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Abstract

Many applications such as hiring and university admissions
involve evaluation and selection of applicants. These tasks
are fundamentally difficult, and require combining evidence
from multiple different aspects (what we term “attributes”).
In these applications, the number of applicants is often large,
and a common practice is to assign the task to multiple eval-
uators in a distributed fashion. Specifically, in the often-used
holistic allocation, each evaluator is assigned a subset of the
applicants, and is asked to assess all relevant information for
their assigned applicants. However, such an evaluation pro-
cess is subject to issues such as miscalibration (evaluators
see only a small fraction of the applicants and may not get a
good sense of relative quality), and discrimination (evaluators
are influenced by irrelevant information about the applicants).
We identify that such attribute-based evaluation allows alter-
native allocation schemes. Specifically, we consider assigning
each evaluator more applicants but fewer attributes per appli-
cant, termed segmented allocation. We compare segmented
allocation to holistic allocation on several dimensions via
theoretical and experimental methods. We establish various
tradeoffs between these two approaches, and identify condi-
tions under which one approach results in more accurate eval-
uation than the other.

1 Introduction
Evaluation and selection are two essential functions that play
a critical role in almost every organization as they determine
who joins the organization, who remains, and the resulting
organizational performance. However, they can also be a sig-
nificant source of errors, leading to bad selection decisions
and potentially limiting opportunities for certain groups. In
the past, concerns about inaccurate or biased selection deci-
sions have led to recommendations for the use of structured
processes, such as structured job interviews, so that they are
consistently conducted and fair to all applicants (Schmidt
and Hunter 1998).

At the other end of the spectrum involving lower-stakes
selection problems, distribution and automation of the eval-
uation task has become popular. Over the last few decades,
developments in online collaboration and decision making
have demonstrated the benefits of using the “crowd” for
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many decisions (Surowiecki 2005), opening up new possi-
bilities for conducting evaluation and selection in a more
efficient, accurate, and potentially less biased manner. For
some decisions, crowd-based processes produce better re-
sults when aggregating human inputs by algorithms. How-
ever, there have also been ample examples of less effective
decisions arrived at by crowds (Hube, Fetahu, and Gadiraju
2019). In reviewing the typical approaches to these crowd-
based evaluations and decisions, it appears that the way they
are structured varies considerably in terms of the kinds of
information reviewed by evaluators when making decisions
(Draws et al. 2021). We investigate the intricacies when tak-
ing this idea of distributed judgment back to the high-stakes
regime, and study how the structure of an evaluation process
influences the quality of decisions.

Figure 1(a) summarizes the design choices involved in
an evaluation procedure. In this work, we focus on ana-
lytic evaluation, where the evaluation of an applicant (e.g., a
job candidate) is decomposed into a pre-defined set of at-
tributes. Analytic evaluation is commonly used in hiring,
admissions and grading. For example, in admissions, the at-
tributes may include the student’s school GPA, essay quality,
and the strength of recommendations letters. On the other
hand, in non-analytic evaluation, the evaluator is not re-
quired to separately examine individual attributes. Instead,
it is sufficient to provide an overall score to each applicant.
While not defining attributes in the non-analytic regime of-
fers evaluators the freedom to comprehensively think about
all possible aspects of the applicants, the lack of structure
may cause the evaluators to overly rely on their general im-
pression, leading to inconsistency and inaccuracy as com-
pared to the analytic approach (Jönsson, Balan, and Hartell
2021). Hence, analytic evaluation is our regime of interest.

Another design choice is the method to aggregate at-
tributes to derive an overall score for each applicant. We
consider exogenous aggregation, where attributes are aggre-
gated using pre-defined (the simplest example is to take a
mean, or a weighted mean, of all attributes), or algorithmi-
cally learned (Noothigattu, Shah, and Procaccia 2021) rules.
On the other hand, human aggregation means that after eval-
uating individual attributes, the evaluator additionally pro-
vides a final score by combining the attributes in some sen-
sible way of the evaluator’s choice. Although human aggre-
gation hypothetically provides more flexibility, simple ex-
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Figure 1: An illustration of the difference between non-analytic and analytic evaluation approaches (top panel), and the spectrum
of holistic vs. segmented allocation (bottom panel).

ogenous aggregation rules often turn out to be no less ac-
curate, or even outperform human aggregation (Kahneman,
Sibony, and Sunstein 2021). All in all, the issues with the
non-analytic approach or human aggregation reveal that the
supremacy of human reasoning is overestimated: “People
trust that the complex characteristics of applicants can be
best assessed by a sensitive, equally complex human being.
This does not stand up to scientific scrutiny” (Highhouse
2008). Hence, our regime of interest is analytic evaluation
under exogenous aggregation.

A fundamental question in structuring the evaluation pro-
cess is how to allocate applicants and attributes to evalu-
ators. There are two basic approaches which are likely to
lead to different outcomes (see Figure 1(b)). First, in holis-
tic allocation, evaluators are asked to review and assess all
attributes about each applicant. As shown in Figure 1(b),
if we assume each evaluator is represented by a rectangle
of a fixed area (workload), then holistic allocation entails
rectangles of the longest width (number of attributes), and
therefore the smallest height (number of applicants). In seg-
mented allocation, if we hold the workload constant, each
evaluator reviews one or a few attributes for a larger number
of applicants (see the right end of Figure 1(b)).

Holistic allocation is quite common in organiza-
tional hiring processes as well as in academic admis-
sions (De Los Reyes and Uddin 2021), where people feel
that a more complete understanding of an applicant or the
nuances of human judgment improves the quality of deci-
sions. Segmented allocation is more likely to be used when
the attributes are considered relatively independent of one
another. One example where a segmented approach is com-
mon is the grading of assignments in educational settings,
where different instructors may grade different questions
since performance on one is not viewed as relevant to the

evaluation of another.
Here, however, we raise the question of whether holistic

allocation is as effective as often assumed, or might it be
the case that segmented allocation would result in better de-
cisions? Certainly, for segmented allocation, it is necessary
that the attributes being evaluated are separable enough that
independent evaluations of them are feasible, which holds
true in many instances. In these instances, we argue that seg-
mented allocation could result in better decision quality, at
least under certain conditions.

We provide a brief review of the relevant literature and
outline a framework describing the key difficulties associ-
ated with evaluation that have been identified in extant re-
search, including calibration of evaluators, efficiency with
which evaluation is conducted, and the degree of bias in the
resulting decisions. In presenting our framework, we also
delineate specific conditions under which we expect that
holistic or segmented allocation leads to better decision out-
comes.

We employ a mixed-method study combining modeling,
simulation, crowdsourcing experiments and theoretical anal-
ysis to explore the conditions under which holistic or seg-
mented allocation performs better in terms of calibration,
efficiency and fairness. In brief, we find that segmented allo-
cation provides benefits for evaluator’s calibration accuracy,
whereas holistic allocation leads to greater efficiency in car-
rying out evaluations. In terms of mitigating bias, we ob-
serve mixed results depending on specific conditions of the
application under consideration. Taken together, our work
integrates a few lines of research with implications for the
quality of evaluation decisions in a variety of different en-
vironments, and provides guidance to system designers for
determining the evaluation structure that works best in their
context.
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We discuss a few key differences between our work and
prior literature. At a high level, holistic and segmented allo-
cations concern about decomposing and distributing a com-
plex task into smaller parts. In crowdsourcing, complex
tasks, such as creating animated movies, making course
videos or writing articles, are broken down into parts in a
similar fashion. Different crowdsourcing workers complete
different parts, and then their work is computationally or
manually put together (Kittur et al. 2011; Retelny et al. 2014;
Cheng et al. 2015). While these works measure the quality
of the completed work, such as by rating the written articles
by professional journalists, we focus on more concrete and
quantitative impacts of such decomposition in an evaluation
and selection context, where some considerations we study
such as fairness naturally arise. Another important applica-
tion of human computation is peer review, where there is a
large body of work on assigning reviewers to papers (Shah
2022, Chapters 3 and 4), with a focus on finding the as-
signments that maximize the expertise of reviewers assigned
to the papers or mitigating undesirable behavior by review-
ers. In our work, we primarily consider applications where
the work for evaluating individual attributes can be effec-
tively decomposed. On the other hand, in peer review, the
task usually cannot be readily decomposed, and reviewers
are required to read the entire paper. We discuss more re-
lated work when we formally introduce specific dimensions
in Section 2.

All experiments conducted in this paper were approved
by the Institutional Review Board (IRB) at Carnegie Mellon
University. The crowdsourcing data, the user interface, as
well as all code to reproduce our results is available at
https://github.com/jingyanw/segmented-vs-holistic.

2 Theoretical Background
In theorizing the conditions under which holistic or seg-
mented allocation leads to better decision making, we iden-
tify a few key difficulties from extant research, including
calibration of evaluators, efficiency with which evaluation
is conducted, and the degree of bias mitigation. Along these
key dimensions, we present six hypotheses, study three of
them in detail using theory, simulation and experiments, and
leave the remaining three hypotheses for future work.

2.1 Calibration
In the context of evaluation, we use “calibration” to refer to
the ability of evaluators to apply consistent criteria in assess-
ing applicants, such that the evaluation accurately reflects
each applicant’s quality relative to the entire pool (Osborne
1991). Note that if an evaluator is able to perfectly identify
the placement of each applicant with respect to all others
under consideration, then the evaluator identifies a perfect
ranking of all applicants. However, the following reasons
hinder the evaluator’s ability.

Lack of information about the population. In many sit-
uations, evaluators lack complete information about the full
range of quality represented by applicants in the pool, and
thus are not able to calibrate their assessment perfectly. Elic-
iting ordinal data such as pairwise comparisons or rank-

ings (Shah et al. 2018) helps mitigate miscalibration. Nev-
ertheless, ratings have their own benefits (Wang and Shah
2019) and ratings of some form are widely used in prac-
tice to compare applicants assessed by different evaluators.
For instance, the applicants are placed in categories such
as {definitely admit, maybe admit, waitlist, do not admit}
in admissions, and employees are placed in categories such
as {above average, below average} in performance evalua-
tion (Goffin and Olson 2011).

We expect that issues related to evaluator calibration are
among the major drawbacks of holistic allocation. In holistic
allocation, each evaluator assesses all attributes for each ap-
plicant they are assigned. With the exception of very small
applicant pools, this necessitates that each evaluator only
sees a small subset of the entire pool. By contrast, in seg-
mented allocation, each evaluator sees a much larger set of
the pool, perhaps even the entire set of scores in the pool
for their assigned attributes. Therefore, we expect that seg-
mented allocation has an advantage of enhancing evaluator
calibration.

Although it seems intuitive that evaluating more appli-
cants improves calibration, it is unclear if it actually man-
ifests in practice. To see a counter-argument, consider the
following pair of scenarios. In the first scenario, the evalua-
tor reviews 5 applicants whereas in the second scenario, the
evaluator reviews 20 applicants. One may expect that when
evaluating the last few applicants in the second scenario, the
evaluator has already seen many more applications than in
the first scenario. However, the evaluator may only be able
to keep in mind 5 or fewer applicants when evaluating any
other applicant, in which case their calibration in both sce-
narios will be comparable.
Hypothesis 1 (Studied in Section 4.1). For each individual
attribute, segmented allocation, in which each evaluator has
access to more applicants, leads to better calibration.

Ordering effect. The lack of information about the pop-
ulation suggests that calibration depends on the total num-
ber of applicants assigned to evaluators. Calibration may
further vary as a function of the ordering that these appli-
cants are evaluated. One reason for such variation is the
bounded rationality of people, such as the cognitive effects
of primacy and recency (Page and Page 2010), assimilation
and contrast (Damisch, Mussweiler, and Plessner 2006), and
generosity-erosion (Vives et al. 2021). A second reason for
such variation is that evaluators gradually adapt their cali-
bration as they evaluate each applicant along the way: When
an evaluator rates the 5th applicant, their grading scale is
based on the first 5 applicants seen so far, but by the time
the evaluator moves to rate the 100th applicant, they have ac-
quired much more information for calibration from the 100
applicants compared to when they rate the 5th applicant.

Such ordering effect can be mitigated in segmented allo-
cation: Since the attributes of the applicants are assigned to
different evaluators, the ordering can be shuffled so that each
evaluator sees a different ordering, thereby “averaging out”
the effect of ordering when the scores from these evaluators
are aggregated.
Hypothesis 2. Segmented allocation, in which the ordering
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of the applicants can be shuffled independently for each at-
tribute, leads to better calibration compared to holistic al-
location, under which all attributes are evaluated under one
ordering by design.

2.2 Efficiency
Selection and evaluation processes can also be resource-
intensive and time-consuming. One reason of why qual-
ity might suffer is the basic human tendency to “satisfice”
(Hilbert 2012), particularly when workload is high. Conse-
quently, we contend that another important element to con-
sider in evaluating the relative benefits of different alloca-
tion schemes is the impact on efficiency. This pertains to
how quickly evaluators make their assessments, but also the
degree to which an allocation scheme affords evaluators an
opportunity to find shortcuts to adaptively allocate their ef-
fort.

Adaptively allocating effort. The goal of many evalua-
tion and selection processes is to identify the best subset of
applicants from the available pool. In holistic allocation, if a
particular applicant is clearly below the threshold on a subset
of the attributes, the evaluator may conclude that the appli-
cant will not be selected, without scrutinizing the remaining
attributes or giving a precise score to the applicant. In addi-
tion, evaluators may use signals, such as red flags in recom-
mendation letters in academic admissions, to draw a prelim-
inary conclusion which they quickly confirm or deny with a
cursory review of the remaining information. The evaluators
also enjoy the flexibility to adaptively choose which attribute
to review next based on the attributes already reviewed.

In contrast, adaptive strategies are more challenging to
implement in segmented allocation, because the evaluation
task is typically allocated in parallel to the evaluators. That
said, within segmented allocation, the system could employ
a filtering rule for certain attributes before assigning appli-
cants to evaluators. For example, in academic admissions,
threshold values for standardized test scores and GPAs are
often used as preliminary filters to eliminate some appli-
cants from further consideration. However, there are con-
cerns such that standardized test scores are themselves bi-
ased against certain groups of applicants. Another remedy
is to decompose the evaluation task into multiple rounds,
where applicants are filtered in between rounds. However,
having multiple rounds adds logistical complexity to the
evaluation procedure, and may also require more time to
complete the evaluation process.

We hypothesize that in holistic allocation, evaluators can
reap the adaptive benefits of efficiency without significantly
sacrificing accuracy. Furthermore, we postulate that the gain
is more prominent when the attributes being evaluated are
correlated with one another: Screening applicants primarily
based on the assessment of one attribute will be less likely to
lead to errors in the overall assessment, when attributes are
highly correlated than when they are only weakly correlated
or independent.

Hypothesis 3 (Studied in Section 4.2). Holistic allocation
results in more efficiency in evaluation without significantly
reducing accuracy, when the attributes being assessed are

highly correlated and thus can be used as proxies or screen-
ing tools for one another.

Switching costs. In holistic allocation, the evaluator pri-
marily switches between different attributes, whereas in seg-
mented allocation, the evaluator primarily switches between
applicants. Whether switching between applicants or at-
tributes involves greater effort depends on the user interface,
where the evaluator accesses applicant information by, for
example, navigating through directories or downloading ap-
plicant files. A system for admissions, for example, may be
designed such that more clicks are needed to access differ-
ent applicants than different attributes within the same appli-
cant. In this case, holistic allocation may incur lower switch-
ing costs than segmented allocation. However, in addition to
the operational cost incurred by the user interface, another
consideration relates to the cognitive load of switching be-
tween different types of information. For example, in assess-
ing applicants for admissions, if an evaluator operating in
holistic allocation has to shift from reviewing transcripts and
test scores to evaluating essays and recommendation letters,
the time and cognitive effort involved in this transition be-
tween attributes may outweigh the savings gained from the
user interface. Consequently, whether holistic or segmented
allocation leads to greater efficiency as a result of reduced
switching costs depends on the user interface and the simi-
larity in reasoning about different attributes.
Hypothesis 4. (a) Holistic allocation results in more effi-
ciency than segmented allocation, when transitioning from
one applicant to another requires more time or clicks than
transitioning between attributes of the same applicant.
(b) Segmented allocation results in more efficiency than
holistic allocation, when transitioning from one attribute to
another requires high cognitive effort due to the level of vari-
ation in the data and assessment process, taking more time
than transitioning between applicants for the same attribute.

We remark that the user interface should be designed to
support the chosen allocation scheme. Specifically, if seg-
mented allocation is used, then the interface should be con-
structed so that the switching cost between applicants for the
same attribute should be made as low as possible.

2.3 Mitigating Bias
A major concern that regularly arises in evaluation and se-
lection processes is that of bias. Researchers consider a de-
cision to be biased when there is deviation from what is nor-
matively predicted by classical probability and utility theory
to be the optimal outcome based on the information or op-
tions available (Hilbert 2012). Bias in decision making is a
widely-studied topic in a number of fields, as it has substan-
tial implications not only for evaluation and selection deci-
sions, but also for many other high-stakes applications such
as medical diagnosis, crime prevention, and financial perfor-
mance, to name just a few (Saposnik et al. 2016; Costa et al.
2017; Kovera 2019).

One type of biases of particular concern for evaluation
and selection is those that result in systematic discrimination
against certain groups on the basis of information that is ir-
relevant or inappropriate for assessment (Bertrand and Mul-
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lainathan 2004; Moss-Racusin et al. 2012; Tomkins, Zhang,
and Heavlin 2017; Shah 2022, Section 7). Many biases op-
erate on a subconscious level (Greenwald, Nosek, and Ba-
naji 2003) and thus affect evaluations even when the eval-
uator intends to be fair. Consequently, the common recom-
mendations include limiting subjective human judgment by
using objective measures wherever possible, or when hu-
mans are making subjective assessments, ensuring that those
are guided by specific outcome-relevant criteria and struc-
tured for consistent application to each applicant (Campion,
Pursell, and Brown 1988; Pogrebtsova, Luta, and Hausdorf
2020).

We propose that the allocation scheme also has an impact
on mitigating bias. Specifically, we anticipate that holistic
and segmented allocations affect outcomes by limiting the
impact of highly biased evaluators on overall decision accu-
racy, and restricting access to biasing information.

Reducing the impact of biased evaluators. It is likely
that different evaluators are biased to different extents. When
some evaluators are biased and some are not (or less so),
holistic and segmented allocations are likely to lead to dif-
ferent types of impact. In holistic allocation, any particular
applicant has a certain probability of being assigned a bi-
ased evaluator (depending on the fraction of biased evalua-
tors). Consequently, a subset of the applicants are be highly
affected by biased decisions, while the rest of the applicants
are not. By contrast, in segmented allocation, the probabil-
ity that all attributes of a particular applicant are assessed by
highly biased evaluators becomes lower; however, it is more
likely that each applicant receives some assessment from at
least one biased evaluator, compared to holistic allocation.

Hypothesis 5 (Studied in Section 4.3). Compared to holistic
allocation, segmented allocation better mitigates the impact
of biased evaluators on the accuracy of the applicant eval-
uation, by reducing the chances that all attributes of any
particular applicant are evaluated by biased evaluators.

Restricting access to biasing information. Arguably,
many interventions that have been made over the last several
decades in traditional evaluation and selection processes are
focused on limiting evaluators’ access to biasing informa-
tion. One famous example comes from symphony orches-
tras as they made efforts to incorporate more female mu-
sicians in the 1970s and 1980s (Goldin and Rouse 2000).
Initial diversity efforts yielded limited progress, even when
many orchestras conducted auditions using screens to block
evaluators’ view of the candidates. However, one observant
evaluator noted the difference in the sound on the wooden
stage floor as the musicians entered for their audition, par-
ticularly the distinct sound of the high heels worn by the fe-
male musicians in contrast to the flat sounds made by most
men’s dress shoes. Consequently, a number of groups began
using a carpeted walkway in addition to the screen, which
resulted in a sudden increase in the number of women in-
vited to join (Goldin and Rouse 2000). In generalizing this
idea to the context of evaluation and selection, we hypothe-
size that segmented allocation mitigates bias by limiting ac-
cess to information about irrelevant and potentially biasing

attributes. For example, an evaluator could be asked to eval-
uate the research statements of graduate school applicants
without access to any other information about the applicants,
substantially limiting the possibility of bias.

Hypothesis 6. Segmented allocation helps mitigate the im-
pact of bias compared to holistic allocation, as a result of
limiting evaluators’ access to biasing information when they
assess individual attributes of the applicants.

3 Modeling Framework
We describe the mathematical framework used in our analy-
sis.

Notation. We assume that there are n applicants, and each
applicant has d attributes. We let xij ∈ R be the true quality
of applicant i ∈ [n] on attribute j ∈ [d].1 A higher value
represents higher quality. When there is more than one at-
tribute, we define the true ranking of the applicants as the
ranking induced by the mean of their attribute values. The
evaluation task is represented by the matrix {xij}i∈[n],j∈[d],
and we divide the matrix into sub-matrices as shown in Fig-
ure 1, where each evaluator assesses a smaller sub-matrix
consisting of a subset of the applicants and a subset of the
attributes (where the subset is allowed to equal the entire
set). For simplicity, we assume each attribute of each appli-
cant is evaluated once, so all the sub-matrices are disjoint
and collectively partition the entire matrix. We let yij ∈ R
denote the score given to attribute j of applicant i by the as-
signed evaluator. Note that yij is often a noisy evaluation of
xij .

Metric. In many evaluation and selection processes such
as hiring or academic admissions, the goal is to choose a
specified number of applicants of the highest quality. There-
fore, the accuracy of the evaluation process is determined by
the top-K accuracy in ranking. For simplicity, we consider
the top-1 accuracy as studied by Kleinberg and Raghavan
(2018). That is, the accuracy is 1 if the estimated ranking
correctly identifies the best applicant in the true ranking, and
0 otherwise.2 We also consider a second error of metric that
is suitable for understanding the calibration of evaluators.
This error represents the mean error in estimating the per-
centile of each applicant, described in detail in Section 4.1.

Data generation. In our simulations, we follow prior
work (Kleinberg and Raghavan 2018) and generate the at-
tribute values from the power-law distribution unless speci-
fied otherwise. The power-law distribution with parameter
δ > 0 is defined as P[Z ≥ t] = t−(1+δ) supported on
t ∈ [1,∞), where Z denotes the random variable.

We allow the attributes to be correlated, defined by a cor-
relation parameter σ ∈ [−1, 1]. For any desired distribution

1We use the notation [κ] : = {1, 2, . . . , κ} for any positive
integer κ.

2In our setup, we make sure that there exists a unique best ap-
plicant in the true ranking. If there are ties in the estimated ranking,
the accuracy is computed as 1/(number of applicants in the tie) if
the true best applicant is one of the estimated applicants in the tie,
and 0 otherwise.
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with c.d.f. F , we define the following procedure (cf. Nelsen
2010) to generate d-dimensional correlated random vari-
ables. Let Φ denote the c.d.f. of the standard normal. For
each applicant i, we first sample a vector zi ∈ Rd from a
multinomial normal distribution as zi ∼ N (0, (1 − σ)Id +
σ1d1

T
d ) independent across the applicants i ∈ [n]. Then we

compute the attribute values as xij = F−1(Φ(zij)). It can
be verified that each xij has marginal distribution F . As spe-
cial cases, when σ = 1, all attributes have identical values;
when σ = 0, all attributes are independent.

4 Methods and Results
In this section, we examine our hypotheses related to cali-
bration, efficiency and mitigating bias.

4.1 Calibration
We focus on studying the relation between calibration accu-
racy and the number of applicants assigned to an evaluator,
as described by Hypothesis 1.

Operationalization of calibration. Formally, we define
calibration as the evaluator’s accuracy of estimating the
ranking (or percentile) of each applicant with respect to the
entire pool of all applicants. We define calibration on this
relative scale for three reasons. First, the selection problem
is intrinsically relative in nature, that is, we aim to select the
top applicants compared to the entire pool. Second, in many
applications, the evaluators are asked to report relative data.
For example, evaluators may be asked to give scores on a
scale of 1-5, where the criteria define the score of 1 as the ap-
plicant being the bottom 20% among all applicants, and 2 as
being 20-40% among all applicants, etc. Third, social com-
parison theory suggests that people’s reasoning has a relative
nature (Festinger 1954). For example, being a “top” appli-
cant is perceived as simply being significantly better than
the rest of the applicants. For this reason, using a relative
scale than an absolute scale is shown to be more effective in
various judgment tasks (Goffin and Olson 2011).

Experimental setup. To isolate the impact of calibration,
we make a number of design simplifications, and conduct
an experiment focusing on a single attribute. We recruit 200
crowdsourcing workers on the Prolific platform. The work-
ers are introduced to a hiring context and asked to evalu-
ate scores of applicants. Specifically, they are told that there
are 1000 applicants with scores that are integers between 0
and 300, without any distributional information about the
scores. Then the workers are presented some numbers in
between 200 and 300, and are asked to estimate the per-
centile of the scores. The workers classify each score to
one of the five bins with respect to the population: 0-20%,
20-40%, 40-60%, 60-80%, and 80-100%. We choose to ask
the workers to report in 5 quantized bins instead of directly
reporting a number of percentile, because prior studies have
shown that workers are not able to perceive fine numbers
accurately due to limited processing abilities (Miller 1956;
Shah et al. 2016) and therefore have higher accuracy when
a small number of quantized choices are given (e.g., Lietz
2010). We have confirmed this trend by a preliminary study
comparing using 5 bins versus 10 bins.

Question grouping. The workers are divided into two
groups uniformly at random. Recall that there is a single at-
tribute. In the first group, each worker is presented scores of
5 applicants (termed “5Q-group”). In the second group, each
worker is presented scores of 20 applicants (termed “20Q-
group”). The workers are always presented with 5 scores
per page. That is, for the 20Q-group, the 20 questions are
distributed across 4 pages. Neither group of workers is told
the number of scores they will be presented before starting
the task. The workers are required to answer all questions on
a page before proceeding to the next page, though they are
allowed to review and edit their answers on previous pages
at any time before submission. We choose to present 5 ques-
tions per page and not inform the workers the total number
of questions, to address the confounder that a worker who
knows they have to do 20 questions may put less effort per
question than if they knew they have to do only 5 questions.

Values of scores. Since we consider a single attribute, we
use the shorthand xi : = xi1 for the true score of each ap-
plicant i. Let F be the distribution N (230, 25), truncated
to the range of [200, 300]. The scores {xi}i∈[n] in the 20Q-
group are generated i.i.d. from F . We pair up workers in
the 20Q-group and the 5Q-group. For the scores in the 5Q-
group, we use the same values as the last 5 questions in the
20Q-group for a direct comparison. We choose this distri-
bution for scores, because in a preliminary study where the
workers are presented scores in the range of [0, 100], we ob-
serve that the workers appear to have a strong uniform prior,
mapping scores in [0, 20] to percentile 0-20%, etc. This uni-
form mapping is an artifact of the experimental design that
the quality under evaluation is real-valued. In more realistic
situations, such a simplified mapping, say from applicants’
interview performance to scores, does not exist. We there-
fore choose a range that is not [0, 100] so that the workers
do not rely on such priors.

Experimental Results. We record the worker calibration
measured by their accuracy in estimating the percentile
bins. Formally, let ω be the function mapping the percentile
0-20%, 20-40%, 40-60%, 60-80% and 80-100% to the bins
1, 2, 3, 4 and 5, respectively. For a single worker, let yi ∈ [5]
be the bin reported for applicant i. Then the absolute error
between the true bin and the reported bin for applicant i in-
curred by this worker is defined as

∣∣ω(F−1(xi))− yi
∣∣.

For each worker, we compute their mean error over the
applicants they evaluate. The workers’ mean error is 1.14±
0.06 in the 5Q-group, and 0.84 ± 0.05 in the 20Q-group.
We perform a univariate permutation test between the mean
errors of workers in the 20Q-group, and those of workers
in the 5Q-group, using the difference in sample means as
the test statistic. We reject the null hypothesis that the errors
from the two groups have the same mean (one-sided p-value
< 0.01; Cohen’s effect size d = 0.52). This result indicates
that evaluation in the 20Q-group is more accurate than in
the 5Q-group, confirming Hypothesis 1 that evaluators have
better calibration when they see more applicants.

For the 20Q-group, we also separately compute each
worker’s mean error over each page of 5 questions (that is,
Q1-5, Q6-10, Q11-15, Q16-20). The mean error for each
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Figure 2: The mean error in estimating the percentile bins,
for workers in the 5Q-group (representing holistic alloca-
tion) and the 20Q-group (representing segmented alloca-
tion). Error bars represent the standard error of the mean.

page is plotted in Figure 2. For the 20Q-group, we also
plot the error on each page using the answers reported right
before the workers ever turn to see the next page (see the
curve “20Q-initial”). The difference between the curves of
the initial and final errors thus corresponds to the gain in
calibration by workers correcting their answers to previous
applicants by seeing applicants from later pages. First, we
observe that such corrections notably decrease the error, es-
pecially for the first page. This observation further provides
evidence for Hypothesis 1 by showing that workers are able
to use the information they see from applicants to perform
correction. Second, even after this correction, the error has a
decreasing trend from earlier pages to later pages, suggest-
ing that workers have limited abilities in performing such
corrections. Specifically, in the 20Q-group, the (final) mean
error for page 1 is 0.95±0.06, and the (final) mean error for
page 4 is 0.74± 0.06. We perform a univariate permutation
test between the mean errors for page 1 and page 4, using
the difference in sample mean as the test statistics. We reject
the null hypothesis that the errors for these two pages have
the same mean (one-sided p-value < 0.01; Cohen’s effect
size d = 0.34). Third, as a sanity check, we observe that
for page 1, the mean error in the 20Q-initial curve is similar
to the mean error of the 5Q-group. This is expected, as the
workers from the two groups have strictly the same infor-
mation before the workers in the 20Q-group ever turn to the
second page.

We observe the same qualitative trends in a previous ver-
sion of the experiment, discussed in the extended version of
this paper on arXiv (Wang et al. 2022, Appendix B).

Simulations. The key observation from the crowdsourc-
ing experiment is that seeing more applicants improves cal-
ibration. We now conduct additional simulations for a more
quantitative understanding. We stick with the setting of a
single attribute. We consider the following model for evalu-
ators. When an evaluator is assigned n applicants, it assigns
the lowest n

5 applicants to the bin 0-20%, followed by the
next n

5 applicants to the bin 20-40%, etc. This is a natural
model for evaluators, because as n goes to infinity, the mean
error on the reported bins approaches 0.

101 102 103 104
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Figure 3: The mean error in calibration of a single evaluator,
as a function of the number of applicants. Each point is com-
puted over 1000 runs (error bars are too small to be visible).

We plot the mean error as a function of the number of
applicants n assigned to a single evaluator in Figure 3. The
error decreases as the number of applications n increases,
matching the experimental result and therefore providing ad-
ditional evidence supporting Hypothesis 1. We empirically
observe that as the number of applicants n increases, the
mean error decreases at a rate of 1√

n
.

4.2 Efficiency
We study the adaptive allocation of effort in Hypothesis 3
via simulations.

Setting. We consider n = 200 applicants, and for sim-
plicity, d = 2 attributes assessed by two evaluators. In seg-
mented allocation, each evaluator is assigned one attribute
of all applicants. In holistic allocation, each evaluator is as-
signed both attributes of half of the applicants. The attribute
values are generated from a power-law distribution with pa-
rameter 1, with correlation σ ∈ [0, 1] between the two at-
tributes. To isolate the efficiency aspect from calibration er-
rors, we assume that an evaluator always reports the true
value of the attributes, namely yij = xij for each (i, j) pair.

According to Hypothesis 3, holistic allocation provides
the opportunity for an evaluator to decide whether to evalu-
ate the second attribute of an applicant, based on the qual-
ity of the first attribute. For simplicity, we assume that in
holistic allocation, each evaluator always reviews attribute
1 of all applicants. Each evaluator then reviews attribute 2
only on the applicants who have scored high on attribute 1.
Specifically, we assume that attribute 2 is only evaluated on
a τ -fraction3 of the applicants receiving the top scores on
attribute 1, for a parameter τ ∈ (0, 1]. Finally, the best ap-
plicant is selected as the one whose mean of the two attribute
scores is the maximum, namely argmaxi∈[n](yi1 + yi2),
from the applicants on which both attributes are evaluated.

3Selecting the top τ -fraction requires knowledge about attribute
1 of all the applicants that an evaluator is assigned. In practice,
an evaluator may select the applicants whose attribute 1 exceeds
a certain real-valued threshold, which approximately has the same
effect.
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Figure 4: Top-1 accuracy for different fractions τ of the ap-
plicants evaluated for the second attribute, and various val-
ues of the correlation σ between the two attributes. Each
point is computed over 1000 runs (error bars are too small
to be visible).

Simulations. In Figure 4, we compute the top-1 accuracy
for different fraction τ and attribute correlation σ. When the
correlation is σ = 1 (see the blue curve), by definition eval-
uating only attribute 1 achieves perfect accuracy, and there
is no need to evaluate attribute 2. When the correlation σ is
relatively high, we observe that relatively small values of τ
introduce a significant amount of saving in terms of the total
number of attributes evaluated, while the accuracy only de-
creases marginally. This observation validates Hypothesis 3,
and we conclude that a higher correlation between the at-
tributes allows more saving in holistic allocation. This result
points to a tradeoff between efficiency and accuracy in holis-
tic allocation – namely, smaller τ introduces savings but also
more error. The specific point to pick in this tradeoff depends
on the goals of the system designer.

4.3 Mitigating Bias

To study Hypothesis 5, we present a simple model for an-
alyzing the effect of bias reduction. We present theoreti-
cal guarantees and simulational results that characterize the
regimes under which segmented allocation results in more
accurate and less biased evaluations than holistic allocation.
Our results provide intuition on the effect of redistributing
and reducing the impact of biased evaluators.

Formulation. Recall that xij denotes the true value of ap-
plicant i ∈ [n] on attribute j ∈ [d]. We assume that the appli-
cants consist of two groups – advantaged and disadvantaged
– where a fraction α ∈ [0, 1] of the applicants are from the
disadvantaged group. We assume that a fraction λ ∈ [0, 1]
of the attributes are “protected”. Each evaluator has an inde-
pendent probability of γ ∈ (0, 1) to be biased in the follow-
ing sense: An unbiased evaluator reports the (noiseless) true
value yij = xij for any applicant i and any attribute j that
they are assigned, while a biased evaluator applies a multi-
plicative bias factor β ∈ [0, 1) to the protected attributes of
the disadvantaged applicants, and reports the true value oth-
erwise. In other words, for attribute j of applicant i, a biased

evaluator reports

yij =

{
βxij if j protected and i disadvantaged
xij otherwise.

For ease of analysis, we consider a simple case of d = 2
attributes, where the correlation between the two attributes
is σ = 1. That is, for each applicant i, the two attributes
have identical values xi1 = xi2. We hence use the shorthand
xi to denote this value. We assume that the values {xi}i∈[n]

are generated i.i.d. from a continuous4 distribution D sup-
ported on [0,∞), such as the power-law distribution. Let
Sd ⊆ [n] denotes the set of αn disadvantaged applicants,
and let Sa ⊆ [n] denotes the set of (1 − α)n advantaged
applicants. Denote the quality of the best applicant in the
disadvantaged group by xmax

d : = maxi∈Sd xi, and likewise
denote xmax

a : = maxi∈Sa xi. We compute the mean of at-
tribute scores for each applicant, and estimate the best appli-
cant by selecting the one with the maximum mean score. De-
note the expected top-1 error under holistic and segmented
allocations by ehol and eseg respectively, formally defined
by P(argmaxi∈[n] xi ̸= argmaxi∈[n] yi1 + yi2) , using the
scores {yij} under the two allocation schemes respectively.

Theoretical results. We focus on a simplified case of two
evaluators, which as we see shortly, already illustrates the in-
tricacy of the comparison. In this setting, holistic allocation
assigns each evaluator both attributes of half of the appli-
cants; segmented allocation assigns each evaluator one at-
tribute of all applicants. We assume that the assignment to
applicants and attributes is uniformly at random.

Theorem 1. Let the number of attributes be d = 2. Let the
fraction of disadvantaged applicants be α = 0.5. Let the two
attributes have identical values (that is, xi : = xi1 = xi2),
sampled i.i.d. from a continuous distribution D. Consider
holistic and segmented allocations under two evaluators.

(a) Let λ = 0.5, that is, one of the two attributes is protected.
Then for any bias factor β ∈ [0, 1) and any evaluator
bias probability γ ∈ (0, 1), segmented allocation incurs
a lower error than holistic allocation, that is, eseg ≤ ehol.

(b) Let λ = 1, that is, both attributes are protected. Let
β = 0 (extreme downward bias against disadvantaged
applicants). Then

ehol − eseg =
γ(1− γ)

2

[
4 · P

(
xmax

d > 2xmax
a

)
− 1

]
.

(1)

Hence, for any γ ∈ (0, 1), segmented allocation incurs a
lower error than holistic allocation, if and only if

P
(
xmax

d > 2xmax
a

)
> 0.25. (2)

This condition (2) is dependent on the number of ap-
plicants n and and the distribution D, and independent
of the other problem parameters. In particular, for the

4We consider continuous distributions for simplicity, so that the
best applicant is uniquely defined with probability 1.
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power-law distribution with a constant parameter δ, seg-
mented allocation is better than holistic allocation for
sufficiently large n, if and only if

δ <
log(3)

log(2)
− 1 ≈ 0.58. (3)

The proof of this theorem is provided in the extended ver-
sion of this paper on arXiv (Wang et al. 2022, Appendix
A). This theorem reveals that segmented allocation is bet-
ter than holistic allocation in terms of accuracy over a large
range of parameters, but not always. Despite the simplified
settings considered in the theorem, the result illustrates how
allocating biased evaluators differently leads to changes in
accuracy.

Simulations. We study the effect of the set of parame-
ters (δ, σ, β, α, λ) in the model. Following the assumption
of Theorem 1, we consider two evaluators for simulation.
The proof of Theorem 1 suggests that it suffices to con-
sider one biased evaluator and one unbiased evaluator. We
fix the number of applicants n = 20 and the number of at-
tributes d = 20. To inspect the difference between holistic
and segmented allocations, for ease of visualization, we vary
two parameters at a time while keeping the other ones fixed.
For consistency, one varying parameter is always δ for the
power-law distribution. We set the default parameter values
as σ = 0.5, β = 0, α = 0.5 and λ = 1, when they are not
chosen as the parameter to be varied. The results are shown
in Figure 5 and discussed below.

Effect of power-law parameter (δ) In Figure 5(a)-(d), we
observe the general trend that both segmented and holis-
tic allocations achieve higher accuracy under smaller values
of δ. A smaller δ means that the distribution has a heav-
ier tail, so that the values of the applicants are more spread
out. Hence, the best applicant has a more extremal, higher
value compared to the other applicants, giving stronger sig-
nal for the evaluation process and making it easier. Two ex-
ceptions to this general trend are holistic allocation in Fig-
ure 5(a) and 5(c), where the accuracy is independent of δ. In
these two cases, we have λ = 1 and β = 0. Hence, when
a biased evaluator is assigned a disadvantaged applicant in
holistic allocation, all attributes (λ = 1) are discounted to
zero (β = 0), making it impossible for disadvantaged appli-
cants to be identified as the best regardless of their values,
and thus the accuracy is independent of δ.

Effect of correlation (σ): Figure 5(a) In holistic alloca-
tion, for the same reason that the accuracy is independent of
δ as previously explained, the accuracy is also independent
of σ. In segmented allocation, we observe that a higher cor-
relation leads to a higher accuracy. This is because a higher
(positive) correlation strengthens the signal for applicants.
For example, consider the extreme case of σ = 1. Then the
same attribute value is replicated d times for each applicant,
improving robustness against randomness in the evaluation
process due to bias.

Comparing segmented and holistic allocations, we ob-
serve that segmented allocation performs better when σ is
high (more correlation) and δ is small (heavy tail in the dis-
tribution). The tradeoff between the two allocation schemes
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Figure 5: [Best viewed in color.] Comparison between holis-
tic and segmented allocations, under different parameter val-
ues for δ and (σ, β, α, λ). The plots depict the accuracy of
segmented (left) and holistic (middle) allocations, and their
difference (right). For each choice of the parameters, the ac-
curacy for the two allocation schemes is respectively com-
puted over 50000 runs.

arises, because segmented allocation always discriminates
disadvantaged applicants but to a lesser extent, whereas
holistic allocation discriminates disadvantaged applicants
less often but to a greater extent. When the correlation σ be-
tween the attributes is high, the gain from only discriminat-
ing a fraction of the attributes (as supposed to all attributes)
is more significant.

Finally, note that in Theorem 1 we set the correlation as
σ = 1. Hence, the setting of Theorem 1(b) corresponds to
the top most matrix row in Figure 5(a). We observe that the
sign of the comparison between the two schemes is con-
sistent with the theoretical result, with a change-point at
δ ≈ 0.6 in the right panel of Figure 5(a).
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Effect of bias factor (β): Figure 5(b) We observe that
both allocation schemes have a higher accuracy when the
value of β is large. This is natural because a larger β corre-
sponds to less discrimination by the biased evaluators. Com-
paring the two schemes, segmented allocation is more ad-
vantageous when β is larger. We reason that when β is small
(more discrimination), the effect when a disadvantaged ap-
plicant is discriminated is very detrimental for the applicant
(either on one attribute for segmented allocation, or both
attributes for holistic allocation). Hence, holistic allocation
performs better because the probability that a disadvantaged
applicant is discriminated (to any extent) is smaller. On the
other hand, when β is large (less discrimination), the ad-
vantage of segmented allocation of discounting only on one
attribute becomes more significant, as supposed to discount-
ing both attributes in holistic allocation.

Effect of fraction of disadvantaged applicants (α): Fig-
ure 5(c) We observe that segmented allocation performs
better in general when α is large. To reason about this effect,
let us first think about the extreme case when α = 1. In this
case, segmented allocation is better because it gives consis-
tent treatment to all applicants. Namely, the biased evalu-
ator discounts one attribute of all applicants. On the other
hand, holistic allocation creates discrepancy between appli-
cants, because only the disadvantaged applicants assigned to
the biased evaluator are discounted. Moreover, note that the
performance of segmented allocation is not monotonic in α:
For larger values of δ, segmented allocation has the lowest
accuracy when a large fraction, but not all applicants are dis-
advantaged. This non-monotonicity of segmented allocation
leads to the non-monotonicity in comparing the two schemes
in the right panel of Figure 5(c).

Effect of fraction of protected attributes (λ): Figure 5(d)
We observe that segmented allocation performs better when
λ is small. In this case, there is less discrimination in both
allocations: Segmented allocation decreases the probabil-
ity that a biased evaluator is assigned a protected attribute,
whereas holistic allocation decreases the impact of a biased
evaluator on an applicant. Our empirical observation aligns
with the theoretical results: Comparing part (a) and part (b)
of Theorem 1 also suggests that segmented allocation per-
forms better for smaller values of λ.

In summary, there is a tradeoff where more segmentation
means that the disadvantaged applicants are more likely to
be consistently discriminated, but to a lesser extent; the pa-
rameters tip this tradeoff in different manners. We conclude
that Hypothesis 5 does not capture the complete picture, as
the benefit of segmented allocation depends on the specific
values of the parameters.

5 Discussion
In this work, we consider using segmented allocation as an
alternative to the conventional holistic allocation, for ap-
plications such as hiring and admissions. We provide de-
tailed discussions comparing the two allocation schemes,
and present theoretical and experimental results focused on

three aspects: calibration, efficiency and fairness. These re-
sults indicate the potential improvement by segmented al-
location on calibration, while also suggesting that holistic
allocation has potential benefits on efficiency. The two al-
location schemes also distribute evaluators differently that
lead to different impacts in terms of fairness. These results
together suggest a tradeoff between holistic and segmented
allocations (and the spectrum in between). The tradeoff and
the choice of which allocation to use depends on the char-
acteristics of specific applications and which dimensions are
prioritized by the system designer.

Immediate open problems include validating the remain-
ing three hypotheses that are not analyzed in this paper, and
extending the theoretical and simulation results to more gen-
eral scenarios to improve our understanding of the bias con-
siderations in Section 4.3. For example, if each attribute of
each application is evaluated by many evaluators, then it is
natural to expect that the bias is averaged out more evenly
across evaluators, and the discrepancy between holistic and
segmented allocations becomes less prominent. There are
also various other considerations, as well as open problems:
• Segmented allocation requires grouping of attributes, and

the system designer needs to do this grouping appropri-
ately. For example, in the case of admissions, one may
group test scores and GPAs as one attribute called “schol-
arly performance”. In order to provide appropriate con-
text to evaluators, one may also need to provide the same
attributes to multiple evaluators.

• In addition to grouping the attributes, it is also possible
to group the applicants. We have assumed that the appli-
cants are distributed to evaluators uniformly at random.
In reality, evaluators may have different expertise that
make them more suitable to review a particular subset
of the applicants. For example, in admissions, evaluators
from the same educational background as the applicants
may be more familiar with interpreting the schools and
the GPAs.

• We have assumed for simplicity that the final score is
computed by taking the mean over all attribute scores. In
practice, we may want to use different weights for differ-
ent attributes, or even use non-linear functions. In some
cases, the aggregation function may not be precisely pro-
vided by the system designer, but needs to be learned
from past data. This problem of learning the aggregation
function for evaluation has been studied in the specific
context of peer review (Noothigattu, Shah, and Procaccia
2021), and it is of interest to extend such results to more
general applications.

• This work discusses a spectrum of choices in terms of
the number of attributes and applicants assigned to each
evaluator. An open problem of interest is to establish the
optimal point(s) on this holistic-segmented spectrum the-
oretically and practically for any given specification of
the applications and desiderata.
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