
TaskLint: Automated Detection of Ambiguities in Task Instructions

V. K. Chaithanya Manam, Joseph Divyan Thomas, Alexander J. Quinn
Purdue University, West Lafayette, Indiana, USA

{vmanam, thoma900, aq}@purdue.edu

Abstract

Clear instructions are a necessity for obtaining accurate re-
sults from crowd workers. Even small ambiguities can force
workers to choose an interpretation arbitrarily, resulting in er-
rors and inconsistency. Crisp instructions require significant
time to design, test, and iterate. Recent approaches have en-
gaged workers to detect and correct ambiguities. However,
this process increases the time and money required to obtain
accurate, consistent results. We present TaskLint, a system to
automatically detect problems with task instructions. Lever-
aging a diverse set of existing NLP tools, TaskLint identi-
fies words and sentences that might foretell worker confusion.
This is analogous to static analysis tools for code (“linters”),
which detect possible features in code that might indicate the
presence of bugs. Our evaluation of TaskLint using task in-
structions created by novices confirms the potential for static
tools to improve task clarity and the accuracy of results, while
also highlighting several challenges.

Introduction
Crowdsourcing facilitates ease of delegation and completion
of tasks using platforms such as Amazon Mechanical Turk
and Upwork. Instruction clarity is paramount for optimum
results. Designing effective instructions requires significant
time and attention. Several iterations may be required, espe-
cially for tasks with intricate requirements. When the goal of
delegating work is to save the requester time from having to
do it themselves, spending time iterating on the task design
naturally offsets that value.

Requesters often have a clear idea about the task re-
sponses they expect to receive. However, conveying that un-
derstanding to workers is complicated, as workers may lack
prior knowledge of the task prerequisites. Ambiguities in in-
structions can lead to situations where different workers read
the same set of instructions and interpret them differently. To
address these ambiguities, researchers have proposed sev-
eral methods, which can be categorized into two categories:
proactive and reactive.

Proactive approaches seek to reduce flaws before the
tasks are posted through enhancements to the task author-
ing interface. For example, guided interfaces help novice
workers create better tasks by providing guidelines and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

recommendations to the requester while they create the
task (Gutheim and Hartmann 2012). However, existing sys-
tems do not detect ambiguities, such as contradictory state-
ments and ambiguous named entity resolution.

The downside of guided interfaces is that they inherently
constrain the range of possible tasks that can be expressed.

Reactive approaches address flaws after they have been
posted to workers, typically using feedback from workers
to improve the task design. This may be done by posting a
small batch and asking workers to do the task and provide
feedback. A full batch is posted later (Gaikwad et al. 2017).

To reduce the time needed to obtain results, a requester
may opt to post all of the tasks at once, and then solicit
feedback from workers as they do the tasks. Feedback may
come in the form of comments, questions, or potential ed-
its (Manam and Quinn 2018). The downside of this approach
is that the requester must remain available to receive and re-
spond to the feedback. That requirement increases the bur-
den on the requester.

To reduce the task turnaround time, our approach is to
analyze the text of task instructions and provide feedback
to the requester, allowing them to revise the instructions—
before the task is posted. We draw inspiration from lint tools
from software engineering, which statically analyze code to
detect possible flaws before the code ever executes; as well
as grammar checkers and other computer-assisted writing
tools.

TaskLint is our system for helping task authors to identify
ambiguities before the task is posted (i.e., proactive). Like
lint tools for code, it identifies possible problems during the
process of authoring the instructions. Like grammar check-
ers and other computer-assisted writing tools, it uses a wide
range of NLP methods, drawing on many existing tools.

The key contributions of this paper are as follows:

• TaskLint is a system that gives feedback to requesters
about potential ambiguities.

• We detail a taxonomy of ambiguity types that affect
task design for crowd work, building on our prior
work (Manam and Quinn 2018), and map ambiguity
types to NLP tools, where possible.

• Our evaluation found that tasks authored and revised us-
ing feedback from TaskLint can elicit more accurate re-
sults, relative to tasks authored without such feedback.

Proceedings of the Tenth AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2022)

160

Related Work
TaskLint is related to prior work on AI-based writing assis-
tants, linguistic studies of ambiguity, instruction quality, task
design by novice requesters, and factors affecting the quality
of results in crowdsourcing.

Tools for Writing Assistance
Development of automated tools to assist writers has been
ongoing since at least 1983 (Levin, Boruta, and Vasconcellos
1983). The market for AI-based writing assistants is growing
rapidly, from a global valuation of $359 million in 2020 to
a projection of $1 billion by 2028 (Growth Market Reports
2022). Grammarly (Grammarly 2015), a popular commer-
cial service, detects mistakes in spelling, punctuation, and
grammar; offers tips for improving clarity. Jasper (Jasper
2012) and Ink Editor (INK 2016) are services that help au-
thors of advertising copy and blog posts to optimize for
search engine rankings.

Studies of Ambiguity in Linguistic
Linguists have studied ambiguity in the context of seman-
tics (Lyons 1977), computational linguistics (Hirst 1992;
Allen 1995), and philosophy (Levinson 1983; Walton 2013).
Most ambiguities can be classified as syntactic, semantic, or
pragmatic (Hausser 2014).

Syntactic ambiguity exists when words can be in-
terpreted according to multiple grammatical structures
(parse trees) having different meanings. These can typi-
cally be resolved by rearranging the words. For example,
“blue toy box” could be a blue box of toys, or a box of
blue toys.
Syntactic ambiguities encompass analytical, attachment,
coordination, and elliptical ambiguities.
Semantic ambiguity exists when a syntactically unam-
biguous sentence can have multiple meanings, depending
on context. These can be resolved using knowledge of
the context. For example, “Everyone painted a picture,”
could mean that each person painted a separate picture, or
that everyone painted one picture together. Semantic am-
biguity may be caused by scope ambiguity (e.g., what a
quantifier such as “every” refers to) or lexical ambiguity
(i.e., hyponyms, hypernyms, homonyms, and polynyms).
Pragmatic ambiguity exists when the context in which
a sentence is expressed suggests alternate interpretations.
Pragmatic ambiguity exists only relative to a particular
context. For example, “Click the large button,” is only
ambiguous if there are two (or more) large buttons.

Many tools have been developed to detect and sometimes
resolve such ambiguities (Khezri 2017; Gleich, Creighton,
and Kof 2010; Yang et al. 2010). The approaches can be
categorized as rule-based, statistical (or probabilistic), or hy-
brid (or transformation-based) (Spoustová et al. 2007). Rule-
based approaches are arduous as it requires that the rules be
updated frequently and cover all possibilities, including ex-
ceptions. Contextual knowledge is also necessary to obtain a
solution. Statistical approaches require a large set of training

data. Hybrid approaches combine the features of rule-based
and statistical approaches (Spoustová et al. 2007).

Uncertainty is also an important linguistic phenomenon
that causes text ambiguity. It can be interpreted as a product
of a lack of information; uncertainty arises due to propo-
sitions whose truth value cannot be explicitly determined.
Consider the following examples:

1. It is cloudy.
2. It is not cloudy.
3. It is probably cloudy.

While all these sentences contain the word ‘cloudy’, their
meaning is different. Only the first sentence explicitly states
the presence of clouds (i.e., the proposition is true). The sec-
ond sentence negates it (i.e., the proposition ‘It is cloudy’ is
false), and the third sentence is uncertain about whether the
proposition is true or not. The third case is an instance of
uncertainty. Uncertainty is a complex phenomenon that can
only be understood when the syntactic, semantic, and prag-
matic aspects are considered simultaneously. Negbio (Peng
et al. 2018), LUCI (Vincze 2014; Meyers 2017) are some of
the tools used to detect uncertainty.

In natural language processing (NLP), researchers have
used word sense disambiguation (WSD) to identify and re-
solve text ambiguity. Many words have multiple meanings
and WSD helps identify which ‘meaning’ is being employed
in a particular context. The problem of WSD has been de-
scribed as AI-complete (Mallery 1988). A WSD task has
two variants: a lexical sample and an all-words task. The lex-
ical sample task consists of disambiguating the occurrences
of a small sample of target words that were previously se-
lected. An all-words task comprises text that needs disam-
biguation.

Semeval1 is an international word sense disambiguation
competition held with the objective of performing a compar-
ative evaluation of WSD systems in different kinds of tasks,
including all-words and lexical sample tasks. In Semeval-
2007, the best systems for coarse-grained English lexical
sample and coarse-grained English all-words sample at-
tained an 88.70% accuracy and 82.50% accuracy, respec-
tively (Navigli 2009).

A small percentage of ambiguity in task instructions could
drastically decrease the quality of work. Hence, none of
these systems alone can be used to resolve ambiguity in task
specifications.

Instructions Quality
Gadiraju et al. studied crowd task instructions and workers’
coping strategies and found that task clarity is a local prop-
erty influenced by tasks and requesters, not a macro-property
of a crowdsourcing ecosystem (Gadiraju, Yang, and Bozzon
2017). They introduced a model that predicts task clarity,
using features such as the number of images and standard
metrics of text readability, which they found to be correlated
with high subjective assessments of task clarity by workers.

In our prior work, we have found that workers’ subjective
assessments of clarity do not necessarily predict the accu-

1http://www.senseval.org/

161

racy of the results or even workers’ willingness to accept a
task (which can affect job completion time) (Wu and Quinn
2017).

A task description can be clear—easy and comfortable to
read—yet impossible to follow. For example, “Find the lat-
itude and longitude of Washington,” may sound clear, but
without knowing which Washington is of interest (Washing-
ton DC or Washington State, USA) and what portion of the
region to find the latitude and longitude for, the results may
be inconsistent and unreliable.

Grady and Lease identified the importance of wording and
terminology in task design (Grady and Lease 2010). Alonso
and Baeza-Yates highlighted the importance of instruction
quality in task design (Alonso and Baeza-Yates 2011). Wu
et al. studied how the length of the task impacts the task
turnaround time (Wu and Quinn 2017). Their results show
that as task length increases, turnaround time also increases.
Sampath et al. studied the effects of cognitive features such
as visual saliency of the target field and working memory re-
quirements of the task on the quality of work (Alagarai Sam-
path, Rajeshuni, and Indurkhya 2014). CrowdForge (Kit-
tur et al. 2011), Turkomatic (Kulkarni, Can, and Hartmann
2012), and Crowd4u (Ikeda et al. 2016) help in decomposing
a complex task into small tasks for crowdsourcing platforms.
Other studies also emphasize the impact of task instructions
and design on result quality (Marshall and Shipman 2013;
Berg 2016; Kittur, Chi, and Suh 2008).

Daemo (Gaikwad, Whiting et al. 2017), a proactive mech-
anism that improves instruction quality. Requesters can post
a few instances of the task to workers and receive feedback.
Based on the feedback, the requester then improves the task
instructions. After using Daemo, improved task instructions
enabled workers to produce task results of superior quality.
Similar results are observed in survey data, showing a posi-
tive relationship between the clarity of survey questions and
the quality of obtained results (Fowler Jr 1992).

Sprout (Bragg and Weld 2018) and TaskMate (Manam
et al. 2019) introduced a workflow that allows requesters
to write minimum instructions for a task, relying on crowd
workers to create clear and detailed instructions. However,
workers creating detailed instructions would increase the
cost and turnaround time for the requester.

WingIt (Manam and Quinn 2018) is a reactive mechanism
where the instruction quality is improved as the workers
work on the task. When workers encounter a problem with
the task instructions, WingIt allows workers to either edit the
instructions or ask a question with a guessed answer. The re-
quester can then trust the workers’ guess and allow them to
continue working on the task based on their guess, or, the
requester can review the workers’ guess and reply with an
acknowledgment containing the correct answer. However,
trusting the workers’ guesses could lead to wrong results.
Reviewing and acknowledging workers’ guesses would re-
quire requesters to be available until all tasks are completed.

Revolt (Chang, Amershi, and Kamar 2017), a collabora-
tive system that addresses unclear or under-specified instruc-
tions for image-labeling tasks. Revolt strives to improve the
quality of results without improving the instruction quality.
This is done by allowing multiple workers to label an im-

age with specific instructions. If there is a mismatch in the
labeling, workers relabel the image based on a description
provided by other workers.

Task Design by Novice Requesters
To understand the strategies used by novice requesters, an
experiment was conducted with 19 participants. Participants
were recruited by an email list at a large university. All were
students having limited experience with crowdsourcing (Pa-
poutsaki et al. 2015). Students were asked to gather informa-
tion regarding the academic careers of over 2, 000 professors
from 50 top Computer Science departments in the U.S. using
Amazon Mechanical Turk. The authors then classified the
strategies used by the students into six categories and com-
pared the results of these strategies against those obtained by
workers. The study found that some of the strategies (such
as communicating with workers) chosen by the novice re-
questers were consistent with the recommended best prac-
tices.

Fantasktic was designed to help novice re-
questers (Gutheim and Hartmann 2012) author tasks
using three task design techniques: a guided task specifica-
tion interface, a preview interface, and a worker tutorial. The
guided task specification interface provides task-specific
guidelines and recommendations to the requester as they
create the task. The preview interface displays the task as
it would be visible to a worker. The worker tutorial is then
automatically generated based on the sample answers pro-
vided by the requester. Workers’ response quality showed
significant improvement when the requester utilized the
suggestions made by the guided task specification interface
during task creation. However, task previews and worker
tutorials had no noticeable impact on workers’ response
quality. Despite the clear benefit, guided task specification
does not address instruction ambiguities. It is also impossi-
ble to create guided interfaces for every possible task that
could be assigned on crowd platforms.

Factors Affecting the Quality of Results
Clarity of instructions is not the only factor that can influ-
ence the quality of the results.

Requesters’ choice of incentive amount and structure can
also influence workers’ performance (Kazai, Kamps, and
Milic-Frayling 2013; Finnerty et al. 2013).

Workers’ individual characteristics affect result qual-
ity by way of cognitive factors (Alagarai Sampath, Ra-
jeshuni, and Indurkhya 2014), attention (Göritz, Borchert,
and Hirth 2021; Rothwell et al. 2016), mood (Gadiraju and
Demartini 2019; Zhuang and Gadiraju 2019; Xu, Zhou,
and Gadiraju 2019; Qiu, Gadiraju, and Bozzon 2020), fa-
miliarity of the task (Kazai, Kamps, and Milic-Frayling
2013), task-dependent bias or errors (Kamar, Kapoor, and
Horvitz 2015), payment (Kazai, Kamps, and Milic-Frayling
2013; Finnerty et al. 2013), perceived task difficulty (Kazai,
Kamps, and Milic-Frayling 2013), busyness, fatigue and
presence of companions (Ikeda and Hoashi 2017), worker
reading/ not reading instructions (Rothwell et al. 2016), cog-
nitive Biases (Eickhoff 2018; Saab et al. 2019; Hube, Fe-
tahu, and Gadiraju 2019).

162

TaskLint
We present TaskLint, a system for automatically detecting
ambiguities during the task authoring process.

Process
For requesters, using TaskLint is a four-stage process.

Stage 1: Design Task Template Requester uses a web-
based rich text editor to create a draft of their task descrip-
tion. Parameters are specified by entering a text placeholder.
For example, in a task that engages workers to find and enter
information about courses, the requester would enter place-
holders like “{{semester}}” and “{{university}}”.

Stage 2: Upload Input Values Requester enters or up-
loads a text file containing values for the parameters, for
each instance of the task to be created. The file must be
formatted as tab-separated text (TSV). For example, in the
course information example, the text file could contain a list
of semesters and university names. The system will post one
task for each row in this file.

Stage 3: Preview Tasks TaskLint combines the template
(Stage 1) and input values (Stage 2) to create a set of task
descriptions. Each row of the table of input values results in
one task (e.g., find a HCI course offered in spring 2023 at
MIT). Requester views the task previews.

Stage 4: Respond to Feedback Requesters will see the
ambiguities in the task design and can modify the task de-
sign based on the feedback provided by the tool (Figure 1).

Spell out what 'HCI' stands for?
1. Human Computer Interaction
2. Host Controller Interface

If there is no suitable answer for 'Course Name', what
should the worker enter (e.g., "N/A", "none", etc.)?

Course Name

HCI

Fix Ignore

Fix Ignore

Figure 1: Analyze

Ambiguity Types
The emphasis is on ambiguity types that might adversely
affect the quality of results obtained from workers. This is a
subset of the ambiguities described in Related Work.

The feedback messages provided by TaskLint are orga-
nized according to a taxonomy of 25 ambiguity types spe-
cific to task design for crowd work (Manam and Quinn
2018).

This section will explain each of the ambiguity types. Us-
ing a diverse set of preexisting modules and data sets (de-
scribed in Implementation), TaskLint is able to detect 19 of
the 25 ambiguity types in this taxonomy.

The ambiguity types are organized according to the com-
ponent of the task design that is affected.

• Input ambiguities relate to the parameter values that are
inserted in place of the placeholders in the task template
to generate the task instances.

• Process ambiguities are in the descriptive text in the task
template that tells the worker how to perform the task.

• Output ambiguities relate to the form fields the worker
will enter data into, together with their associate labels.
These are the outputs a requester cares about.

Input Ambiguities
Input Entity (IE) ambiguities relate to a named entity in-
serted into the task template (i.e., in place of a placeholder)
when task instances are generated.

IE1: Abbreviations Acronyms, even if known, may have
multiple possible resolutions.

Example: A task asks workers to find data about courses
on specified topics, including “HCI.”

TaskLint detects that “HCI” is an acronym with multiple
possible referents (human-computer interaction, host con-
troller interface, etc.).

Spell out what ‘HCI’ stands for?

IE2: Vocabulary Words that are likely to be unfamiliar to
workers can cause confusion. Workers may guess the mean-
ing (sometimes incorrectly).

Example: A task asks workers to find specified metrics
about specified researchers, including finding the “h-index”
for “Don Norman”.

TaskLint analyzes the vocabulary level and determines
that “h-index” (parameter value for “metric name” place-
holder) is an uncommon word.

Workers may not know what ‘h-index’ means. Simplify?

IE3: Person Name First and last name may not uniquely
identify the person about whom a task instance refers to.

Example: A task asks workers to search for information
about specified computer scientists, including “Jimmy Lin.”

TaskLint uses entity detection and classification to recog-
nize “Jimmy Lin” as the name of a person. It prompts the
requester to consider clarifying, especially if there might be
more than one computer scientist by that name.

Is there only one such person named ‘Jimmy Lin’?

IE4: Location Name A place name may correspond to
multiple geographic places.

Example: A task directs workers to search for information
about each specified American city, including “Columbus.”

TaskLint recognizes “Columbus” as a place name with
multiple possible referents (Columbus, Ohio; Columbus, In-
diana; Columbus, Georgia).

Is that the only location named ‘Columbus’?

IE5: Organization Name Organization references may
refer to multiple real-world entities.

Example: A task asks workers to find data about specified
consumer brands, including “Delta”.

163

TaskLint detects “Delta” as a named entity refer-
ence for an organization that could refer to Delta Air-
lines, Delta Faucets, or Delta Dental (insurance company).
Is that the only organization named ‘Delta’?

IE6: Entity Type Some named entity references can be
interpreted relative to more than one entity type (i.e., person,
place, organization, etc.), leading to different meanings.

Example: A task asks workers to find the postal code
for “Dupont,” which could refer to the chemical company
(DuPont de Nemours, Inc.) or a city (Dupont, Indiana).

TaskLint uses named entity classification to detect named
entity references with multiple possible entity types.

What is ‘Dupont’ (e.g., organization, location, etc.)?

Input Syntax (IS) ambiguities occur when spelling or
punctuation mistakes result in multiple interpretations.

IS1: Possible Misspelling Misspellings or punctuation er-
rors can force workers to guess what the requester meant.
Different guesses can result in inconsistent results.

Example: A task asks workers to search for data about
specified companies, including “Sisco.” This could mean
“Cisco” (technology company) or “Sysco” (food company).

TaskLint detects the misspelling using a spell check en-
gine that includes proper nouns.

Is the spelling of ‘Sisco’ correct?

Input Wrong (IW) ambiguities occur when parameter val-
ues include an entity that exists and is not ambiguous, but is
not what the requester intended.

IW1: Wrong Entity If an entity name is unambiguous,
but not what the requester intended—and does not make
sense—workers may try to guess what was intended.

Example: A task asks workers to find the largest univer-
sity in a specified American city, including “Lafayette, Indi-
ana.” Lafayette, Indiana is a real city, but does not contain
any universities. Did the requester mean “West Lafayette,
Indiana” (with Purdue University) or “Lafayette, Louisiana”
(with the University of Louisiana at Lafayette)?

TaskLint is currently unable to detect these ambiguities.

IW2: Invalid Combination If the requester combines two
(or more) valid, unambiguous entity names in a way that
does not make sense, workers may try to guess.

Example: A task asks workers to find the weight of the lat-
est “Samsung iPhone.” While Samsung is a valid electronics
brand and the iPhone is a valid product line, Samsung does
not produce the iPhone. Thus, workers might guess that the
requester intended either Apple iPhone or Samsung Galaxy.

TaskLint is currently unable to detect these ambiguities.

Input Units (IU) ambiguities occur when the units for pa-
rameter values are missing.

IU1: Missing Units When parameter values include num-
bers without units, workers may make assumptions.

Example: A task asks workers to find a city in South
America with an average temperature of “30 to 35” in May.

TaskLint detects quantities 30 and 35 as missing units.
What are the units of ‘30’ and ‘35’?

Input Format (IF) ambiguities occur when parameter val-
ues leaves room for multiple interpretations.

IF1: Date Format A given date string may be interpreted
differently depending on the locale.

Example: A task asks workers to find the name of a
championship-winning sports player who was born on a
specified day, including “3/5/1980.”

TaskLint detects that 3/5/1980 is a date that could be in-
terpreted as either month/day/year or day/month/year.

By what format should 3/5/1980 be interpreted?

IF2: Name of Person Depending on the locale, a person’s
full name could be ordered first-last or last-first.

Example: A task asks workers to find a movie in which
each actor appeared, including “Michael Blake.” This could
be interpreted to mean Michael (given name) Blake (sur-
name), or Blake (given name) Michael (surname). There are
movie actors with both names.

TaskLint recognizes “Michael Blake” as a person’s name.
Is “Michael Blake” in (first, last) or (last, first) order?

Process Ambiguities
Process Steps (PS) ambiguities occur when the task does not
specify how to perform the task.

PS1: Unspecified Steps If the requester does not specify
how to perform part of a task that requires some skill or pro-
cess that workers are unfamiliar with, workers may attempt
to perform it in the wrong way, leading to inconsistency.

Example: A task asks workers to shorten a paragraph of
text that is presumed to be verbose, down to a specified word
count. The task does not specify whether to reword the sen-
tence to be more verbose, or simply remove words.

TaskLint is unable to detect this ambiguity type.

Process Wrong (PW) ambiguities occur when steps are
specified but wrong and may not lead to the intended result.

PW1: Incorrect Steps Even if the steps have been fully
specified, any incorrect information within them can confuse
workers, leading to results that are incorrect or inconsistent.

Example: A task asks workers to manipulate spreadsheets
using Microsoft Excel and directs them to use the “PivotFil-
ter” feature, but no such feature exists in that application.

TaskLint is unable to detect this ambiguity type. Inferring
whether or not steps are likely to be correct requires deep
knowledge and reasoning about the world, and the ability to
imagine what would happen if the steps were followed. We
are unaware of any AI solutions that can do this to the level
of generality that would be needed to detect Incorrect Steps
(PW1) ambiguities for TaskLint.

164

Process wOrds (PO) ambiguities occur when the vocabu-
lary is unfamiliar or has multiple meanings.

PO1: Unquantified Quantities Imprecisely worded
quantities (e.g, as lot, nearby, etc.) inherently require
interpretation. Since different workers may interpret such
terms differently, results may be inconsistent or just wrong.

Example: A task asks workers to read articles about the
music industry and annotate the names of artist who have
sold “a lot” of records.

TaskLint uses uncertainty detection (Vincze 2014) to de-
tect all vaguely worded quantities in the task description.

Can you be more specific than ‘a lot’?

PO2: Specialized Vocabulary, PO3: Loaded Terms
When the process description uses specialized vocabulary
that many workers would not know (PO2) or words with
homonyms that would also make sense in the context (PO3),
workers may spend time looking up the terms or trying to in-
fer which meaning was intended. Gadiraju et al found that
18% of workers have used dictionaries or other tools to un-
derstand over 50% of the tasks they completed (Gadiraju,
Yang, and Bozzon 2017).

Example: A task asks workers to find sources for purchas-
ing cookies made with “sustainable organic palm oil.”

TaskLint recognizes “sustainable organic” as a term that
may not be understood by some workers.

Workers may not know what ‘sustainable organic’
means. Simplify or define?

Process Contradiction (PC) ambiguities occur when the
description of steps contains contradictory information.

PC1: Contradictory Steps When instructions contain
contradictory information, workers are left to guess or try
to reconcile the contradiction.

Example: A task asks workers to view images of receipts
and annotate entries for purchases of fruits and vegetables.
Later, the same instructions state, “Do not annotate fruit.”
Some workers might guess that both fruits and vegetables
are desired (and the later statement is incorrect), while others
might opt to omit the fruit.

TaskLint detects and reports the contradiction.
The following may be contradictory: “In the receipt
below, annotate each entry for purchases of fruits and
vegetables.” and “Do not annotate fruit.”

Output Ambiguities
Output Entity (OE) ambiguities occur when an entry calls
for an entity, but there are multiple possibilities.

OE1: Multiple Entities By following the task description,
workers might end up with more than one possible result to
enter. Having more than one possible result completely de-
pends on the tasks. We cannot predict whether or not a given
task has more than one possible result. Hence, TaskLint is
unable to detect this ambiguity type.

Example: A task asks workers to name the department
where discrete math, theory of computation, and machine
learning are taught at each specified university.

TaskLint cannot detect this type of ambiguity because it
cannot infer the association between separate references to
the same entry field.

Output eXception (OX) ambiguities occur when there is
no valid answer for some task instances.

OX1: No Answer If, for some inputs (parameter values),
there is no valid entry (answer for a worker to enter), the
requester should specify what the worker should do. Other-
wise, workers may guess.

Example: A task asks workers to enter the first adjective
found in a given sentence.

TaskLint detects that no instructions were given for what
to do if it contains no adjectives (e.g., “Eat your kale.”).

Specify what to do if there is no “first adjective.”

Output Units (OU) ambiguities relate to the units with
which an entry should be expressed.

OU1: Units Unspecified When an entry form field re-
quires a quantity, but units are unspecified, workers might
follow their locale or guess based on context of the task.

Example: A task instructs workers to find the height of
each specified building but does not specify units (e.g., feet).

TaskLint detects that a quantity is called for, and that no
units are mentioned.

In what units should height be entered?

Output Format (OF) ambiguities occur when there are
multiple possible ways to format output entry.

OF1: Time Format When the requester asks workers to
submit any information related to the time and does not spec-
ify the format in which to submit the time information, it will
be ambiguous for the workers to predict the correct format
of the time that the requester is asking for.

Example: A task directs the worker to find the time when
Neil Armstrong landed on the moon, but does not specify
which format the time should be expressed with.

TaskLint detects that an entry field refers to a time and
does not include such a specification.

In what format should ‘time’ be expressed?

OF2: Phone Number Format When a task calls for a
phone number to be entered, if the format of the phone num-
ber is not specified, differences in country code or area code
can lead to ambiguities that would make it impossible for
someone to call the number.

Example: A task directs the worker to search for the di-
rect office phone number of each named marketing manager
from various companies around the world, but does not spec-
ify in what format it should be entered.

TaskLint detects that a phone number is called for and that
no format has been specified.

165

In what format should ‘phone number’ be expressed?

Output Precision (OP) ambiguities occur when asking for
a quantity, task does not specify how precise the answer
should be.

OP1: Precision In the task description, the requester may
use some words, such as nearby, closely, faraway, etc., to de-
scribe quantities, and workers might not understand how to
interpret these quantities precisely. For example, if a user
asks a worker to find a movie theater close to Chicago
(ORD) airport terminal 5, workers do not know whether
‘close’ refers to the walking distance or driving distance. To
detect this, we parse the task description and check if the re-
quester has used any hedge words (Wormer 2018) and show
a warning message to the user:

How precise should ‘close’ be?

Output Wrong (OW) ambiguities occur when entity re-
quested is not what requester intended.

OW1: Information Requested Conflicts with the Form
Fields If the descriptive text referring to a form field con-
flicts with the label next to that form field, workers might
choose one or the other arbitrarily.

Example: A task directs workers to search for the weight
of a Lenovo G50 laptop, but then provides a form field la-
beled “screen size.”

TaskLint is unable to detect this ambiguity type.

Implementation
TaskLint is implemented as a web application using the
Python Flask framework (Grinberg 2018). The rich text ed-
itor used by requesters to author draft task templates is
based on the TinyMCE rich text editor component. Place-
holders for task parameters are entered as plain text (e.g,
“{{city name}}”).

To analyze a task design, TaskLint parses the HTML to
extract text, as well as the labels and structure of the in-
put form fields (i.e., text entries, check boxes, etc.). To-
gether with the parameter values entered separately by the
requester, a task design comprises three components: (1) ex-
planatory text, (2) form fields, and (3) parameter values.

NLP Tools Used Our current implementation detects 19
of the 25 ambiguity types in our taxonomy using 12 tools.
• Regular expressions – OX1, OF1, OF2
• Acronym DB (Acronym DB 2008) detects acronyms and

suggests possible resolutions for IE1.
• Bing Spell Check (Microsoft 2017) detects possible mis-

spellings for IS1.
• Azure Text Analytics (Microsoft 2014) detects dates,

names, and phone numbers for IF1 and IF2.
• GeoNames (Geonames 2020) detects potentially am-

biguous place names for IE4 and IE5.
• Hedge word detection (Wormer 2018) detects imprecise

adjectives and adverbs for OP1.
• Numeric Fused-Head (NFH) (Elazar and Goldberg 2019)

detects quantities without specified units for IU1.

• Quantulum3 (Mündler 2018) detects units for OU1.
• RoBERTa (Liu et al. 2019) – detects textual contradic-

tions for PC1.
• Spacy NER (Honnibal and Montani 2017) – named entity

recognition and classification; for IE3, IE6
• Textstat (Bansal and Aggarwal 2020) – for IE2, PO2,

PO3
• Uncertainty detection (Vincze 2014) – for PO1

Each tool is invoked via a module, which runs in parallel
to ensure a responsive experience for requesters. The output
of each is interpreted and used to generate feedback mes-
sages that are designed to be understandable by requesters.
The messages refer to the specific text or entity in the task
design where the potential ambiguity was found.

Study Design
We conducted an evaluation to test whether providing auto-
mated feedback using TaskLint can improve outcomes ver-
sus creating and posting task design feedback.

The study had two stages. In Phase 1, a novice requester
created instructions for several task scenarios (naı̈ve), used
our tool to detect ambiguities in the task instructions, and
modified the instructions based on the feedback from the
tool (TaskLint). In Phase 2, we posted their instructions to
Amazon Mechanical Turk (AMT) and measured the perfor-
mance of tasks created (naı̈ve, TaskLint). These phases will
be described in more detail under Method below.

Research Questions and Hypotheses
Our study sought to answer two central research questions,
each of which gives rise to a set of hypotheses.

RQ1: Can TaskLint improve performance?

H1 Accuracy of results will be higher for TaskLint than
Naı̈ve.

H2 Workers’ completion time will be less for TaskLint.

RQ2: Can TaskLint detect nocuous ambiguities?

H3 Requesters perceive Tasklint feedback (overall) as
“useful”.

H4 Requesters perceive Tasklint feedback for Input am-
biguities (overall) as “useful”.

H5 Requesters perceive Tasklint feedback for Process
ambiguities (overall) as “useful”.

H6 Requesters perceive Tasklint feedback for Output
ambiguities (overall) as “useful”.

Method
Phase 1: Requesters Design Task in Online Settings
Participants were recruited via emails and invited for an on-
line 2-hour experiment in which they posed as novice re-
questers and designed tasks with the aid of TaskLint.

Each participant received a $20 gift card to compensate
for their time. The study was approved by the Institutional
Research Board at Purdue University. All participants signed
a consent form.

There were 20 participants having no prior experience
with microtask task design. Each completed a questionnaire

166

about their background. No participants had prior experi-
ence designing crowd tasks or working in crowd work mar-
kets. Nineteen (95%) reported experience designing fewer
than 10 written instructions of other types. One participant
(5%) reported having experience in designing more than 10
instructions.

Procedure Participants authored tasks using a web-based
editor based on the TinyMCE2 rich text editor component.
We customized the editor to support the creation of HTML
forms containing input fields, including text fields, multi-
line text entry, checkboxes, and radio buttons.

Before creating any tasks, each participant viewed a video
tutorial about how to author task designs using our task de-
sign editor. To confirm their understanding, they created a
sample task design.

Each participant created three task designs, each directing
workers to search for information on the web in support of
three fictional scenarios that we provided: (1) mobile phone
shopping, (2) Turing award winners, and (3) professors.

For each scenario, we provided a brief description of the
situation in which the information might be needed, and a
document with the desired output (i.e., the answers). The
participant then assumed the role of a novice requester and
authored a task design directing workers to find that infor-
mation. Participants were instructed to write the instructions
so that workers’ entries (output) would match the desired
output that we had provided.

Rationale for Jeopardy Evaluation Method Our evalua-
tion method is unusual—and unlike real-life task design use
cases—because instead of starting with an objective and de-
signing a task to elicit the needed data, the participant starts
out with the end result they are trying to get to, and then
works backward, designing a task that they believe should
elicit the same data.

We call this method the Jeopardy method, because like the
American TV game show by that name, the participants are
given the answers and are tasked with providing questions
that might lead to those answers.

While perhaps counter-intuitive, the Jeopardy method al-
lows us to implicitly communicate to the participant the
requirements—i.e., what sort of data workers should enter—
in a form that would not bias the words the participants used
in their task design.

In contrast, a naı̈ve evaluation method would have been
to simply tell the participant what kind of information the
worker should enter, and how to get it. For example, we
could tell the participant, “Write instructions directing the
worker to search on the ACM website for the name of each
Turing award winner and enter the year of the award and
summary of achievements in your input form.” However,
that would bias the participant’s task design. They might
write instructions like, “Please search on the ACM website
for the name of each Turing award winner and enter the year
of the award and a summary of achievements in the form
below.” There would be little opportunity for organically oc-
curring ambiguities in the participant’s task design, thus lim-

2https://www.tiny.cloud/

iting our ability to evaluate the effectiveness of TaskLint to
help detect such ambiguities.

The Jeopardy method also establishes an objective means
of assessing the correctness of the workers’ entries (output).
To measure correctness, we can simply compare the text of
the workers’ entries with the desired output we provided to
the participants who authored the task designs.

Naı̈ve approaches to assessing the accuracy of workers’
entries (output) would have been to assess ourselves or have
the participant come back and assess the accuracy. Unless
we had established a comprehensive specification of cor-
rectness in advance that both the participant and researchers
fully understood, we would not be in a position to assess
correctness. Correctness is determined not by whether the
workers followed the instructions, but whether they did what
the requester intended. Even if we had the participant (re-
quester) come back and evaluate correctness, their evalu-
ation would be arbitrary, since the scenario was fictional.
Real-life accuracy depends on whether the data meet the
needs of the situation. In a fictional scenario, that cannot be
determined.

Naı̈ve Condition The initial version of each design was
saved for use in our evaluation. It represents the state of
the task design without the benefit of the feedback from
TaskLint. We call this version the naı̈ve condition for pur-
poses of our analysis.

TaskLint Condition After creating instructions for all
three tasks, participants viewed feedback from TaskLint
about each task design and used the feedback to revise each
one. Revisions were made after all of the tasks had been au-
thored to avoid learning effects (i.e., learning to avoid mak-
ing the kinds of ambiguities that TaskLint reports).

Before using TaskLint, each participant viewed a tuto-
rial video about how to use it. Then, for each task design,
TaskLint displayed a list of possible ambiguities. The partic-
ipant reported each feedback item as helpful or not helpful
using a button in the interface. This is analogous to the use
of common spelling and grammar checkers, which prompt
users to fix or ignore each suggestion, though TaskLint does
not automatically modify the task design. As participants an-
notated the feedback items, they revised the task design us-
ing the same interface with which they authored it. We call
the resulting task design—after revising based on feedback
from TaskLint—the TaskLint condition for purposes of our
analysis.

Phase 2: Post Tasks to MTurk In the second part of the
study, we posted these instructions to MTurk and collected
the results from workers.

As described above, there were two experimental condi-
tions: the naı̈ve condition (before utilizing TaskLint feed-
back) and the TaskLint condition (after utilizing the feed-
back). Each worker received task designs from either the
naı̈ve condition or the TaskLint condition—but not both.

A total of 439 distinct workers participated. Participation
was restricted to workers with a minimum approval rate of
90%. There were no other qualification criteria.

167

Payment We initially paid $0.30 USD per completed HIT.
That resulted in an effective hourly rate of $5.78 per hour,
which is below the US federal minimum wage ($7.25). To
raise the effective hourly rate to $8.00 per hour, we paid an
additional $0.12 per HIT as a bonus to workers.

Results

In Phase 1, the 20 novice requester participants created a
total of 60 task designs (three task designs per participant).
TaskLint generated 330 reports of possible ambiguities, of
which the participants labeled 154 as useful. Table 1 shows
the further classification of these ambiguity detections cor-
responding to each ambiguity type.

In Phase 2, the 439 workers on Mechanical Turk
performed the tasks, including the Naı̈ve and TaskLint-
improved versions.

H1: Accuracy of Results Will Be Higher for
TaskLint than Naı̈ve

We compare workers’ results with the results (ground truth)
provided to the participants and label them as correct or in-
correct accordingly. To understand whether TaskLint per-
forms better in terms of accuracy compared to Naı̈ve, we
conducted a chi-square test for the results of the task with
TaskLint and Naı̈ve. There was a significant association be-
tween the TaskLint and the accuracy of results, χ2(1) =
214.00, p < 0.001. Based on the odds ratio, TaskLint
produced 1.58 times more accurate results compared with
Naı̈ve. In other words, modifications to the original task in-
structions based on the feedback from TaskLint had a posi-
tive impact on the final outcome.

H2: Workers’ Completion Time Will Be Less for
TaskLint

We hypothesized that facilitating improvements to the in-
structions would decrease completion time because workers
would spend less time trying to resolve ambiguities. Thus,
we expected lower completion times with the instructions re-
vised using feedback from TaskLint, versus the Naı̈ve case.

To compare the completion time with Naı̈ve and TaskLint,
we performed the Wilcoxon rank sum test. Student’s t-test
was not used due to non-homogeneous variance.

The Wilcoxon rank sum test showed that there is a sig-
nificant difference in the completion time with Naı̈ve and
TaskLint. The completion time of TaskLint (Median =
110.72) was significantly less than Naı̈ve (Median =
117.73), W = 691433, p < 0.05, r = −0.055.

H3: Requesters Perceive Tasklint Feedback
(Overall) as “Useful”

Recall that TaskLint prompts requesters to judge whether
the feedback provided by the tool is useful or not. In our
experiment, our tool detected a total of 330 problems with
all the task instructions designed by 20 participants. Of the
330 problems detected, 154 were labeled as “useful” by the
participants, and 176 were labeled as “not useful”.

Table 1 shows further classification of these ambiguities
detection corresponding to each ambiguity type. Ambigui-
ties not detected in the study are omitted from that table.

To understand whether TaskLint’s overall feedback is use-
ful or not, we conducted a chi-square test. There was no sig-
nificant association between the TaskLint feedback and the
“usefulness”, χ2(1) = 1.47, p > 0.05.

Ambiguity Detected Useful Not useful Chi-squared test

Input Entity (IE) 1 24 15 9 χ2(1) = 1.5, p > 0.05

3 41 11 30 χ2(1) = 8.80, p < 0.01

4 12 1 11 χ2(1) = 8.33, p < 0.01

5 32 18 14 χ2(1) = 0.5, p > 0.05

6 44 17 27 χ2(1) = 2.27, p > 0.05

Input Format (IF) 2 40 23 17 χ2(1) = 0.9, p > 0.05

Input Syntax (IS) 1 20 10 10 χ2(1) = 0, p > 0.05

Process wOrds (PO) 2 4 2 2 χ2(1) = 0, p > 0.05

Process Contradiction (PC) 1 14 1 13 χ2(1) = 10.27, p < 0.05

Output eXception (OX) 1 76 41 35 χ2(1) = 0.47, p > 0.05

Output Units (OU) 1 15 12 3 χ2(1) = 5.4, p < 0.05

Output Format (OF) 1 4 2 2 χ2(1) = 0, p > 0.05

Output Precision (OP) 1 4 1 3 χ2(1) = 1, p > 0.05

Table 1: Ambiguities detected

168

H4: Requesters Perceive Tasklint Feedback for
Input Ambiguities (Overall) as “Useful”
To understand whether TaskLint feedback for Input ambigu-
ities is useful or not, we conducted a chi-square test. There
was no significant association between the TaskLint feed-
back and the “usefulness”, χ2(1) = 2.48, p > 0.05.

H5: Requesters Perceive Tasklint Feedback for
Process Ambiguities (Overall) as “Useful”
To understand whether TaskLint feedback for Process ambi-
guities is useful or not, we conducted a chi-square test. There
was a significant association between the TaskLint feedback
and the “usefulness”, χ2(1) = 8, p < 0.05. Based on the
odds ratio, TaskLint feedback for Process ambiguities was
five times more not useful (3 Useful vs. 15 Not useful).

H6: Requesters Perceive Tasklint Feedback for
Output Ambiguities (Overall) as “Useful”
To understand whether TaskLint feedback for Output am-
biguities is useful or not, we conducted a chi-square test.
There was no significant association between the TaskLint
feedback and the “usefulness”, χ2(1) = 1.71, p > 0.05.

Observations and Additional Analysis
The following are some of the behaviors we observed from
study participants’ interactions with TaskLint.

• Participants responded to or dismissed every message
presented by TaskLint, top to bottom, before clicking the
check button again to check for new ambiguities.

• When a certain ambiguity type was detected (e.g., units
missing), participants did not necessarily correct all re-
lated ambiguities in their task instructions.

• Participants reported TaskLint feedback for Input Entity
IE3 (≥ 2 instances by that name of person), IE4 (≥ 2
instances by that name of location), and Process Con-
tradiction PC1 (Contradicting Steps) as “not useful” and
Output Units OU1 (Units not specified in the entry form)
as “useful”. We conducted a chi-square test (Table 1).
There was a significant association between the TaskLint
feedback for IE3, IE4, PC1, OU1, and the “usefulness”.

Discussion and Future Work
TaskLint is able to detect 19 of 25 ambiguity types described
in this paper. Our implementation leverages several current-
generation NLP tools to detect a varied set of ambiguity
types in task instructions.

Results of our study demonstrated that TaskLint can de-
tect problems with the instructions and further help re-
questers improve the quality of the instructions, thereby sig-
nificantly enhancing the accuracy of the results.

Challenge of Assessing Accuracy
When faced with ambiguities in a task, humans may intuit
what the requester was expecting based on context, common
sense, and prior experience with similar tasks. When we post
tasks with ambiguities, we may get the correct result even
without using any mechanism to disambiguate. Hence, it is

very difficult to show that any new method to disambiguate
will produce better accuracy of results significantly.

For a wrong result, there are two ways to analyze it: “fore-
sight” and “hindsight” (Norman 2013). Foresight analysis
means predicting the reasons that can lead to a wrong result
in advance. Hindsight analysis will find the reason for the
wrong result after we get the results.

With this effort, we have tested whether a lint tool for task
instructions could detect some types of ambiguities. Our cur-
rent implementation is a prototype, sufficient for evaluation,
but it does not support the rest of the workflows needed for
real-world deployment. In the future, we envision TaskLint
being integrated as a preprocessing step into crowd work
sites, or combined with other novel workflows from research
(e.g., Daemo’s Prototype tasks (Gaikwad et al. 2017), Win-
gIt (Manam and Quinn 2018)) to improve the efficiency of
ambiguity detection.

Limitations
The performance of TaskLint depends on the accuracy of
the NLP tools we use in detecting ambiguities. Most of the
NLP tools we used can detect ambiguities occurring only at
the word level or at the sentence level. Our tool cannot de-
tect ambiguities that would require exogenous information
or contextual information. Currently, our tool cannot detect
unspecified steps or incorrect steps. To detect these, we may
require domain-specific knowledge. In the future, we plan to
use domain-specific knowledge to detect these ambiguities.

Conclusion
This paper introduced TaskLint, a lint-like tool for helping
requesters clarify task instructions by identifying ambigui-
ties. We described the design rationale and implementation,
and shared results from our evaluation with twenty novice
task designers, who each created three different tasks.

Our evaluation found that TaskLint feedback can lead to
improvements in result quality and the time to obtain results.

Acknowledgments
We are grateful to the anonymous crowd workers and lab
study participants, without whom this work would not be
possible. Dan Goldwasser, Matt Lease, Praveen Paritosh,
Chris Welty, Lora Aroyo, and Ujwal Gadiraju have all
shared their expertise at key junctions of this work.

References
Acronym DB. 2008. Acronym DB. www.acronymdb.com.
[Online; accessed June 7, 2022].
Alagarai Sampath, H.; Rajeshuni, R.; and Indurkhya, B.
2014. Cognitively inspired task design to improve user per-
formance on crowdsourcing platforms. In CHI ’14: Pro-
ceedings of the 32nd CHI Conference on Human Factors
in Computing Systems, 3665–3674. New York, NY, USA:
ACM.
Allen, J. 1995. Natural language understanding. New York,
NY, USA: Pearson.

169

Alonso, O.; and Baeza-Yates, R. 2011. Design and imple-
mentation of relevance assessments using crowdsourcing. In
ECIR ’11: Proceedings of the 33rd European Conference
on Information Retrieval, 153–164. New York, NY, USA:
Springer.
Bansal, S.; and Aggarwal, C. 2020. Textstat. https://pypi.
org/project/textstat/. [Online; accessed June 7, 2022].
Berg, J. 2016. Income security in the on-demand economy:
findings and policy lessons from a survey of crowdworkers.
Comparative Labor Law and Policy Journal, 37(3).
Bragg, J.; and Weld, D. S. 2018. Sprout: Crowd-Powered
Task Design for Crowdsourcing. In UIST ’18: Proceedings
of the 31st Annual ACM Symposium on User Interface Soft-
ware and Technology, 165–176. New York, NY, USA: ACM.
Chang, J. C.; Amershi, S.; and Kamar, E. 2017. Revolt:
Collaborative crowdsourcing for labeling machine learning
datasets. In CHI ’17: Proceedings of the 35th CHI Confer-
ence on Human Factors in Computing Systems, 2334–2346.
New York, NY, USA: ACM.
Eickhoff, C. 2018. Cognitive biases in crowdsourcing. In
WSDM ’18: Proceedings of the 11th ACM International
Conference on Web Search and Data Mining, 162–170. New
York, NY, USA: ACM.
Elazar, Y.; and Goldberg, Y. 2019. Where’s my head? Def-
inition, data set, and models for numeric fused-head identi-
fication and resolution. Transactions of the Association for
Computational Linguistics, 7: 519–535.
Finnerty, A.; Kucherbaev, P.; Tranquillini, S.; and Con-
vertino, G. 2013. Keep it simple: Reward and task design
in crowdsourcing. In CHItaly ’13: Proceedings of the Bian-
nual Conference of the Italian Chapter of SIGCHI, 1–4. New
York, NY, USA: ACM.
Fowler Jr, F. J. 1992. How unclear terms affect survey data.
Public Opinion Quarterly, 56(2): 218–231.
Gadiraju, U.; and Demartini, G. 2019. Understanding
worker moods and reactions to rejection in crowdsourcing.
In HT ’19: Proceedings of the 30th ACM Conference on Hy-
pertext and Social Media, 211–220. New York, NY, USA:
ACM.
Gadiraju, U.; Yang, J.; and Bozzon, A. 2017. Clarity is a
Worthwhile Quality: On the Role of Task Clarity in Micro-
task Crowdsourcing. In HT ’17: Proceedings of the 28th
ACM Conference on Hypertext and Social Media, 5–14.
New York, NY, USA: ACM.
Gaikwad, S.; Chhibber, N.; Sehgal, V.; Ballav, A.; Mullings,
C.; Nasser, A.; Richmond-Fuller, A.; Gilbee, A.; Gamage,
D.; Whiting, M.; et al. 2017. Prototype Tasks: Improving
Crowdsourcing Results through Rapid, Iterative Task De-
sign. arXiv preprint, arXiv:1707.05645.
Gaikwad, S. N. S.; Whiting, M. E.; et al. 2017. The Daemo
Crowdsourcing Marketplace. In CSCW ’17: Proceedings of
the 20th ACM Conference on Computer Supported Coopera-
tive Work and Social Computing, 1–4. New York, NY, USA:
ACM.
Geonames. 2020. Geonames. http://www.geonames.org.
[Online; accessed June 7, 2022].

Gleich, B.; Creighton, O.; and Kof, L. 2010. Ambiguity de-
tection: Towards a tool explaining ambiguity sources. In
REFSQ ’10: Proceedings of the 16th International Working
Conference on Requirements Engineering: Foundation for
Software Quality, 218–232. New York, NY, USA: Springer.
Göritz, A. S.; Borchert, K.; and Hirth, M. 2021. Using at-
tention testing to select crowdsourced workers and research
participants. Social Science Computer Review, 39(1): 84–
104.
Grady, C.; and Lease, M. 2010. Crowdsourcing Document
Relevance Assessment with Mechanical Turk. In CSLDAMT
’10: Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s Me-
chanical Turk, 172–179. Stroudsburg, PA, USA: ACL.
Grammarly. 2015. Grammarly. www.grammarly.com. [On-
line; accessed June 7, 2022].
Grinberg, M. 2018. Flask web development: developing web
applications with python. O’Reilly Media, Inc.
Growth Market Reports. 2022. AI Writing As-
sistant Software Market – Global Industry Anal-
ysis, Size, Share, Growth, Trends, and Forecast.
https://growthmarketreports.com/report/ai-writing-
assistant-software-market-global-industry-analysis. [On-
line; accessed June 7, 2022].
Gutheim, P.; and Hartmann, B. 2012. Fantasktic: Improv-
ing Quality of Results for Novice Crowdsourcing Users.
Master’s thesis, EECS Department, University of California,
Berkeley. [Online; accessed June 7, 2022].
Hausser, R. 2014. Foundations of computational linguistics,
third edition. Springer.
Hirst, G. 1992. Semantic interpretation and the resolution
of ambiguity. Cambridge, UK: Cambridge University Press.
Honnibal, M.; and Montani, I. 2017. spacy 2: Natural lan-
guage understanding with bloom embeddings. convolutional
neural networks and incremental parsing, 7(1): 411–420.
Hube, C.; Fetahu, B.; and Gadiraju, U. 2019. Understanding
and mitigating worker biases in the crowdsourced collection
of subjective judgments. In CHI ’19: Proceedings of the
37th CHI Conference on Human Factors in Computing Sys-
tems, 1–12. New York, NY, USA: ACM.
Ikeda, K.; and Hoashi, K. 2017. Crowdsourcing go: Effect
of worker situation on mobile crowdsourcing performance.
In CHI ’17: Proceedings of the 35th CHI Conference on Hu-
man Factors in Computing Systems, 1142–1153. New York,
NY, USA: ACM.
Ikeda, K.; Morishima, A.; Rahman, H.; Roy, S. B.; Thirumu-
ruganathan, S.; Amer-Yahia, S.; and Das, G. 2016. Collab-
orative Crowdsourcing with Crowd4U. Proceedings of the
VLDB Endowment, 9(13): 1497–1500.
INK. 2016. INK. www.inkforall.com. [Online; accessed
June 7, 2022].
Jasper. 2012. Jasper. www.jasper.ai. [Online; accessed June
7, 2022].
Kamar, E.; Kapoor, A.; and Horvitz, E. 2015. Identifying
and accounting for task-dependent bias in crowdsourcing.
In HCOMP ’15: Proceedings of the 3rd AAAI Conference

170

on Human Computation and Crowdsourcing, 92–101. Palo
Alto, CA, USA: AAAI Press.
Kazai, G.; Kamps, J.; and Milic-Frayling, N. 2013. An anal-
ysis of human factors and label accuracy in crowdsourcing
relevance judgments. Information retrieval, 16(2): 138–178.
Khezri, R. 2017. Automated Detection of Syntactic Ambigu-
ity Using Shallow Parsing and Web Data. Master’s thesis,
Department of Philosophy, Linguistics and Theory of Sci-
ence, University of Gothenburg. [Online; accessed June 7,
2022].
Kittur, A.; Chi, E. H.; and Suh, B. 2008. Crowdsourcing
User Studies with Mechanical Turk. In CHI ’08: Proceed-
ings of the 26th CHI Conference on Human Factors in Com-
puting Systems, 453–456. New York, NY, USA: ACM.
Kittur, A.; Smus, B.; Khamkar, S.; and Kraut, R. E. 2011.
CrowdForge: Crowdsourcing Complex Work. In UIST ’11:
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, 43–52. New York, NY,
USA: ACM.
Kulkarni, A.; Can, M.; and Hartmann, B. 2012. Collab-
oratively Crowdsourcing Workflows with Turkomatic. In
CSCW ’12: Proceedings of the 15th ACM Conference on
Computer Supported Cooperative Work, 1003–1012. New
York, NY, USA: ACM.
Levin, J. A.; Boruta, M. J.; and Vasconcellos, M. T. 1983.
Microcomputer-based environments for writing: A writer’s
assistant. Classroom computers and cognitive science, 219–
232.
Levinson, S. C. 1983. Pragmatics. Cambridge, UK: Cam-
bridge University Press.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv preprint, arXiv:1907.11692.
Lyons, J. 1977. Semantics I & II. Cambridge.
Mallery, J. C. 1988. Thinking about foreign policy: Find-
ing an appropriate role for artificially intelligent computers.
Master’s thesis, Political Science Department, MIT.
Manam, V. C.; Jampani, D.; Zaim, M.; Wu, M.-H.; and
J. Quinn, A. 2019. TaskMate: A Mechanism to Improve
the Quality of Instructions in Crowdsourcing. In WWW ’19:
Companion Proceedings of the 30th World Wide Web Con-
ference, 1121–1130. New York, NY, USA: ACM.
Manam, V. C.; and Quinn, A. J. 2018. WingIt: Efficient
Refinement of Unclear Task Instructions. In HCOMP ’18:
Proceedings of the 6th AAAI Conference on Human Compu-
tation and Crowdsourcing, 108–116. Palo Alto, CA, USA:
AAAI Press.
Marshall, C. C.; and Shipman, F. M. 2013. Experiences Sur-
veying the Crowd: Reflections on Methods, Participation,
and Reliability. In WebSci ’13: Proceedings of the 5th An-
nual ACM Web Science Conference, 234–243. New York,
NY, USA: ACM.
Meyers, B. 2017. LUCI: Linguistic Uncertainty Classifier
Interface. https://github.com/meyersbs/uncertainty. [Online;
accessed June 7, 2022].

Microsoft. 2014. Text Analytics API. https://azure.
microsoft.com/en-us/services/cognitive-services/text-
analytics/. [Online; accessed June 7, 2022].
Microsoft. 2017. Bing Spell Check API V7. https://www.
microsoft.com/en-us/bing/apis/bing-spell-check-api. [On-
line; accessed June 7, 2022].
Mündler, N. 2018. Quantulum3. https://github.com/
nielstron/quantulum3. [Online; accessed June 7, 2022].
Navigli, R. 2009. Word Sense Disambiguation: A Survey.
ACM Computer Survey, 41(2): 10:1–10:69.
Norman, D. 2013. The design of everyday things: Revised
and expanded edition. New York, NY, USA: Basic books.
Papoutsaki, A.; Guo, H.; Metaxa-Kakavouli, D.; Gramazio,
C.; Rasley, J.; Xie, W.; Wang, G.; and Huang, J. 2015.
Crowdsourcing from scratch: A pragmatic experiment in
data collection by novice requesters. In HCOMP ’15: Pro-
ceedings of the 3rd AAAI Conference on Human Compu-
tation and Crowdsourcing, 140–149. Palo Alto, CA, USA:
AAAI Press.
Peng, Y.; Wang, X.; Lu, L.; Bagheri, M.; Summers, R.; and
Lu, Z. 2018. Negbio: a high-performance tool for negation
and uncertainty detection in radiology reports. AMIA Sum-
mits on Translational Science Proceedings, 2018: 188.
Qiu, S.; Gadiraju, U.; and Bozzon, A. 2020. Just the Right
Mood for HIT! In ICWE ’20: Proceedings of the 20th In-
ternational Conference on Web Engineering, 381–396. New
York, NY, USA: Springer.
Rothwell, S.; Carter, S.; Elshenawy, A.; and Braga, D. 2016.
Job Complexity and User Attention in Crowdsourcing Mi-
crotasks. In HCOMP ’16: Proceedings of the 4th AAAI Con-
ference on Human Computation and Crowdsourcing, 20–25.
Palo Alto, CA, USA: AAAI Press.
Saab, F.; Elhajj, I. H.; Kayssi, A.; and Chehab, A. 2019.
Modelling cognitive bias in crowdsourcing systems. Cog-
nitive Systems Research, 58: 1–18.
Spoustová, D. J.; Hajič, J.; Votrubec, J.; Krbec, P.; and
Květoň, P. 2007. The Best of Two Worlds: Cooperation of
Statistical and Rule-Based Taggers for Czech. In BSNLP
’07: Proceedings of the 6th Workshop on Balto-Slavonic
Natural Language Processing, 67–74. Prague, Czech Re-
public: Association for Computational Linguistics.
Vincze, V. 2014. Uncertainty Detection in Natural Lan-
guage Texts. Ph.D. thesis, School in Computer Science, Uni-
versity of Szeged. [Online; accessed June 7, 2022].
Walton, D. 2013. Fallacies arising from ambiguity, vol-
ume 1. New York, NY, USA: Springer Science & Business
Media.
Wormer, T. 2018. Hedge Words List. https://github.com/
words/hedges/blob/main/data.txt. [Online; accessed June 7,
2022].
Wu, M.-H.; and Quinn, A. J. 2017. Confusing the Crowd:
Task Instruction Quality on Amazon Mechanical Turk. In
HCOMP ’17: Proceedings of the 5th AAAI Conference on
Human Computation and Crowdsourcing, 206–215. Palo
Alto, CA, USA: AAAI Press.

171

Xu, L.; Zhou, X.; and Gadiraju, U. 2019. Revealing the role
of user moods in struggling search tasks. In SIGIR ’19:
Proceedings of the 42nd International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, 1249–1252. New York, NY, USA: ACM.
Yang, H.; Willis, A.; De Roeck, A.; and Nuseibeh, B. 2010.
Automatic Detection of Nocuous Coordination Ambiguities
in Natural Language Requirements. In ASE ’10: Proceed-
ings of the 25th IEEE/ACM International Conference on Au-
tomated Software Engineering, 53–62. New York, NY, USA:
ACM.
Zhuang, M.; and Gadiraju, U. 2019. In What Mood Are You
Today? An Analysis of Crowd Workers’ Mood, Performance
and Engagement. In WebSci ’18: Proceedings of the 10th
ACM Conference on Web Science, 373–382. New York, NY,
USA: ACM.

172

