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Abstract

An increased awareness concerning risks of algorithmic bias
has driven a surge of efforts around bias mitigation strategies.
A vast majority of the proposed approaches fall under one
of two categories: (1) imposing algorithmic fairness con-
straints on predictive models, and (2) collecting additional
training samples. Most recently and at the intersection of
these two categories, methods that propose active learning
under fairness constraints have been developed. However,
proposed bias mitigation strategies typically overlook the
bias presented in the observed labels. In this work, we study
fairness considerations of active data collection strategies in
the presence of label bias. We first present an overview of
different types of label bias in the context of supervised
learning systems. We then empirically show that, when over-
looking label bias, collecting more data can aggravate bias,
and imposing fairness constraints that rely on the observed
labels in the data collection process may not address the
problem. Our results illustrate the unintended consequences
of deploying a model that attempts to mitigate a single type
of bias while neglecting others, emphasizing the importance
of explicitly differentiating between the types of bias that
fairness-aware algorithms aim to address, and highlighting
the risks of neglecting label bias during data collection.

Introduction
There is sufficient understanding that machine learning
(ML) algorithms can easily replicate and even exacerbate
societal biases. Abundant empirical evidence of biased ML
systems has been found in a variety of domains, including
criminal justice (Angwin et al. 2016), healthcare (Ober-
meyer et al. 2019), human resources (Pessach and Shmueli
2020), and content moderation (Sap et al. 2019; Davidson
et al. 2017). In many of these domains, algorithms are
making or supporting high-stakes, life-changing decisions.
Awareness of the risks of biases in ML systems has led
to an exploration of methods to mitigate those biases. A
majority of the works that propose approaches to mitigate
algorithmic bias measure bias at a group level (Mitchell
et al. 2018; Verma and Rubin 2018) and have been focused
on one of two categories. One line of work aims to use
available data to train algorithms that yield better group
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fairness measures. This is typically achieved by imposing
different types of fairness constraints (Bellamy et al. 2018;
d’Alessandro, O’Neil, and LaGatta 2017), including pre-
processing data transformations (Zemel et al. 2013; Louizos
et al. 2015; Lum and Johndrow 2016; Adler et al. 2018;
Turchetta, Berkenkamp, and Krause 2016; Del Barrio et al.
2018); in-processing optimization constraints (Woodworth
et al. 2017; Zafar et al. 2017; Agarwal et al. 2018; Russell
et al. 2017); and post-process group-specific classification
thresholds (Feldman 2015; Hardt, Price, and Srebro 2016).
The second approach aims to mitigate bias via additional
data collection, which may be guided by a number of
criteria, including the desire to cost-effectively produce a
distribution that is expected to yield better generalization
performance and smaller biases. For example, to prevent
harm caused by ML systems, there have been numerous calls
to obtain training datasets that are more inclusive, diverse,
and representative of the populations of interest (Chen,
Johansson, and Sontag 2018; Fazelpour and De-Arteaga
2022; Gebru et al. 2021; Mitchell et al. 2019; Veale and
Binns 2017; Holstein et al. 2019), including calls by policy
makers (European Commission 2021).

Because data collection–and especially label acquisition–
is very costly, active learning is often used to assist the
data collection process, so as to cost-effectively acquire
labels that are particularly beneficial for learning (Saar-
Tsechansky and Provost 2004; Saar-Tsechansky and Geva
2019). In contrast with traditional supervised learning,
(pool-based) active learning is a framework in which the
learner’s goal is to proactively select a subset of examples
to be labeled from a pool of unlabeled instances. Typi-
cally, an active learner is initially trained on a small set
of labeled examples and adaptively determines the batch
of unlabeled instances that would be most advantageous
to be labeled next. Most active learning strategies choose
instances to be labeled based on some notion of uncertainty,
such as entropy of predictions (Shannon 1948). However,
an instance’s utility score (how beneficial it would be to
include it in the training data) can be designed to depend
on a number of criteria, and different heuristics can be
used to achieve different performance needs. As recent
work has noted, these heuristics can be modified to reflect
fairness criteria. For example, if the goal is to learn a model
that can mitigate the performance disparity across groups,
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then the active learning utility function can be designed to
incorporate this objective (Abernethy et al. 2020). Thus,
active learning’s suitability for efficient and purpose-driven
data collection has spurred interest at the intersection of
algorithmic fairness and efficient data collection, and algo-
rithms that propose active learning under fairness constraints
have been developed. For instance, Abernethy et al. (2020)
proposed adaptive sampling for min-max fairness by consid-
ering group membership when estimating the probability of
sampling an instance to be labeled. Anahideh, Asudeh, and
Thirumuruganathan (2022) proposed a method called “fair
active learning” (FAL), which includes fairness improve-
ments in the utility function in addition to overall model
performance (eg. overall model accuracy).

Approaches for mitigating bias by imposing fairness con-
straints and existing approaches for fairness-oriented active
data collection share one important commonality: they all
assume (albeit often implicitly) that the observed label can
be considered to be an unbiased “gold standard”. Thus,
the proposed bias mitigation strategies typically overlook
bias present in the observed labels. This can be a problem
because historical prejudice, bias, and unequal access to
opportunities do not only affect covariates, but may also
affect the labels used for training across domains. For ex-
ample, Obermeyer et al. (2019) found that one widely used
algorithm in the U.S. healthcare system meant to identify
patients that will benefit most from enrollment in “high-risk
care management” programs exhibited bias against Black
patients due to label bias. The algorithm relied on healthcare
costs as a proxy for health needs, but unequal access to care
has historically led to lower healthcare spending for Black
patients as compared to white patients, resulting in the algo-
rithm underestimating their needs. Racial bias in data labels
has also been shown to be present in multiple widely used
Twitter corpora annotated for offensive language, where
tweets inferred to be African American English are more
likely to be annotated as offensive language (Sap et al.
2019). Research has also shown that models trained on these
corpora have the potential to reinforce the racial bias and
further marginalize voices of minorities (Sap et al. 2019).

In this work, we provide a structured overview of different
types of label bias and empirically study the fairness impli-
cations of active data collection algorithms in the presence
of label bias. Our work is grounded on a disconnect between
the characteristics of common active learning settings, and
the underlying assumptions of proposed bias mitigation
strategies. Overlooking label bias in active data collection
may be particularly problematic given that some of the
most common active learning applications rely on human-
generated labels, such as crowdsourced annotations (Yan
et al. 2011), which are highly bias prone due to human
cognitive bias (Haselton, Nettle, and Murray 2015). Fur-
thermore, the settings used to motivate active learning with
fairness constraints are often some in which label bias is a
high risk. For instance, a recently proposed methodology
termed “fair active learning” (FAL) (Anahideh, Asudeh,
and Thirumuruganathan 2022) uses recidivism prediction as
one of two motivating examples and evaluates the proposed
approach in the COMPAS dataset, while recent work has

highlighted the risk of label bias when using rearrest as a
proxy for recidivism (Bao et al. 2021; Fogliato et al. 2021).

We study the impact of overlooking label bias during data
collection empirically, using both simulations and real data.
Our results show that if we overlook label bias while acquir-
ing labels: 1) collecting more data can lead to exacerbated
bias; 2) data-driven strategies to identify the “disadvantaged
group” based on performance gaps can lead to misidentifica-
tion; 3) relative comparisons of bias based on performance
gaps across models can be misleading, which may misguide
model selection.

In the next section, we briefly review extant research on
algorithmic fairness (bias mitigation algorithms and calls
for data collection), active learning, fairness-aware active
learning, and label bias. Then we conceptualize label bias
in the context of supervised learning systems and provide a
structured overview of different types of label bias. We then
describe our methodology for assessing the fairness perfor-
mance of recently proposed fairness-aware active learning
and the most commonly used active learning strategies in
the presence of label bias. Thereafter, we present the results
and show three more data can lead us astray patterns. We
conclude by discussing the implications of our findings and
opportunities for future research directions.

Related Work
In recent years, a large body of research has focused on the
development of bias mitigation algorithms. Most of them
fall into one of three streams: pre-processing, in-processing,
or post-processing. Pre-processing methods try to remove
information related to sensitive feature(s). The idea is that
we first drop the sensitive feature(s), then learn a new feature
space that removes the information correlated to the sensi-
tive feature (Zemel et al. 2013; Louizos et al. 2015; Adler
et al. 2018; Calmon et al. 2017). Alternatively, in-process
methods try to modify the loss function in order to penalize
the disparities in performance, for example, by adding a
constraint or a regularization term to the existing loss func-
tion (Zafar et al. 2017; Gordaliza et al. 2019; Agarwal et al.
2018; Zafar et al. 2017; Woodworth et al. 2017; Calders,
Kamiran, and Pechenizkiy 2009). Generally, the constraint
is a quantitative operationalization of an underlying notion
of fairness, and can be added to the objective function
of any supervised ML model. The trade-off between the
existing objective (eg. accuracy) and fairness metrics can
be treated as a user parameter and thus can be adjusted
based on different contexts and stakeholders’ interests. Post-
processing methods try to find appropriate thresholds using
the original scoring function for each group (Hardt, Price,
and Srebro 2016). As they are using the original scoring
function, there is no need to retrain the model, thus is
preferred if computation expense is an issue, but may come
at a cost of other notions of fairness (Cheng et al. 2021). All
of the aforementioned fairness-aware algorithms discuss the
bias mitigation techniques with respect to observed labels,
however, we consider label bias and differentiate observed
labels from the labels of interest for algorithm training.

Despite these “fair” algorithm developments on fixed
datasets, many researchers attribute the disparities to the un-
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representative of training samples (Buolamwini and Gebru
2018; Angwin et al. 2016), and advocate for data collection
to avoid discrimination (Chen, Johansson, and Sontag 2018;
Gebru et al. 2021; Mitchell et al. 2019; Veale and Binns
2017; Holstein et al. 2019). As we have mentioned in the
introduction section, active learning approaches (Lewis and
Gale 1994; Settles and Craven 2008; Settles 2009; Zhu
et al. 2009; Huang, Jin, and Zhou 2010) are considered a
cost-effective way to acquire additional training instances,
since the algorithm can guide the selection of the most
informative set of instances to be labeled and added to
the training set. Driven by the need of collecting more
data to mitigate bias cost-effectively, fairness-aware active
learning methods have been proposed recently. Anahideh,
Asudeh, and Thirumuruganathan (2022) proposed a query
strategy that sample the next batch of instances considering
both overall model information gain and fairness measure.
At each iteration, the instance(s) with maximum Shannon
entropy (Shannon 1948) and expected fairness improvement
would be labeled and added to the training set. However, the
obtained labels are still assumed to be the “gold standard”.
Similarly, other very recent works also incorporate the fair-
ness notion in active learning strategy design (Abernethy
et al. 2020; Sharaf and Daumé III 2020; Cai et al. 2022). All
these new approaches inherit from classical active learning
the assumption that the acquired label is a perfect match with
the label of interest, but this assumption does not hold in a
wide range of practical scenarios.

A separate body of work has devoted significant attention
to the presence of bias in human-generated labels. With
the flourishing of crowdsourcing services (Howe 2008; Yan
et al. 2011), such as Amazon Mechanical Turk, the data
labeling process is increasingly reliant on crowd work (Gray
and Suri 2019). Crowd workers can perform as well as
domain experts in certain tasks (Snow et al. 2008), espe-
cially when the composition of the workers’ pool is carefully
curated in a task-dependant manner (Allen et al. 2021).
However, researchers have brought attention to the risk
of annotators’ cognitive bias (Eickhoff 2018; Draws et al.
2021), stereotyping encoded in annotators’ assessments (Ot-
terbacher 2015), and uneven representations of demographic
characteristics among annotators (Barbosa and Chen 2019).
A number of factors, including task and instructions clarity
(Wu and Quinn 2017), task design (Kazai et al. 2011),
incentives (Shah and Zhou 2015), and quality control mech-
anisms (Ipeirotis, Provost, and Wang 2010; McDonnell
et al. 2016), have been demonstrated to affect the quality
of the annotations (Draws et al. 2021). Furthermore, even
when labels are collected from domain experts, this does not
mean they are free of bias. For instance, in the context of
healthcare, the quality of medical diagnoses and treatments
in acute, cancer, and palliative pain care was compromised
due to medical care providers’ biases (Hoffman et al. 2016).

It is worth mentioning that there is a large body of litera-
ture that relaxes the assumption of perfect labels, focused on
learning from noisy labelers. Researchers have proposed
aggregating multiple noisy labelers’ opinions either through
majority voting (Zhang, Wu, and Sheng 2016), as well as
learning probabilistic models to jointly estimate labelers’

quality and gold standard labels (Snow et al. 2008; Smyth
et al. 1994; Dawid and Skene 1979; Whitehill et al. 2009;
Rodrigues, Pereira, and Ribeiro 2013; Welinder et al. 2010;
Jin and Ghahramani 2002; Liu et al. 2012; Yan et al.
2010), or other heuristics (Huang et al. 2017; Gao and Saar-
Tsechansky 2020). These proposed algorithms, neverthe-
less, assume constrained forms of noise such as random
noise, which excludes shared societal biases, or dismiss fair-
ness considerations in their model evaluation. Recent work
has aimed to move beyond these assumptions by leveraging
disagreement and recognizing annotators’ unique perspec-
tives (Davani, Dı́az, and Prabhakaran 2022), but there is still
a lack of active learning approaches that tackle this problem.

While label noise in ML systems has received extensive
attention, there are relatively few works explicitly focused
on label bias. Fogliato, Chouldechova, and G’Sell (2020)
found that even small biases in observed labels is sufficient
to lead to disparities in the recidivism risk assessment tool’s
disparate performance on different racial groups. The fact
that “re-arrest”—the target variable used for training recidi-
vism risk assessment tools—, is a different construct than
“re-offend”—the outcome the risk assessment tool aims to
predict—can cause fairness issues; “a model that appears to
be fair with respect to rearrest could be an unfair predictor
of re-offense” (Fogliato, Chouldechova, and G’Sell 2020).
Label bias has been identified as a potential problem in
other contexts such as child maltreatment hotline screen-
ings (De-Arteaga, Dubrawski, and Chouldechova 2021),
healthcare (Obermeyer et al. 2019), and offensive language
detection (Sap et al. 2019). Obermeyer et al. (2019) and Sap
et al. (2019) attribute the performance disparity of an ML
system to a specific label bias under the context they exam-
ined, and De-Arteaga, Dubrawski, and Chouldechova (2021)
propose a methodology that combines observed outcomes
and human decisions to better approximate a construct of
interest. Finally, the context-dependent and complex rela-
tionship between the observed labels used for training ML
models, the construct of interest that an algorithm aims to
predict, and the decision-making space has been discussed
(Friedler, Scheidegger, and Venkatasubramanian 2016; Passi
and Barocas 2019; Jacobs and Wallach 2021).

How Bias May Creep into Labels
In this section, we describe how bias may creep into in-
stances’ labels used to train ML models. Before we dissect
different sources of label bias, let us define what we mean
when we use the term label bias. Given an observed label
Ỹ that is usually readily accessible in a set of training
examples, a construct of interest Y ∗ that is an ideal label for
training, and a variable denoting a binary group membership
G, we refer to label bias as a systematic mismatch between
the construct of interest and the observed label, such that the
relationship underlying the mismatch differs across groups.
Ỹ exhibits label bias with respect to Y ∗ if there is a group
of relevance g0 ∈ G such that,

P (Y ∗ = Ỹ |G = g0) ̸= P (Y ∗ = Ỹ |G ̸= g0) (1)

For example, G may correspond to gender and g0 to
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women. Label bias differs from label errors given its non-
random nature and tight relationship with group fairness. It
is also important to note that according to this definition,
the presence of label bias cannot be determined on the
basis of data alone; it is defined in reference to a construct
of interest Y ∗ for training a supervised learning system,
and thus depends on the predictive task that a supervised
learning system is attempting to perform. Such bias may be
a result of different phenomena, which we detail below.

Construct Gap occurs when there is a mismatch in the-
oretical definitions between the construct of interest and the
construct of observed label (Jacobs and Wallach 2021). The
reliance on a construct that does not match the construct of
interest is typically motivated by the relative accessibility of
one over the other. In some cases, this may occur because
ML systems are often trained by repurposing previously
collected datasets stored in organizational information sys-
tems. As a result, the goals during data collection may not
match the goals during model development. For example, in
the context of healthcare, financial incentives often result in
detailed and meticulous data of insurance claims, which is
then repurposed for multiple tasks in ML for healthcare.

The risks of relying on insurance claims and spending
information as a proxy for healthcare conditions are illus-
trated in a study by Obermeyer et al. (2019) analyzing racial
disparities in an algorithm used to prioritize patients that
may benefit from care management programs meant for
patients with complex health needs.

The algorithm used health costs as a proxy label for
health needs. Due to historical inequities, in the US the costs
incurred by Black patients are often considerably lower than
those of white patients with similar healthcare needs. As a
result, the algorithm prioritized healthier white patients over
more ill Black patients.

Construct validity issues may also arise because high-
level, complex objectives are often not directly quantifi-
able (Passi and Barocas 2019). As a result, it is necessary to
choose proxies. Consider the task of predicting a student’s
likelihood to be successful in a college admission setting. It
is impossible to fully capture the outcome of a ‘successful
student’ using one single measurable feature due to the
complex and potentially contentious definition of ‘success’.
In cases like this, a simplified construct such as ‘GPA’ or
‘class ranking’ is used, which may ignore various indicators
of success, and inadvertently favor some population groups
(Suresh and Guttag 2019).

Label Measurement Bias occurs when the construct we
are interested in when training a supervised learning model
is fully aligned with the construct we intended to measure,
but measurement errors vary across groups (Jacobs and
Wallach 2021). While this may also be thought of as a proxy
problem, label measurement bias differs from construct gap
in that there is no conceptual mismatch between the ob-
served construct and the construct of interest. For example,
measurement error from pulse oximetry is more prevalent
for people with darker skin pigmentation. Compared to
white patients, Black patients had roughly three times the
rate of occult hypoxemia that was not identified by pulse
oximetry (Sjoding et al. 2020). Thus, if an ML model is

trained to predict oxygen saturation (Ghazal et al. 2019), the
label we observe does match the construct we are interested
in, but the measurement error is higher for Black patients
as compared to white patients. In the context of ongoing
efforts to use ML models to automatically adjust ventilation
settings (Ghazal et al. 2019), this label measurement bias
could result in misadjustment or delayed adjustment of ven-
tilator settings for Black patients. Given that measurement
often relies on various technologies as well as sociotechnical
processes, disparities in measurement error are common
across domains.

Human Labeling Bias arises in contexts when labels
used for training ML models rely on human assessments,
which is very common in crowdsourced data collections. In
many tasks, ranging from radiology applications to misin-
formation detection, there is frequently no unique gold stan-
dard (Adamson and Welch 2019; Neumann, De-Arteaga,
and Fazelpour 2022), and the construct of interest Y ∗ may
not be directly observable and may be subject to disagree-
ment (Aroyo et al. 2019). For example, when assessing
candidates for job applications, committee members may
disagree with each other on whether someone is qualified for
the job. In this case, the labeling disagreements can be rooted
in the differing subjectivities and value systems (Bless and
Fiedler 2014). Crowd workers, whose life experience brings
important perspectives to certain tasks may be dramatically
underrepresented in generic crowdsourcing platforms such
as Mturk, and the voice of the already unrepresentative
group can be further marginalized (Davani, Dı́az, and Prab-
hakaran 2022).

In addition to capturing a variety of perspectives, human-
generated labels frequently capture societal biases and preju-
dices. Human labeling bias occurs when there is a mismatch
between a construct of interest Y ∗ and the labels provided
by human labelers Ỹ , such that a group is systematically dis-
favoured. For example, (Otterbacher et al. 2018) found that
people who are more sexist, as measured by the Ambivalent
Sexism Inventory, are less likely to recognize and report
gender biases in image search results, thereby reinforcing
social stereotypes.

It is worth mentioning that these three types of label
bias are not mutually exclusive. For example, construct gap
and human labeling bias may often co-occur, as the proxy
chosen may correspond to human assessments. For instance,
when using income or promotions as a proxy for job skills
or potential, there is both a construct gap issue and a risk
of human labeling bias, as previous promotion and raise
decisions are made by managers. However, conceptually
distinguishing between the different types of label bias can
help reason about the pathways through which these may
capture societal injustices, and the ways in which the rela-
tionship between Y and Y ∗ may vary across groups.

Methodology
To empirically study the impact of overlooking label bias
during a data collection process under (fairness-aware) ac-
tive learning strategies, we use two datasets: the UCI Adult
dataset (Dua and Graff 2017), and an offensive language
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dataset (Keswani, Lease, and Kenthapadi 2021). In this sec-
tion, we provide a detailed description of the five (fairness-
aware) active learning algorithms we empirically evaluated,
the two datasets, and the experiment settings.

Algorithms Evaluated
We consider five active learning strategies: 1) Fair Active
Learning; 2) Adaptive sampling; 3) Adaptive Sampling with
uncertainty criteria; 4) Uncertainty Sampling; and 5) Ran-
dom Sampling. The first three strategies are bias-mitigation
active learning algorithms, the fourth strategy is a traditional
and widely used active learning algorithm, and the last
strategy is a naive sampling policy that is usually used as a
baseline for the development of active learning algorithms.
All of the five algorithms iteratively select a batch of un-
labeled instances, query labels for them, and add them to
the training data, but use different heuristics for the instance
selection. Below we introduce the five different heuristics:

• Fair active learning (FAL) introduces group fairness con-
straints to traditional active learning objectives. It selects
instances to be labeled based on the linear combina-
tion of two criteria: uncertainty-based Shannon entropy,
and expected fairness improvement, measured using a
group fairness metric (Anahideh, Asudeh, and Thiru-
muruganathan 2022). The penalty parameter controlling
the trade-off between those two criteria is user input.
Empirically, Anahideh, Asudeh, and Thirumuruganathan
(2022) shows a considerable decrease in disparity while
preserving accuracy when evaluating with respect to ob-
served labels.

• Adaptive sampling (Adaptive) reduces disparate perfor-
mance by either randomly selecting instances to be la-
beled from the disadvantaged group at a probability p,
or randomly sampling instances from the full unlabeled
pool at the probability (1 − p) (Abernethy et al. 2020).
The trade-off parameter p is a hyper-parameter, and the
group considered the “disadvantaged group” is deter-
mined in a data-driven way at each iteration, defined as
the group for which the algorithm has a lower perfor-
mance at a given point.

• Adaptive sampling with uncertainty criterion (Adapt.
Uncert.) is a natural extension to the original adaptive
sampling method (Abernethy et al. 2020). We implement
this variant by adding an uncertainty criterion (Settles
2009) to the sampling process. After deciding which
group to sample from, instead of randomly sampling an
instance, we use Shannon entropy (Shannon 1948) to
select the instance that the algorithm is most uncertain
about. This constitutes an active learning variant of adap-
tive sampling. Specifically, with probability p, we apply
uncertainty sampling constrained to the “disadvantaged
group”, and with probability (1−p) we apply uncertainty
sampling to the full unlabeled pool of instances.

• Uncertainty sampling (Uncertainty) chooses the in-
stances in each run to be labeled based on which in-
stances the current model is most uncertain about (Set-
tles 2009). A general method to measure uncertainty is
Shannon entropy (Shannon 1948).

• Random sampling (Random) is commonly used as a
baseline in the active learning literature. The method
randomly selects an instance from the unlabeled pool.

Datasets
UCI Adult Dataset We use the Adult dataset (Dua and
Graff 2017) from UCI Machine Learning Repository for in-
come level prediction and we simulate a construct of interest
for the dataset. The Adult dataset (Dua and Graff 2017), also
known as the ”census income” dataset, is extracted from the
1994 census data in the United States and is widely used for
ML modeling and algorithmic fairness research. This dataset
is a good example to represent construct gap bias, as the
labels in the dataset—whether a given adult earns more than
$50K per year—reflect historical inequalities that have re-
sulted in lower wages for women and unpaid domestic labor.
This in itself is not a problem with the data. But if income is
assumed to be a proxy for other constructs of interest, such
as contribution to the economy or deserving income based
on skills, the construct gap can result in algorithmic bias.
Labels in the dataset reveal dramatic economic disparities
between men and women. Approximately one-third of men
are reported to earn more than $50K per year, while only
one-tenth of women are reported to have the same level of
income. We use this dataset to conduct the first set of semi-
synthetic experiments in which we simulate the relationship
between Ỹ and Y ∗, allowing us to have full control over this
relationship in order to explore how label bias may affect
active learning. For the simulation, we borrow the idea from
Jiang and Nachum (2020)’s work and increased the female
positive rate so that it matches the male positive rate. This
scenario corresponds to a setting in which bias manifests
itself as false negatives for women, with errors being inde-
pendent of other observed variables. Specifically, we create
a construct of interest, Y ∗, by uniformly drawing a certain
percentage of negative female instances and changing the
label to be positive. This results in a label that satisfies
statistical parity in the data, having the same proportion of
each group labeled as positive.

Offensive Language Dataset Hate speech and offensive
language identification are difficult because what is consid-
ered offensive depends on the social context. Derogatory
terms toward African American communities have been re-
appropriated by these communities, and have gained differ-
ent meanings and connotations in African American English
(AAE), yet these terms remain offensive when used by
outsiders (Sap et al. 2019). Thus, annotators may be more
likely to classify an AAE tweet as offensive when it is not, a
risk that may be exacerbated if annotators are not themselves
familiar with AAE (Fazelpour and De-Arteaga 2022). We
use a recently published offensive language dataset collected
by Keswani, Lease, and Kenthapadi (2021), which contains
1471 Twitter posts, and is a subset of the 25k Twitter post
curated by Davidson et al. (2017). Keswani, Lease, and
Kenthapadi (2021) randomly assign the Twitter posts to 170
Amazon Mechanical Turk (Mtruk) labelers, so that each post
is annotated by around 10 Mturk labelers regarding whether
it contains offensive language. Thus, every post in Keswani,
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Figure 1: Offensive language annotation accuracy distribu-
tion of the 170 crowd labelers, evaluated on the “gold stan-
dard” labels. There is a considerable discrepancy on crowd
workers’ performance of accurately flagging the tweets that
contain hate speech or offensive language.

Lease, and Kenthapadi (2021)’s dataset is associated with
1) a “gold standard” label that indicates whether it contains
hate speech or offensive language based on Davidson et al.
(2017)’s dataset; 2) a dialect feature that indicates whether
the tweet’s dialect is AAE. 3) around 10 newly acquired
labels from different Amazon Mechanical Truk (Mturk)
labelers.

Since the Mturk labelers were carefully recruited
(Keswani, Lease, and Kenthapadi 2021), it is reasonable to
assume that the labelers have the intention to provide accu-
rate labels despite being potentially affected by biases and
knowledge limitations. And because different people may
have different knowledge and carry different biases based
on their background and personal experience, labelers’ per-
formance also varies. Figure 1 shows the accuracy distribu-
tion of labelers assessed with respect to the original labels
provided by Davidson et al. (2017). Our goal is to assess
how observed biased labels may affect learning when we use
(fair) active learning to acquire new training instances. To do
this, we curate a set of labels that correspond to a “worst-
case scenario” in which a single labeler is available per
instance, and the available label corresponds to the labeler
with the largest bias against AAE tweets. Specifically, we
deem the labels provided by Davidson et al. (2017) as a gold
standard, Y ∗, and we use a subset of the labels collected
by Keswani, Lease, and Kenthapadi (2021) to construct Ỹ .
For each instance, we let Ỹ be the label acquired from the
labeler who exhibits the largest performance disparity when
evaluated with respect to Y ∗. It is worth mentioning that
the labels in Davidson et al. (2017)’s dataset are majority
votes of three or more crowdsourcing workers who were
specifically instructed to label the tweet based on context,
not the presence of particular words. Thus, we deem this
as a gold standard because the instructions of the task are
specifically designed to mitigate risks of bias stemming from
ignoring context and over-relying on specific terms.

Experiment Setting
We train active learning algorithms using the two datasets
with their biased labels, to mimic the situation of using
active learning to acquire more data labels while ignoring
label bias. We then evaluate model performance using both
observed biased labels and the gold standards. Formally, let
Ỹ ∈ Rn×1 and Y ∗ ∈ Rn×1 be observed labels and gold
standard, respectively. Let X ∈ Rn×d be a matrix containing
d attributes for n instances. We first split the observed
dataset into training set (X, Ỹ )train and testing set (X, Ỹ )test,
and we use the training pool to perform active learning based
on observed labels, (X, Ỹ )train. Given a trained model f , we
then obtain predictions Ŷ = f(Xtest) on testing instances.
Then, we evaluate Ŷtest with respect to both Ỹtest and Y ∗

test.
We perform the experiments on 10 random train and test
partitions of the dataset (70-30 split), and consider the mean
and confidence interval over the 10 random splits. For the
UCI Adult dataset, the maximum labeling budget was set
at 200 (and we assume acquiring one label costs 1), after
which the performance leveled out. Starting with 10 labeled
instances (5 female and 5 male), we select one point to label
at each active learning iteration in consecutive order until the
budget is depleted. For the offensive language dataset, we
start with 10 initial instances (5 AAE and 5 non-AAE) and
acquire 10 instances’ labels at each iteration. We specify the
number of iterations to be 60 after which performance lev-
eled off. We use the 100-dimensional vector representation
of a tweet obtained from GloVe (Pennington, Socher, and
Manning 2014) pre-trained word embedding as input and
predict whether a tweet contains offensive language.

For active learning strategies with fairness considerations,
such as adaptive sampling, adaptive uncertainty sampling,
and FAL algorithm, we need to choose a fairness measure
that we are interested in optimizing. We minimize the
True Positive Rate (TPR) gap between female and male
groups for income level prediction on the Adult dataset. as
equalized opportunity (Hardt, Price, and Srebro 2016) is a
sensible fairness goal for similar prediction tasks in human
resource domains. We minimize the FPR gap between
African American English (AAE) speakers and non-AAE
speakers for offensive language detection tasks, as higher
FPR for AAE tweets is the major inequality found in many
offensive language detection algorithms (Sap et al. 2019).

Results and Analysis
In this section, we analyze the potential harms that can
result from overlooking label bias in active label acquisition.
To do this, we study the evolution of active learners (base
models), comparing the observed evaluation metrics and the
evaluation metrics with respect to the gold standard. We first
show findings when performing simulations using the Adult
dataset, followed by the findings when using the real-world
offensive language dataset.

We found three outstanding patterns in both scenarios. If
we overlook label bias while acquiring labels: 1) collect-
ing more data can lead to exacerbated bias; 2) data-driven
strategies to identify the “disadvantaged group” based on
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Figure 2: Gender accuracy gap (left plot) and absolute gender accuracy gap (right plot) versus number of newly acquired
training instances. Shaded areas indicate 95% confidence interval. There are two insights: 1) misidentified disadvantaged group:
evaluation on observed labels indicating male group to be the disadvantaged group, while in reality, female should be the
disadvantaged group. 2) Bias may be interpreted as decreasing while the true bias is increasing.

performance gaps can lead to misidentification; 3) relative
comparisons of bias across models can be misleading, which
may misguide model selection.

More Data Can Exacerbate Bias
As we mentioned earlier in the introduction and related
work, calls to mitigate bias by collecting more data have
gained attention in recent years. In particular, it is expected
that fairness-aware data collection can help address this
problem (Chen, Johansson, and Sontag 2018). However,
such strategies typically ignore potential label bias. We
study the disparity between the bias mitigation performance
evaluated on observed labels and the actual performance
when evaluated on the gold standard labels. To accomplish
so, we examine the accuracy (Acc) gaps and true positive
rate (TPR) gaps, both in terms of the directed difference and
the absolute gap. The directed accuracy gap which we used
as one fairness metric is defined as the difference in accuracy
between group g1 and group g0:

AccGap = P (Ŷ = Y |G = g0)

−P (Ŷ = Y |G = g1)
(2)

Where Ŷ and Y are random variables representing pre-
dicted and testing labels, and G is a random variable repre-
senting binary groups. Y = Ỹ when evaluated on observed
labels and Y = Y ∗ when evaluated on the construct of
interest or the gold standard. As fairness metrics in proposed
fairness-aware active learning algorithms often treat dispar-
ities as symmetric, we also visualize the accuracy gap as the
absolute accuracy difference between g1 and g0:

Abs. AccGap = |P (Ŷ = Y |G = g0)

−P (Ŷ = Y |G = g1)|
(3)

Similarly, we examine both the directed TPR gap and the
absolute TPR gap between g1 and g0:

TPRGap = P (Ŷ = Y |G = g1, Y = 1)

−P (Ŷ = Y |G = g0, Y = 1)
(4)

Abs. TPRGap = |P (Ŷ = Y |G = g1, Y = 1)

−P (Ŷ = Y |G = g0, Y = 1)|
(5)

In what follows, we present the results when applying
the FAL algorithm for income prediction and applying un-
certainty sampling for offensive language detection, which
shows some of the starkest patterns of more data can ex-
acerbate bias. The results of the other four active learning
algorithms assessed in the paper show a similar pattern and
can be found in the Appendix.

Income Prediction We begin by analyzing experiment
results on the Adult dataset. Figure 2 (a) shows the dynam-
ics of the female group’s advantage in terms of accuracy
as compared to the male group (AccGap) during the data
collection process under the FAL algorithm, tested both on
observed labels and on the (simulated) construct of interest.
The x-axis indicates the number of newly acquired training
instances using the FAL algorithm. The blue line represents
AccGap tested on observed labels and the orange line repre-
sents AccGap tested on the construct of interest. The shaded
area depicts a 95% confidence interval of the AccGap. Note
that an accuracy gap of zero, visualized by the red horizontal
line, marks the position where male accuracy and female
accuracy are perfectly equal to each other. According to
figure 2 (a), evaluation of observed labels shows that female
accuracy is greater than male accuracy and data collection
moderately mitigates this inequality. Meanwhile, evaluation
of the construct of interest shows a very different pattern,
indicating that female accuracy is lower than male accuracy,
and more data leads to an enlarged accuracy gap and exac-
erbated the bias.

Figure 2 (b) illustrates the absolute accuracy gap. It is
clear that the bias evolution trend is opposite when evaluated
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Figure 3: Gender TRP gap (left plot) and absolute gender TPR gap (right plot) versus the number of newly acquired training
instances. Shaded areas indicate a 95% confidence interval. Evaluation of observed labels shows data collection mitigates the
gender TPR gap if we carefully choose the stopping point, say if we stop around 80 newly labeled instances. However, in reality,
collecting more data further exacerbated the existing gender TPR gap.

on the observed labels versus on the construct of interest.
According to observed labels, the bias is reduced during the
data collection process under the FAL framework, which
aligns with the goal of collecting data to improve fairness.
However, evaluation of the gold standard label indicates that
the bias is actually aggravated as more data is collected.

Figure 3 illustrates the TPRGap of the FAL algorithm
during the data collection process, tested on observed labels
(blue line) and construct of interest (orange line). According
to figure 3 (a), if label bias is overlooked, the evaluation
on observed labels indicates female TPR started as greater
than male TPR and the data collection mitigates the in-
equality and may over-correct the bias when newly collected
instances size greater than 80. In such case, one may claim
that the data collection is useful to mitigate bias. However, in
reality, female TPR is initially less than male TPR, and col-
lecting more data exacerbated this inequality. Similarly, the
visualization of the absolute TPRGap in figure 3 (b) shows
the anonymous and symmetric bias as TPRGap is slightly
decreased and then remains stable based on observed labels,
whereas the bias continues to aggravate in reality.

Offensive Language Detection We find a similar more
data can exacerbate bias pattern in offensive language de-
tection experiments based on a real-world dataset. As we
described in the offensive language dataset section, racial
bias is a central issue in offensive language detection tasks,
considering the sensitive feature as indicating whether the
dialect is African American English (AAE) or not. Let
non-AAE be g0 and AAE be g1. Figure 4 illustrates the
dynamics of the non-AAE group’s advantage in terms of
accuracy as compared to the AAE group during the data
collection process under uncertainty sampling. It is clear
that while the observed accuracy difference is approaching
0 as we acquire more data, the latent accuracy difference is
getting larger. If we ignore the bias in the labels and depend
just on the observed testing results to assess bias reduction
performance, we might conclude that data collection aids

bias mitigation, when in fact it exacerbates the problem.

Misidentifying Disadvantaged Group
Many works on algorithmic fairness propose the idea of
automatically identifying the disadvantaged group by evalu-
ating a measure of interest for different groups, then mitigat-
ing the bias based on the evaluation. For example, adaptive
sampling iteratively evaluates and identifies the disadvan-
taged group, then samples new instances from that group.
Similarly, FAL relies on selecting the instances that are most
helpful for mitigating the gap of a measure of interest, which
implicitly identifies the disadvantaged group and tries to
improve the model’s performance on the group that exhibits
the worse performance (according to some fairness measure)
at a given point.

Data-driven approaches to identify who the disadvan-
taged group is ignoring contextual factors and historical
inequities. This can be particularly problematic when such
inequities result in label bias, in which case there is a risk
of misidentifying who the disadvantaged group is, resulting
in counterproductive mitigation strategies. Figures 2, 3, 4
all demonstrate the risk of misidentifying the disadvantaged
group.

Income Prediction In the context of income prediction,
we know that women have historically had less access to
opportunities and high salaries, and have had lower income
levels than men. The Adult dataset verifies the pattern as
the ratio of males earning more than $50K per year is three
times higher than that of females in the dataset. In our
experiments, it can be seen that if the observed label has a
biased relationship with a latent construct of interest, such as
the one we simulate, a reliance on the biased observed labels
could lead females to be misidentified as the advantaged
group, aggravating existing disparities.

Offensive Language Detection When considering offen-
sive language detection, researchers have found that “AAE
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Figure 4: Accuracy difference between non-AAE tweets and
AAE tweets versus the number of newly acquired training
instances evaluated on observed labels (blue line) and the
gold standards (orange line). The shaded area indicates a
95% confidence interval. Evaluation of observed labels indi-
cates non-AAE accuracy is less than AAE accuracy and data
collection can mitigate the inequality. However, evaluation
of the gold standard shows that non-AAE accuracy is greater
than AAE accuracy and data collection exacerbated this
inequality.

tweets and tweets by self-identified African Americans are
up to two times more likely to be labeled as offensive
compared to others” (Sap et al. 2019). However, relying on
evaluation on biased human labeling may result in treating
AAE as the advantaged group, further marginalizing African
Americans’ voices.

Most proposed bias mitigation algorithms are anonymous
and symmetric, a property that is often lauded as a favorable
trait, since the application of such algorithms requires mini-
mal contextual knowledge. However, with the prevalence of
label bias, those algorithms run a risk of misidentifying the
disadvantaged group, and thus mitigation can become ex-
acerbation. Many fairness-aware active learning algorithms,
such as adaptive sampling, rely on identifying the disad-
vantaged group at each iteration of the data collection pro-
cess in order to collect data from the disadvantaged group;
thus, misidentifying the disadvantaged group can violate
the original intention of the active data acquisition method
to reduce disparities. Less obviously but importantly, algo-
rithms such as FAL actively select instances with two goals:
improving overall accuracy and reducing non-directional
fairness violations. In this case, implicitly misidentifying
the disadvantaged group would misguide the algorithm to
select instances that can improve the advantaged group’s
performance.

Mislead Model Selection
In addition to misguiding people’s beliefs on bias mitiga-
tion performance of (fairness-aware) active learning assisted
data collection, overlooking label bias can mislead model
selection as well. Suppose that multiple algorithms are con-
sidered, and fairness metrics are used to select the data
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Figure 5: Gender accuracy gap for all five active learning
algorithms evaluated on observed labels (blue bars) and
construct of interest (orange bars). The vertical line in the
middle of each bar illustrates a 95% confidence interval.
Model selection can be misguided: evaluation on observed
labels indicates uncertainty sampling to be the fairest algo-
rithm whereas it is the least fair algorithm in reality.

acquisition strategy that provides the best bias mitigation
effect from a list of algorithms, given comparable accuracy.

Income Prediction Figure 5 illustrates the accuracy dif-
ference between female and male groups in income predic-
tion for all five active learning frameworks we described
in the ‘Methodology’ section, evaluated on observed labels
(blue bars) and the gold standards (orange bars). By com-
paring the male accuracy minus female accuracy evaluated
by biased observed labels (blue bars), we would select un-
certainty sampling as the accuracy difference is the smallest
among all strategies. However, the selected model, uncer-
tainty sampling, could be the most biased model according
to the evaluation of the construct of interest. Therefore, if we
overlook label bias, model selection can be misleading and
compound existing bias.

Offensive Language Detection The same pattern can be
found in offensive language detection experiments as well.
Figure 6 illustrates accuracy difference between AAE and
non-AAE tweets for all five active learning algorithms.
Based on the evaluation metrics uncertainty sampling could
be selected as the best algorithm for bias mitigation, while
it may actually be the most biased algorithm with respect to
the gold standard label.

Discussion
As supervised learning algorithms are increasingly used for
guiding decision-making in various high-stakes domains,
and recognizing its reliance on potentially biased sources of
labels, there is a growing need to understand the potential
harm of label bias on (algorithm-assisted) data collection. In
this paper, we presented an overview of different types of
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Figure 6: Accuracy difference between AAE and non-AAE
for all five active learning algorithms evaluated on observed
labels (blue bars) and the gold standards (orange bars). The
vertical line in the middle of each bar illustrates a 95%
confidence interval. Model selection can be misguided: eval-
uation on observed labels indicates uncertainty sampling to
be the fairest algorithm whereas it is the least fair algorithm
in reality.

label bias in the context of supervised learning systems and
conducted empirical studies that uncover the potential effect
of label bias on (fair) active learning algorithms. We evalu-
ated the bias mitigation performance of the most commonly
used active learning algorithms and the recently proposed
fairness-aware active learning strategies using a combination
of simulations and real-world data. Our study has demon-
strated that if we overlook label bias while acquiring labels:
1) collecting more data can lead to exacerbated bias; 2)
Using data-driven strategies to identify the “disadvantaged
group” based on performance gaps can lead to misidentifi-
cation; and 3) relative comparisons of bias across models
can be misleading, which may misguide model selection.

Most of the existing work on algorithmic fairness over-
looks label bias, and research emphasizing the risk of label
bias has been primarily conceptual, with only a few studies
providing empirical evidence of risks. To the best of our
knowledge, our work is the first to study how label bias
may mislead active data collection, and how the introduction
of fairness constraints that overlook label bias may fail
to address the problem. In addition to showing how data
collection can be led astray by label bias, our work has
implications for the discussion regarding the identification
of “disadvantaged groups”. A growing body of research has
proposed methods that automatically identify disadvantaged
groups, e.g. (Abernethy et al. 2020), and the “symmetric”
idea of bias is a common property of algorithmic fairness
algorithms that consider any disparities in error rates to be
indicative of bias. Our work provides empirical evidence
showing that this can be problematic and may inadvertently
exacerbate harm to already marginalized groups, since label

bias may lead to a misidentification of the groups that need
protection or are harmed by disparities.

When we say more data may lead to exacerbated bias,
this does not mean that data collection efforts are inherently
unproductive. Rather, our findings underscore the need for
developing fairness-aware active learning algorithms that
consider label bias. More broadly, this work highlights the
importance of developing methodologies for bias detection
and mitigation in the presence of label bias. Given the
current state of the art, ML practitioners may mitigate the
risks we uncover by checking the underlying assumptions
of proposed algorithms, differentiating the types of bias that
fairness-aware algorithms aim to address, and scrutinizing
the data generating process to better understand the potential
issues in the data.

Limitations and Future Work

Label bias is often highly context-specific. The patterns we
found in this study may only represent a portion of the
possible consequences of ignoring label bias. We encourage
future works that explore other possible harms in different
application domains and under different assumptions of the
relationship between observed labels and constructs of inter-
est. In particular, in our experiments using the Adult dataset,
which relies on simulations, we have made simplifying
assumptions regarding the relationship between observed
labels and gold standard labels. This by no means aims to
provide a faithful estimation of a specific construct, such as
economic contribution or skills. We use this as an example
to empirically study the potential risks of label bias in a
simplified setting.

In the context of offensive language data, we rely on real
data for both gold standard labels and observed labels, which
introduces the challenge that both labels may be flawed. The
gold standard is more reliable than what we assume to be
the observed labels due to (1) the instructions of the task
that we consider the gold standard, which specifically aim to
mitigate risks of bias stemming from ignoring context and
over-relying on specific terms; (2) our construction of the
“observed pool” as containing the assessments of those who
exhibit the largest disparities. This is useful to empirically
study how inadvertently relying on biased annotations could
mislead the data collection process. However, this provides
an assessment with respect to a point that may itself contain
some bias, underestimating the magnitude of the problem.

Additionally, the harms we study have been focused
on a definition of label bias grounded on group fairness.
Considering label bias in relation to other definitions of
fairness, such as individual fairness, may shed light on
patterns and risks that are not visible through a group fair-
ness lens. Similarly, our empirical evaluation is limited to
statistical disparities and does not consider dynamic, long-
term harms (Liu et al. 2018). In some cases, data collection
may involve the allocation of goods and burdens, and thus
studying the dynamic effects may visibilize additional risks
that are beyond the scope of this study.
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