
saliency map be can expressed as the summation of condi-
tional saliency maps multiplied with P (objn|xi,j):

P (S|xi,j) =
∑

objn∈Tobj

P (S|objn, xi,j)P (objn|xi,j). (2)

P (objn|xi,j) is the probability of finding objn at the (i, j)
pixel location. Although we do not have the ground truth of
P (objn|xi,j), we think it is reasonable to use a to derive
a proxy for P (objn|xi,j). This is because a represents the
similarity of the text embedding (the name of the object)
and the image embedding at (i, j) location. The proxy for
P (objn|xi,j) is represented by P̃ (objn|xi,j).

P̃ (objn|xi,j) = Up[σ(I(z, s))n×σ(I(z, sn))i,j ] (3)
z ∈ R1024×7×7 is the image feature map, sn is the text

embedding of objn. I(z, sn))i,j is defined as the score map
between the image feature map and the text embedding at
(i, j) location.
σ(·) is the softmax function. σ(I(z, s))n =
exp(I(z,sn))∑N
t=1 exp(I(z,st))

is the softmax function ap-
plied on the dimension of the number of objects.
σ(I(z, sn))i,j =

exp(I(z,sn))i,j)∑
i

∑
j exp(I(z,sn))i,j) is the softmax

function applied on the dimension of the number of pixels.
Up[·] is the bilinear upsampling function in order to match

the tensor size for element-wise multiplication.
For the conditional saliency map P (objn|xi,j), we do not

have the ground truth in the pretraining stage. However, we
propose a pseudo-label construction method to generate the
saliency maps conditioned on every objects in an image. The
pseudo-label construction method will be elaborated in the
next section.
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Pre-train Dataset Construction We aim to construct
a pseudo-labeled dataset from a passive-viewing dataset
named SALICON (Jiang et al. 2015). SALICON is currently
the largest public dataset for passive-viewing eye movement
data, containing 10,000 training images, 5,000 validation
images and 5,000 testing images. For each image, SALI-
CON provides a pair of fixation map and a saliency map
annotation. Due to the large volumn of annotated data, SAL-
ICON dataset has been widely employed to pre-train DNN
models for saliency predictions.

The images in SALICON are taken from the Microsoft
COCO (MS COCO) dataset (Lin et al. 2014a), which con-
tains rich contextual information. It consists of object anno-
tations (bounding box and super-pixel segmentation) infor-
mation for 80 object categories.

A simple method (Algorithm 1) is developed to generate
the pseudo fixation and saliency maps on the objects using
the segmentation information. We denote the ground truth
of passive viewing saliency maps and corresponding fixa-
tions as Qpv and Fpv . Suppose the ground truth of object
classification saliency map and corresponding fixations are
Qobjn and Fobjn , we denoted the pseudo saliency/fixations
as Q̃objn and F̃objn . For the threshold parameters, we set
Ta = 0.1, Tr = 0.05 based on empirical study. The sigma
for gaussian filter is set to 19, which is same to the origi-
nal SALICON dataset. Figure 9 shows an original image in
SALICON and our generated pseudo fixation and saliency
maps for each object in the image.

Loss Function For dense prediction task, the loss func-
tion compares the output with the ground truth. Recent stud-
ies (Cornia et al. 2018) show that a combination of saliency
evaluation metrics in loss function can improve model per-
formance on visual saliency prediction.

Inspired by Reddy et al. (2020); Jia and Bruce (2020), we
adopt three most popular metrics, i.e., Kullback-Leibler Di-
vergence (KLdiv), Linear Correlation Coefficient (CC) and
Normalized Scanpath Saliency (NSS) to construct our loss
function. Denote a predicted saliency map as P , the ground
truth of human saliency map as Q, and the ground truth fix-
ation map only contains binary values as F . The overall loss

function is combined as follows:

L(P,Q, F ) =λ1LKLdiv(P,Q) + λ2LCC(P,Q)

+ λ3LNSS(P, F )
(4)

where λ1, λ2, λ3 are the weights of each metric.
KLdiv measures the dissimlarity between two distribu-

tions, i.e., the predicted and ground-truth saliency map in
this case:

LKLdiv(P,Q) =
∑
i

Qilog(ϵ+
Qi

Pi + ϵ
) (5)

where i denotes the location of pixels in a saliency map and
ϵ is a regularization term. The KLdiv is a dissimilarity metric
and a lower value indicates a better result.

CC is the Pearson’s correlation coefficient and treat the
saliency maps as random variables. Formally,

LCC(P,Q) =
cov(P,Q)

cov(P )× cov(Q))
(6)

where cov(P,Q) denotes the covariance of P and Q.
NSS computes the average of the normalized saliency val-

ues at each fixation location. The metric is defined by:

LNSS(P, F ) =
1

N

∑
i

Pi × Fi (7)

where N =
∑

i Fi and P = P−µ(P )
σ(P ) . µ(P ) and σ(P ) re-

spectively represent the mean and standard deviation of the
predicted saliency map.

Pretraining and Finetuning In our pretraining stage,
given a single image sample, we have the ground truth
qpv, fpv and pseudo labels q̃objn , f̃objn , ∀n ∈ [1, N ].

We take the output of decoder p and treat it as the predic-
tion of the conditional saliency map. The first term of loss
function in the pretraining stage is for condition saliency
map prediction:

L1 =
1

N

∑
n

L(pn, q̃objn , f̃objn) (8)

N is the total number of objects we consider in the input
image. pn is the conditional saliency map prediction when
the object is objn.

The second term of loss function in the pre-training stage
is for marginal saliency map prediction. We first obtain the
predicted marginal saliency map as H(p).

H(p) =
∑
n

pn × P̃ (objn). (9)

This expression is derived from Equation 2 and Equation
3. We use H(p) and the ground truth labels to calculate the
second term of the loss function:

L2 = L(H(p),qpv, fpv) (10)
The overall loss function we use for pretraining is:

Lpretrain = L1 + L2 (11)
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Algorithm 1: Pseudo Saliency/Fixations Construction
Input: image i, binary fixation map fpv , segmentation
binary masks {mobjn}Nn=1 for N objects in image i.
Parameter: threshold for ratio of area size with attention
Ta, threshold for ratio of fixations Tr.
Output: pseudo labeled saliency maps
Q = {q̃objn}, pseudo fixation maps F =

{f̃objn}.
1: create two empty sets: Q, F .
2: for n = 1 to N do
3: Find f̃objn = mobjn · fpv
4: γ = the area of mobjn .
5: η = sum(fpv).
6: if 1

γ · sum(mobjn) ≥ Ta and 1
η · f̃objn ≥ Tr then

7: APPEND f̃objn to F
8: q̃objn = Guassian filter(f̃objn , sigma)
9: APPEND q̃objn to Q

10: end if
11: end for
11: return Q, F

In the finetuning stage, we are no longer interested in pre-
dicting the marginal saliency map. We have the ground truth
labels of object classification in the finetuning stage, and we
denote them as qobj1 , fobj1 since we only have one object la-
bel for one image in finetuning stage. The loss function we
use in the finetuning stage is:

Lfinetune = L(p1,qobj1 , fobj1) (12)

Experiments and Results
Dataset
HSB We perform model evaluation on our HSB dataset.
Due to the scarcity of data, we split the image samples into 5
folds and perform cross-validation. To balance the data dis-
tribution, we require each fold to contain at least one sample
for each class.

Experimental Setup
The optimizer we used is Adam (Kingma and Ba 2015). The
learning rate was initially 1e−4. For pretraining, we trained
the model for 20 epochs, and decreased the learning rate by
a factor of 10 after every 10 epochs. After pretraining, we
selected the model weights performing the best on the vali-
dation set of the pretraining dataset, and used it as the initial
weights for our finetuning in every fold.

In the finetuning stage, we performed five-fold cross vali-
dation, For each fold, we loaded the best model weights from
pretraining stages as the initial weights. We then trained the
model for 20 epochs, and decreased the learning rate by a
factor of 10 after every 10 epochs. We took the model from
the final epoch and evaluated its performance on the valida-
tion set of each fold.

In both pretraining and finetuing, we chose the weight of
each loss term in Equation 4 as λ1 = 1, λ2 = −1, λ3 = −1.

Metric
The evaluation metrics we used were KL Divergence
(KLdiv), Pearson’s correlation coefficient CC, Normalized
Scanpath Saliency (NSS), and Similarity (SIM). The simi-
larity metric is computed from the predicted saliency map
and the ground truth saliency map. SIM is defined by:

SIM(P,Q) =
1

W ×H
×

W∑
i

H∑
j

min(
p′i,j∑

i

∑
j p

′
i,j

,
q′i,j∑

i

∑
j q

′
i,j

),

where p′ = p−min(p)
max(p)−min(p) , and q′ = q−min(q)

max(q)−min(q) .

Results
Qualitative Evaluation Figure 10 shows some qualita-
tive examples of saliency maps predicted by our HSI model
with respect to the ground-truth human saliency annotations.
Overall, HSI presents similar distribution of saliency pat-
terns to real humans in our explanation task.

With and Without Finetuning We first pretrained our
model on the pseudo labels and ground truth labels of the
SALICON dataset. Then, we conducted two experiments:
with and without finetuning, before the five-fold cross vali-
dation. The evaluation metrics are shown in Table 1.

Finetuning CC KLdiv NSS SIM
w. 0.8819 0.2162 2.3505 0.7563

w.o 0.7317 0.5168 1.9357 0.6012

Table 1: The five-fold cross validation metrics (average val-
ues are reported). w. represents the experiment with finetun-
ing. w.o. represents the experiment without finetuning.

From Table 1, we find that with finetuning, our model per-
formed better on every metric compared with model with-
out finetuning. This indicates that there is a gap between the
SALICON dataset passive-viewing saliency maps and the
saliency maps in HSB dataset. In addition, our constructed
pseudo labels may not mimic the the saliency maps in HSB
dataset perfectly, thus finetuning is necessary.

Ablation Study
In the ablation study, we considered the usage of image-text
relations and the necessity of pretraining.

Image-Text Relations In our first experiment, we com-
pared a baseline model which only consists of the image
encoder Gimage and the decoder Gdecoder. The inputs to the
decoder of this baseline model are visual feature maps, with-
out the score map a. This baseline model is a simplified ver-
sion of our proposed model where the image-text relations
are not considered. We pretrained this baseline on the SAL-
ICON dataset with ground truth labels, and then finetuned it
on the HSB dataset. Neither pretraining or finetunig used the
objects information.
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Figure 10: Visual comparison of the predicted saliency map and ground truth. Best viewed in color.

Approach CC KLdiv NSS SIM
baseline 0.8754 0.2239 2.3366 0.7533

ours 0.8819 0.2162 2.3505 0.7563

Table 2: The five-fold cross validation metrics (average val-
ues are reported).

In Table 2, we compared the baseline model and our pro-
posed model. We find that using the image-text relations in
the training losses functions and the model architecture as
our proposed, we achieved better performance than the base-
line model.

Necessity of Pretraining In our second experiment, we
tested the necessity of pretraining for the HSB dataset with
the aforementioned baseline model. Since the HSB dataset
is a very small dataset, our intuition is that training from
scratch will easily lead to overfitting to the training data. We
compared the evaluation metrics of two baseline models:
one was intialized randomly, another was initialized from
the best model of pretraining. From Table 3, we notice that
when initialized with the best model weights in pretrain-
ing, the baseline model outperformed the counterpart with
random initial weights by a large marginal for every met-
ric. This indicates the necessity of pretraining for a small
saliency dataset like the HSB dataset.

Init. weights CC KLdiv NSS SIM
random 0.7729 0.4539 1.9538 0.6626
pretrain 0.8754 0.2239 2.3366 0.7533

Table 3: The five-fold cross validation metrics (average val-
ues are reported). “random” indicates the model weights
were initialized randomly. “pretrain” indicates the model
weights were initialized from the best model in pretraining.

HSI-Generated Human Saliency Map
In this section, we generate human saliency maps on im-
ages out of HSB dataset and show the capability of using
HSI to replace human-based experiments in benchmarking
saliency-based model explanations.

Dataset Preparation
We select the validation set of ImageNet 2012 classification
dataset for human saliency map generation. In total, 1000
images are randomly sampled from each of the 1000 Ima-
geNet classes. Then, we apply our trained model HSI on the
images to obtain the predicted human saliency maps. The
result is denoted as HSI map (Figure 11b).

The XAI saliency maps (Figure 11c-d) are generated for
the images on classification labels. As is introduced in Sec-
tion 2, three XAI methods, i.e. GBP (Springenberg et al.
2015), Grad-CAM (Selvaraju et al. 2017) and RISE (Pet-
siuk, Das, and Saenko 2018), are selected for demonstra-
tion. The model explanations are generated using a pre-
trained ResNet-50 from PyTorch (Paszke et al. 2019), which
achieved 95.434% Top-5 accuracy on ImageNet classifica-
tion task.

Qualitative Comparison
Here, we qualitatively compare the HSI map and XAI
saliency maps. Overall, the HSI maps (Figure 11a) are
smooth, continuous and tend to focus on center parts in the
image. Moreover, the highlighted features are selective and
representative for the target label, showing a similar atten-
tion strategy that human employed in our explanation task.

In contrast, highlight features on XAI maps are more dis-
tributed. In detail, each method has their own characteris-
tic in terms of saliency patterns, e.g., GBP highlights pix-
els along edges (Figure 11c), Grad-CAM (Figure 11d) and
RISE (Figure 11e) highlights some abnormal regions which
are off-center.
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Figure 11: Visual comparison of HSI-generated human
saliency map (b) and XAI saliency maps. Three XAI meth-
ods are (c) GBP, (d) Grad-CAM, (e) RISE. Best viewed in
color.

Quantitative Comparison
Here we quantify the difference of saliency maps between
XAI and human (HSI). Following the evaluation procedure
in (Mohseni, Block, and Ragan 2021), we obtain a pair of
saliency maps for one test image and calculate the pixel-
wise Mean Absolute Error (MAE) between them. Then, we
calculate MAE over the entire test set and report the aver-
age score. Table 4 reported the score for each XAI meth-
ods and their ranking in ascending order of the score. Based
on this ranking, RISE is regarded as the best XAI method
in terms of the pixel-wise comparison with human (HSI)
saliency map.

Ranking Method MAE
1 RISE 0.44
2 Grad-CAM 0.70
3 GBP 0.89

Table 4: MAE scores for XAI methods benchmarked on
HSI-generated dataset.

Discussion
Previous research mainly used attention datasets from pas-
sive viewing for human attention prediction. However, our
pilot human study showed that human attention differs be-
tween passive viewing and explanation tasks greatly. Peo-
ple showed more focused eye movement patterns (and lower
entropy) in the explanation task than in the passive view-
ing task as assessed using EMHMM. More specifically, peo-
ple attended to information irrelevant to the foreground ob-
ject category more often in passive viewing than explana-
tion. To provide a more accurate human attention bench-
mark for XAI, we used an explanation task for our HSB.

We further examined the relationship between individual
differences in eye movement pattern and explanation per-
formance using EMHMM, aiming to use those associated
with better explanation performance as the benchmark. Our
analysis showed that people who adopted a more explorative
eye movement pattern during explanation had better expla-
nation performance (as evaluated by data scientists). We
thus used eye movement data from the explorative pattern
group in the explanation task to generate our HSB. In other
words, we have considered the latest findings from cogni-
tive science research that human attention is both task- and
person-specific, and accordingly generated our HSB using
eye movements associated with better performance in the
explanation task.

In the past, various computational models based on
encoder-decoder architecture have been studied for human
attention prediction. However, the model can only learn
from image features to predict human attention, which fits to
the passive-viewing human attention only. In HSB dataset,
the studied human attention is driven by both image and la-
bel features, and thus we believe it is important for the en-
coder to have the ability of receiving and combining text
features and image features. To our best knowledge, our en-
coder is the first to utilize the pre-training knowledge of
V&L model in human saliency prediction. Although the
model architecture is minimal, we show that the proposed
model can successfully reproduce human saliency map in
HSB dataset.

In the XAI evaluation experiment, we selected MAE as
the metric to evaluate three XAI methods, as the metric was
used in previous benchmarking research. We leave it for fur-
ther work to study different similarity (and dissimilarity)
metrics and their consistency in ranking XAI methods.

Conclusion

In this paper, we proposed a human attention benchmark
for saliency-based explanations and a computational model
to generate human saliency map for relieving labor cost in
crowdsouring experiments. For HSB dataset, we considered
both task- and person-specific nature of human attention,
and used eye movements associated with better performance
in the explanation task for human saliency imitation. Our
model, HSI, extracts multi-modal features with V&L pre-
train knowledge and successfully reproduces human atten-
tion saliency maps on HSB dataset. The study demonstrates
the ability of using well-trained model to generate huamn
saliency-based annotation, breaking through the constraint
of the high cost of human data collection. Based on the ad-
vantage of HSI, further study of XAI evaluation can be con-
ducted on a large scale of human benchmark dataset.
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