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Department of Computer Science, Rutgers University

alborz.jelvani@rutgers.edu, amelie.marian@rutgers.edu

Abstract

Several election districts in the US have recently moved to
ranked-choice voting (RCV) to decide the results of local
elections. RCV allows voters to rank their choices, and the
results are computed in rounds, eliminating one candidate at
a time. RCV ensures fairer elections and has been shown to
increase elected representation of women and people of color.
A main drawback of RCV is that the round-by-round process
requires all the ballots to be tallied before the results of an
election can be calculated. With increasingly large portions of
ballots coming from absentee voters, RCV election outcomes
are not always apparent on election night, and can take sev-
eral weeks to be published, leading to a loss of trust in the
electoral process from the public. In this paper, we present an
algorithm for efficiently computing possible winners of RCV
elections from partially known ballots and evaluate it on data
from the recent New York City Primary elections. We show
that our techniques allow to significantly narrow down the
field of possible election winners, and in some case identify
the winner as soon as election night despite a number of yet-
unaccounted absentee ballots, providing more transparency
in the electoral process.

1 Introduction
Ranked-choice voting (RCV) –also commonly referred to
as Instant-Runoff Voting (IRV), or Single Transferable Vote
(STV)– is a voting mechanism that allows voters to rank
candidates in their order of preference. Counting typically
proceeds in rounds, by eliminating the candidate with the
lowest number of votes and transferring that candidate’s
votes to the next candidate on each of the voters’ prefer-
ence lists. The process continues until the leading candidate
receives more than 50% of active votes.

Ranked Choice voting is used in national elections in sev-
eral countries, such as Australia, Ireland, and the United
Kingdom. In the U.S. multiple counties and municipalities
have recently adopted RCV for their elections (FairVote
2022) with positive impacts in voter participation (Kimball
and Anthony 2016; McGinn 2020; Juelich and Coll 2021).
Ranked Choice Voting has gained traction because of several
advantages: it is seen as a fairer way to run elections (Mill
1859) and to improve representation of women (Terrell,
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Lamendola, and Reilly 2021; John, Smith, and Zack 2018),
voters of color (Otis and Dell 2021; John, Smith, and Zack
2018) and participation in youth voters (Juelich and Coll
2021). It avoids the “spoiler effect,” reduces “wasted” votes
when many candidates are running, and saves money by
avoiding runoff elections. In addition, by aiming at forming
a consensus behind the selected candidates, RCV decreases
incentives for strategic voting.

However, moving to RCV has some disadvantages: voters
may be confused by the ranking mechanism and the election
results can take a long time to be processed as the vote trans-
fers are only tabulated once all votes are in. This limitation
is due to the round-by-round vote counting process of RCV.
To move to the next round, all votes need to be tallied to ac-
curately eliminate the candidate with the lowest number of
votes. This is often cited as one of the main drawbacks of
RCV(Berman 2019) as it delays the results of the election
until all votes are gathered, which can take several days or
weeks in counties with a large number of mail-in or absentee
votes. In 2018 the San Francisco mayoral results took a week
to be tabulated and confirmed in large part due to the late
counting of mail-in ballots. In NYC, the June 2021 primary
results were certified a full month after the election due to the
large number of absentee ballots; preliminary RCV results
were not made available to the public for over a week after
the election, and did not originally include absentee ballots.
These delays, the lack of transparency, and the incomplete
information, or lack thereof, on the outcome of cast ballots
lead to distrust in the RCV election process from a popula-
tion that is used to having election results, or at least close
estimates, soon after an election.

In this paper, we present an algorithm to process partial
results of RCV races without requiring all votes to be gath-
ered before the counting can start (Section 4). Our novel
approach considers voter preferences from tallied ballots to
identify possible elimination orderings based on the voting
data that is already known, and taking into account the un-
certainty associated with still-missing (e.g., absentee) bal-
lots (Section 4). We propose a branch and bound algorithm
to speed up the search (Section 4). Our algorithm would al-
low for identifying candidates who still have a path to vic-
tory, and those who do not, as soon as election night, pro-
viding stakeholders with more transparency on the election
outcome.
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We evaluated our algorithm on election night data from
the NYC 2021 Primary elections in Section 5, and were
able to identify, with certainty, only one possible winner in
about 40% of the races with more than two candidates, even
with absentee ballots still outstanding.We report on several
of these races in detail in Section 5.

2 Background and Related Work
Ranked Choice Voting generally describes any electoral sys-
tem that allows voters to list candidates in their order of pref-
erence. These preferences may be aggregated using several
different vote counting algorithms (Pacuit 2019). In the U.S.,
the method of counting typically involves a series of rounds
where candidates are eliminated and where votes for elimi-
nated candidates are transferred to next preferred candidates
on the voters’ lists. The names RCV, IRV (Instant-Runoff
Voting), and SVT (Single Vote Transfer) have been used in-
terchangeably to describe similar electoral systems around
the world: RCV elections are being used in several countries
such as Australia, Canada, the U.K., and New Zealand.

We focus on the impact of yet-unaccounted ballots on
RCV election results, a scenario prompted by election rules
in the U.S. where a portion of the votes can be cast through
absentee ballots. The presence of absentee ballots can sig-
nificantly delay election results; several states allow for ab-
sentee ballots to be postmarked until the day of the election,
and received up to 14 days after the election (Illinois)1. At
the time of the 2021 RCV Primary election, New York re-
quired a waiting period of at least a week before processing
absentee ballots (The Laws of New York 2019); this restric-
tion was lifted in 2022 and absentee ballots received before
election day are now canvassed on election day; however,
there is still a seven day grace period for absentee ballots
to arrive after the election (The Laws of New York 2022).
After many states relaxed their rules due to the Covid-19
pandemic, the number of mail-in ballots increased signifi-
cantly: 46% of ballots in the November 2020 election were
mail-in ballots (Stewart 2021). While the results of tradi-
tional majority- or plurality-based elections can easily be
estimated even with a large proportion of outstanding bal-
lots (with appropriate confidence intervals), the results of
RCV elections cannot accurately be processed until all bal-
lots are cast, as new ballots may result in a different elimi-
nation order, which in turn may result in a different alloca-
tion of vote transfers and a significantly different outcome.
The arrival of ballots can thus be seen as a data stream of
ballots with unpredictable (but slow) arrival rates (Babcock
et al. 2002), and the vote counting in a RCV election as
a non-monotonic blocking operation (Shanmugasundaram
et al. 2000), on which traditional online aggregation meth-
ods (Hellerstein, Haas, and Wang 1997) or adaptive query
processing techniques (Ives et al. 1999) for unpredictable
data arrival are not applicable as they rely on pipelined oper-
ations. Several localities have opted to provide a temporary
RCV count of partial ballot data as soon as election night,
but partial results of non-monotonic operators may be in-
correct (Lang et al. 2014); in a RCV election scenario this

1https://www.vote.org/absentee-ballot-deadlines/

may lead to loss of trust in the electoral process if the re-
sults change significantly due to new data from outstanding
ballots.

We propose an algorithm to identify all still-possible elec-
tion outcomes, considering the already-known votes, includ-
ing their preference orderings, and the uncertainty associ-
ated with ballots that still need to be tallied. This is re-
lated to querying possible worlds (Abiteboul, Kanellakis,
and Grahne 1987) on an incomplete dataset (Imieliński and
Lipski 1984), where the partially known ballot information
is the incomplete dataset, the RCV vote counting is a the
query, and the set of possible worlds are all possible elim-
ination paths and the resulting winners. Our techniques ex-
plore this set of possible worlds, narrows down candidates
to a set of still-possible winners, and shows the elimination
paths that lead to each winning outcome, along with an es-
timation of the minimum number of unknown ballots a can-
didate would need to win.

The use of RCV in real-world elections has led to recent
work that studies the intersection of voting theory with reg-
ulatory frameworks. In particular, there has been an interest
in defining and computing the margin of victory for RCV
elections in Australia, where small margins would trigger
elections audits (Blom et al. 2016; Magrino et al. 2011).
Our work is related to this work, to studies in the shift in
the balance of power (Blom et al. 2020a,b), and to work on
election manipulation (Blom, Stuckey, and Teague 2019) in
RCV settings. However, unlike these works, we do not aim
to identify the minimum number of vote changes that would
trigger a permutation in the elimination order, but focus on
finding all possible elimination orders given a number of un-
known (unbound) ballots.

3 Definitions
Candidates An election is performed over C =
{c1, c2, ..., cn}, the set of n candidates running in the elec-
tion.

Ballots Ballots are votes cast by individual voters. For
each election, a voter casts exactly one ballot.

• A ballot signature is defined as an r-tuple of ranked
choices (r1, r2, ..., rchoices) for ri ∈ C, where choices ≤
min(nc, n) , where nc is the maximum number of
choices allowed in the election2 and candidates are listed
in order of preference, with r1 as the most preferred can-
didate. A ballot with choices < n is a partial ranking
of the candidates.

• A bound ballot is a ballot for which the r-tuple
(r1, r2, ..., rchoices) is known. For example, on election
night, all in-person ballots are typically bound.

• An unbound ballot is a valid ballot for which the r-tuple
(r1, r2, ..., rchoices) is not known yet. This is typically
the case of mail-in ballots that have not been opened yet,
or any ballot for which the validity status is contested.

2Rules vary: some elections in Australia requires voters to rank
all candidates (full ranking), San Francisco allows up to 10 choices,
New York only allows up to five.
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Ballots in a RCV election are comprised of B, the set
of bound ballots, and U , the set of unbound ballots. The
election cannot be certified until all ballots in U have been
moved to B or voided. The final election results are com-
puted over B once U = ∅
Elections An election is a voting process over a set of can-
didates and ballots.

• An election profile is defined by the 3-tuple (C,B,U)
where C = {c1, c2, ..., cn} is the set of n candidates run-
ning in the election. B is the set of bound ballots, and U
is the set of unbound ballots. We define m = |B| + |U|
as the total number of ballots in an election profile.

• An elimination order, π, is a permutation of C. It is rep-
resented as an ordered tuple (e1, e2, ..., en) where e1 is
the first candidate to be eliminated and en represents the
winner of the elimination order.

• The search-space, S , of an election profile is the collec-
tion of all possible elimination orders.

Vote counting. The following definitions are to assist in
the vote counting process.

• A partial elimination order, π′, is a prefix of a permu-
tation order π such that candidates (e1, e2, ..., ej), j ≤ n
are eliminated.

• The set of still-active candidates C′ is the set of can-
didates C \ π′ who have not been yet eliminated after
applying a partial elimination order π′.

• The tally count of a candidate c ∈ C′, denoted as tc, is
defined as the current number of ballots b ∈ B such that
c is the highest ranked candidate ri ∈ C′ in b’s r-tuple.

• A ballot b is considered exhausted when all candidates
ri of b’s r-tuple (r1, r2, ..., rchoices) have been elimi-
nated (ri ̸∈ C′).

4 Tabulating Partial RCV Results
The general algorithm for counting votes in a RCV elec-
tion (Nanson 1864), only applies when all ballots are known
and bound (U = ∅). In elections where some ballots are
outstanding, such as absentee ballots or ballots in dispute,
running the general vote counting algorithm on partial re-
sults runs the risk of returning misleading information as the
permutation order πpartial may turn out to be very different
from the actual π elimination order on the full set of election
ballots. A small change in the relative ordering of two (even
minor) candidates can cause a ripple effect that changes the
outcome of the election. Many municipalities have chosen to
make public the results of this general vote counting process
on the ballots known on election night, sometimes resulting
in confusing information for the public as the final results
may differ.

We address this problem by proposing an algorithm (Al-
gorithm 2) that considers all possible elimination orders that
may still be possible under the constraints given by known
bound ballots in B. Our approach considers unknown, un-
bound ballots in U and identifies all possible configurations
of outcomes if (subsets of) these ballots were bound to each
candidate in C. To process our algorithm, we need to make

tentative (or mock) assignments for unbound ballots to test
possible alternatives. We thus define:

• The set of tentatively bound ballots B′ which contains the
set of bound ballots B and a set of unbound ballots from
U for which we have made tentative bindings by hypo-
thetically assigning them to a set of candidates. Initially,
B′=B.

• The set of tentatively unbound ballots U ′ which con-
tains the set of unbound ballots U minus those ballots
for which we have made tentative bindings (by hypothet-
ically assigning them to a set of candidates) and that were
moved to B′. Initially, U ′=U .

Ballots are moved from U ′ to B′ when a tentative (hypo-
thetical) assignment is made for a candidate to make a spe-
cific elimination order possible. Ballots can be moved from
B′ to U ′ if they were originally in U , all the candidates on the
ballot have been eliminated, and the ballot is not exhausted.

Verifying the Possibility of an Election Outcome
The main challenge in evaluating partial RCV election re-
sults is that the space of possible outcomes is exponential in
the number of unknown ballots. Evaluating each ballot per-
mutation is impossible. However, if we only want to identify
whether a candidate has a path to victory, we only need to
selectively explore the space of all elimination orders, and
verify if each path in the elimination order tree is possible
with the currently known, bound, ballots and some permuta-
tion of the unknown, unbound, ballots.

The main contribution of this paper is the verify func-
tion (Algorithm 1), which takes an (possibly partial) elimi-
nation order π′ as input and given a tentative election profile
(C′,B′,U ′) consisting of a set of remaining candidates C′,
and sets of bound ballots B′ and unbound ballots U ′ returns
True if the elimination order is possible.

Function verify first tallies the number of bound votes
(from ballots in B′) that each candidate c ∈ C′ receives
(Loop 1). Then if e, the next candidate to be eliminated in
π′, is not the candidate with the lowest number of votes,
verify binds some ballots in U ′ to the candidate(s) with
fewer votes than e and moves them to B′, to force the elimi-
nation of e (Loop 2). If there are not enough remaining bal-
lots in U ′, the elimination order is considered impossible and
verify returns false.

To achieve this, at each round verify attempts to boost
the vote count of each candidates ranked below e to pass
e by only 1 vote. This ensures that each boosted candidate
outranks e by using the minimum amount of unbound bal-
lots. Thus, if there are not enough unbound ballots to boost
a candidate past e then the corresponding elimination order
is indeed infeasible as all previous boosts used the minimum
possible amount of unbound ballots to arrive at the current
elimination round.

The runtime of verify is O(|C|2m). The outer loop
iterates at most |C| times and Loops 1 and 2 each iterate
(|B| + |U|)=m and |C| times respectively. The while loop
inside Loop 2 also iterates O(m) times. Therefore our total
runtime is given by O(|C|(m+m|C|)) = O(|C|2m).
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Algorithm 1: Function to check if the (partial) elimination
order π′ is possible under an election profile with tentative
candidates C′, tentative bound ballots B′, and tentative un-
bound ballots U ′.

1: function VERIFY(π′,(C′,B′,U ′))
2: for each e ∈ π′ do
3: for each b ∈ B′ do ▷ Loop 1: Tally bound

ballots
4: if there exists a highest ranked c ∈ b such

that c ∈ C′ then
5: tc(c)← tc(c) + 1
6: else
7: if b is marked as an absentee ballot and b

is not exhausted then
8: B′ ← B′ \ {b}
9: U ′ ← U ′ ∪ {b}

10: end if
11: end if
12: end for
13: for each c ∈ C′ \ {e} such that tc(c) ≤ tc(e)

do ▷ Loop 2: Assign unbound ballot to force
elimination order

14: margin← tc(e)− tc(c) + 1 ▷ the number
of votes needed to eliminate the next candidate in π′

15: if |U ′| −margin < 0 then
16: return False ▷ Not enough unbound

votes to force elimination order π′

17: end if
18: while margin ̸= 0 do
19: Assign c to next ranking of some b′ ∈ U ′

20: U ′ ← U ′ \ {b′}
21: B′ ← B′ ∪ {b′}
22: margin← margin− 1
23: end while
24: end for
25: C′ ← C′ \ {e}
26: Reset all tally counts to 0
27: end for
28: return True
29: end function

Note that verify considers all possible worlds, includ-
ing those where one candidate would receive all outstanding
votes. An interesting avenue to explore in future work would
be to cap the number of votes candidates can receive, pos-
sibly based on poll projections, to estimate the chances of
each candidate and provide better approximate predictions,
with some probabilistic bounds guarantees.

Calculating all Possible Election Outcomes
A brute-force approach to identify all possible outcomes
of an election given a set of bound ballots B and a set
of unbound ballots U would consider the complete search
space S of all permutations π of candidates in C and call
verify(π, (C,B,U)) for each one. This brute force ap-
proach will explore the entire search-space, but requires |C|!
iterations. Thus, a lower bound on its runtime is given by

Algorithm 2: Recursive algorithm that enumerates all possi-
ble elimination orders S for an election profile (C,B,U).

1: S ← ∅
2: π′ ← ∅
3: procedure POSSIBLEOUTCOMES(π′,(C,B,U))
4: if |π′| == n then
5: Add π′ to S
6: return
7: end if
8: for each c ∈ C \ π′ do
9: if verify(π′ ∪ {c},(C,B,U)) then

10: POSSIBLEOUTCOMES(π′ ∪ {c}, (C,B,U))
11: end if
12: end for
13: end procedure

Ω(|C|!), a prohibitively expensive approach.
To circumvent the prohibitive cost of the brute-force

approach, we introduce possibleOutcomes (Algo-
rithm 2), a branch and bound algorithm to identify all pos-
sible elimination paths given the known ballots B and un-
bound ballots U . Our algorithm selectively prunes elimi-
nation orders (and elimination order prefixes) when these
cannot be verified (Algorithm 1) given the current election
profile. The algorithm keeps track of the ballots that have
been tentatively bound (B′), and the corresponding remain-
ing unbound ballots (U ′) to reach each partial elimination
order prefix π′. The possibleOutcomes function is re-
cursive; it is initiated from an external routine by calling
possibleOutcomes(∅, (C,B,U)).

Our possibleOutcomes algorithm performs O(|C|)
calls to verify which is O(|C|2m), and the total number
of calls is bound by the size of the permutation tree for C
which is O(|C|!). Therefore, the entire algorithm is bounded
by O(|C|3 · |C|! · m). However, the lower-bound is given
by Ω(|C|2) providing improvements over the brute force ap-
proach as we verified experimentally in Section 5.

Optimizations
Function verify (Algorithm 1) involves duplicate compu-
tations as an elimination order prefix π′ can be shared by
multiple complete elimination orders π: for instance both
π1 = (A,B,C,D) and π2 = (A,B,D,C) would elimi-
nate the first two candidates A and B first and in the same
order. Therefore, Loop 1 of Algorithm 1 involves repeated
computations of the same elimination order prefixes.

To avoid these redundant computations, we adapt Loop 1
of Algorithm 1 to use memoization to save election profile
states for each partial elimination order π′. This allows us to
improve the execution time of possibleOutcomes (Al-
gorithm 2) to run in O(|C|2 · |C|! ·m) time. The lower bound
is unchanged at Ω(|C|2).

An explanation of this bound is given next. Given a per-
mutation tree of elimination orders for |C| candidates, it is
clear at level i the number of nodes is given by the permu-
tation |C|Pi. The height of the tree is also given by the num-
ber of candidates, |C|. Therefore, we can compute the total
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number of nodes in a permutation tree with the summation
below:

|C|∑
i=1

|C|!
(|C| − i)!

≤ |C|! · |C|

Where |C|! · |C| is the number of nodes computation is
performed on the worst case for Algorithm 2. We assume
|C| ≥ 3.

We can find the closed form of the summation:
|C|∑
i=1

|C|!
(|C| − i)!

= |C|!
|C|∑
i=1

1

(|C| − i)!

Using the Taylor series identity:
∞∑
i=0

xi

i!
= ex

We get

|C|!
|C|∑
i=1

1

(|C| − i)!
< |C|! · e

And indeed for |C| ≥ 3:

|C|!
|C|∑
i=1

1

(|C| − i)!
< |C|! · e < |C|! · |C|

Visualizing the Outcome
The resulting possible outcomes can be visualized as a tree,
where each path from the root is a possible elimination path,
and each leaf node is a possible winner. Figure 1(a) shows a
possible elimination order tree for the June 2021 New York
Democratic Member of the City Council 16th Council Dis-
trict Primary Election considering the information available
the day after the election. Looking at the tree, it is obvious
that the visualization could be made clearer by combining
paths that lead to the same winners/final candidates.

The problem of compressing trees has been studied exten-
sively, notably in the context of XML trees. We adopted the
XML compression method used in (Buneman, Grohe, and
Koch 2003) to our Possible Elimination Order trees for our
visualization. More formally, given a tree T we can iterate
through each node u ∈ T and obtain a string representation
of the subtree T ′ rooted at u. The string representation of T ′

is then hashed with a common hash function (MD5), and in-
serted into a hash table. We then create a node for u in a new
graph G that uses the hash of T ′ as an identifier, and iterate
through each child v of u. This hashing process is performed
for each v if it is not already inserted in G, and an edge (u, v)
is then created in G. By allowing each node in G to be iden-
tified by T ′’s hash, we can ensure only one node for each
T ′ ∈ T is inserted into G. This method of compressing T
through repeated subtrees is commonly known as Directed
Acyclic Graph (DAG) compression (Bille et al. 2015), and
aims at creating the most minimal representation of tree T
in the form of a DAG.

The resulting DAG is shown in 1(b). The simplified vi-
sualization makes it easy to identify that after the primary

(a) Uncompressed Possible Elim-
ination Order Tree

(b) Compressed Possible Elimi-
nation Order DAG

Figure 1: DAG Compression for Possible Elimination Or-
ders for the June 2021 New York Democratic Member of
the City Council 16th Council District Primary Election

election day, and given the number of outstanding absen-
tee ballots, the NYC City Council 16th Council District had
3 possible winners, and that candidate Althea Stevens (AS)
was guaranteed to be one of the final two candidates.

Refining the Results

Our possibleOutcomes algorithm identifies all possi-
ble winners of an election, but does not provide their rela-
tive chances of winning. Such a computation is complex: it
requires considering all combinations of bindings for ballots
in U including void and exhausted possibilities, a problem
that is related to the knapsack problem.

We propose a preliminary approach to provide some intu-
ition of the relative chances of each candidate. Our approach
involves a small modification of the verify function to
output, for each elimination path, the number of unknown
ballots that have to be bound to the winning candidate. For
each candidate, we then calculate the minimum such value.
This gives us an estimate of the minimum number of un-
known ballots on which the candidate needs to lead to have
a chance of winning the election.

The modification works by tallying all originally unbound
ballots that contain votes for the winning candidate c in a
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complete elimination order π before verify returns.3 We
assume that all missing ballots are valid ballots with at least
one ranking. The value of the tally is then checked against
previous tally values for other elimination orders, and the
minimum value is recorded. We report on results and in-
sights from this computation for some chosen NYC primary
elections in Section 5.

Note, that our process assumes that all unknown ballots
must be assigned to at least one candidate. As such we are
not capturing all possible scenarios (e.g., if all, or some, ab-
sentee ballots are void or exhausted). We plan to investigate
tighter bounds on the number of unknown ballots needed for
a candidate c to win in future work.

5 Evaluation
We evaluated our proposed algorithm to compute all possi-
ble outcomes of a RCV election given partial ballot informa-
tion by applying it to the contests in the 2021 New York City
Primary elections. To validate the efficiency of our branch
and bound mechanism, we also compared it to the brute-
force approach.

In this section we report on our results, detailing the novel
information that our partial vote counting algorithms allows
to infer from the election profile available on election night.
Our results (Section 5) show that we would have been able to
call winners in 21 of the 52 NYC primary contests that had
more than two candidates as soon as election night. In some
cases our algorithm was able to identify results even when
the election nights results were very close. For instance, in
the NYC 40th City Council District Primary, we were able
to identify the winner even though she only had 25% of first-
choice votes on election night and two other candidates had
20% each (see Section 5).

We analysed the possible outcomes of several June 2021
NYC primary elections in Section 5 to highlight the insights
that our algorithm could have provided stakeholders: voters,
candidates, political observers, news organizations, as early
as election night, rather than them having to wait several
weeks for the full results to be tallied.

Dataset
We use the public election data from (NYC Election Results
2021) for our experiments. The election data contains ballot-
level data for 63 contests of the June 2021 NYC primaries.
Eleven of these races had only two candidates; in such case
the RCV vote count reverts to simple majority voting and our
algorithm is not needed. In the rest of this paper, we provide
results for the 52 June 2021 NYC primaries with more than
two candidates.

For each election, we consider the set of known, bound,
ballots B to be the in-person ballots, the results of which
were available on election night or the following day. In fact,
the only publicly available results for more than a week af-
ter the election were a tally of first-choice rankings in B for
each candidate. Note that our algorithm assumes knowledge

3This works by assigning one ranking to each empty unbound
ballot such that the assignments to c are minimized and the ordering
of π is preserved.

of the full election night ballot rankings, which contain more
information than the first-choice rankings reported on elec-
tion night. While NYC opted to not make the full ballot data
available until weeks after the election, this data could be
made public right away, as was done in other localities.

We consider the set of unknown, unbound, ballots U to be
all absentee ballots, affidavit ballots and emergency ballots
which had to be cured several days after the election. Voters
can only vote in the primaries of one party, and the races on
their ballots depend on their residence and party affiliation.
We analysed each absentee, affidavit, and emergency ballot
to identify which races it contains to have a correct number
of unknown ballots for each race.

Experimental Setup
Our algorithms are implemented in Python 3.9.5 and ex-
ecuted on an Intel Core i5-8250U CPU with 32.0 GB of
RAM. Our implementation is single-threaded. For elimina-
tion graph visualizations, we use Python’s NetworkX library
with Graphviz.

We ran our tests for each election using the
possibleOutcomes algorithm and set a 2 hour
timeout for each. When a timeout occured in the
possibleOutcomes algorithm, we removed the
first-round ranked candidates with below 5% of the bal-
lots from the election profile in order to run the contest
with fewer candidates, and thus explore a much smaller
search-space and re-run the comparison. For the contests
where both algorithms finished within our timeout period,
we compared the elimination graphs and minimum-bound
absentee ballot counts for correctness.

Possible Election Outcomes of the June 21 NYC
Democratic Primaries
Table 1 contains bound and missing ballot counts, runtimes,
and counts of possible winners for each contest with more
than 2 candidates in the 2021 New York City Primaries. Our
algorithm was able to identify the winners for 21 of the 52
contests using election night data. For 9 of these contests,
these results were not a surprise, as the only possible win-
ner was a candidate with over 50% of the votes on election
night and with not enough missing ballots to change the re-
sult. For another 12 of these contests, our algorithm correctly
identifies 1 possible winner even though that candidate did
not have over 50% of the ballots in the first round on elec-
tion night. In most cases we are able to reduce the number
of possible winners to 2 or 3, although this was not always
possible when the percentage of unknown ballots is large or
the first round rankings were very close.

The runtime of our algorithm, shown in Figure 2,
is often significantly faster than that of the brute-force
approach. For all races with fewer than 8 candidates
possibleOutcomes runs in less than 2 minutes (less
than 10 seconds in most cases) and has an average speedup
of 180% compared to the brute-force algorithm. For races
with 8 candidates and over, possibleOutcomes has an
average speedup of over 1000% compared to the brute-force
algorithm. As the number of candidates grows, the number
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|C| |B| |U| Runtime(s) Runtime(s) Percent Possible Contest
possibleOutcomes Brute Force Speedup Winners
Algorithm Algorithm

3 17247 2174 0.013 0.016 23% 1 Kings Dem City Council D45
3 711166 165689 1.551 1.565 1% 1 New York Dem Public Advocate
3 15069 3588 0.044 0.048 9% 2 Bronx Dem City Council D12
3 13980 4350 0.041 0.043 5% 1 Queens Dem City Council D31
3 164309 66172 1.302 1.193 -8% 3 Queens Dem Borough President
3 11489 5206 0.062 0.079 27% 2 Queens Dem City Council D28
4 14299 1371 0.032 0.051 59% 2 Kings Dem City Council D42
4 15295 1464 0.063 0.074 18% 1 Kings Dem City Council D34
4 10648 1594 0.027 0.051 89% 1 New York Dem City Council D8
4 6824 1381 0.032 0.054 69% 2 Kings Dem City Council D47
4 8963 2508 0.118 0.144 22% 3 Bronx Dem City Council D16
4 11114 4884 0.252 0.312 24% 4 Queens Dem City Council D24
4 17749 1872 0.025 0.044 76% 2 Richmond Rep Borough President
5 21486 1883 0.048 0.227 373% 2 Kings Dem City Council D36
5 6147 1488 0.211 0.406 92% 1 Queens Dem City Council D21
5 7577 1771 0.267 0.473 77% 4 Kings Dem City Council D48
5 89407 22259 1.735 4.158 140% 3 Bronx Dem Borough President
5 8834 2504 0.224 0.515 130% 1 Bronx Dem City Council D13
5 23770 6282 0.646 1.388 115% 1 Richmond Dem Borough President
5 7315 1267 0.095 0.23 142% 3 Richmond Rep City Council D50
6 9663 1270 0.435 2.223 411% 1 Kings Dem City Council D37
6 10254 1920 1.3 3.912 201% 1 Kings Dem City Council D38
6 24113 5122 4.337 10.38 139% 1 New York Dem City Council D3
6 8498 1937 1.023 3.328 225% 3 Bronx Dem City Council D14
6 32370 7755 4.208 13.386 218% 1 New York Dem City Council D6
6 14340 4030 2.307 6.924 200% 2 Bronx Dem City Council D22
6 8819 3004 1.869 6.358 240% 2 Queens Dem City Council D32
6 10457 5749 5.634 13.315 136% 6 Queens Dem City Council D19
7 32087 3089 4.073 37.952 832% 2 Kings Dem City Council D35
7 32969 3409 1.842 34.2 1757% 1 Kings Dem City Council D39
7 202319 39102 87.762 410.548 368% 2 New York Dem Borough President
7 20688 5501 21.049 83.118 295% 4 New York Dem City Council D5
7 14240 5848 18.715 74.606 299% 4 Bronx Dem City Council D11
7 13369 6654 50.211 120.295 140% 7 Queens Dem City Council D23
8 17898 1839 12.034 238.567 1882% 1 New York Dem City Council D10
8 16769 1831 8.497 220.029 2490% 1 Kings Dem City Council D46
8 12518 1552 7.553 178.915 2269% 2 Bronx Dem City Council D18
8 25655 3948 59.435 584.203 883% 1 Kings Dem City Council D33
8 7350 1737 23.033 215.668 836% 1 Bronx Dem City Council D15
8 8394 4680 622.514 1341.583 116% 8 Queens Dem City Council D20
8 11259 7498 1046.66 1948.612 86% 8 Queens Dem City Council D25
9 19111 3046 101.881 3299.032 3138% 1 New York Dem City Council D1
9 12026 3202 1055.637 6219.858 489% 3 Richmond Dem City Council D49
9 13848 6886 5422.558 [Timeout] N/A 9 Queens Dem City Council D29
10§3 756047 165688 199.23 1318.241 562% 3 New York Dem Comptroller
11 20280 2256 1701.439 [Timeout] N/A 1 Kings Dem City Council D40
12§4 260695 31872 83.119 1951.516 2248% 2 Kings Dem Borough President
12§5 20173 3373 12.619 48.691 286% 1 New York Dem City Council D7
12§4 17964 5106 261.314 912.354 249% 1 Queens Dem City Council D27
13§4 23193 2624 110.895 3064.412 2663% 3 New York Dem City Council D9
13§5 822410 165689 443.818 [Timeout] N/A 3 New York Dem Mayor
15§6 16097 3846 796.932 5281.628 563% 3 Queens Dem City Council D26

Table 1: Results of the possibleOutcomes and brute-force algorithms on the Election-night data of the June 2021
New York City Democratic Primaries
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Figure 2: Runtimes (logarithmic scale) by numer of candi-
dates |C| of possibleOutcomes and Brute Force Algo-
rithm for all election races from Table 1.

Contest Minimum Bound Absentee Ballots

New York Dem
Mayor

Eric L. Adams: 0
Kathryn A. Garcia: 15776

Maya D. Wiley: 66440
Kings Dem

City Council D36
Chi A. Osse: 0

Tahirah A. Moore: 1726
Kings Dem

City Council D35
Crystal Hudson: 0

Michael Hollingsworth: 2121
Kings Dem

Borough President
Antonio Reynoso: 0

Jo Anne Simon: 18564

New York Dem
City Council D9

Bill Perkins: 0,
Kristin Richardson Jordan: 0

Athena Moore: 1415

New York Dem
Comptroller

Brad Lander: 0
Corey D. Johnson: 20589

Michelle Caruso-Cabrera: 125518

Table 2: Minimum number of bound absentee ballots needed
to win for each possible winner across selected contests of
the June 2021 New York City Democratic Primaries

of elimination orders to consider grows exponentially. For
elections that timed out within our 2 hour limit, we reduced
the search space by pruning the number of candidates. We
removed all candidates with less than 5% of the vote as these
were very unlikely to have a path to victory.4 The number of
candidates removed, n, for an election that timed out with
|C| candidates is denoted in Table 1 as |C|§n. In Figure 2
we present these elections as having |C| − n candidates and
assigned a value of 2 hours to the timed out executions.

4While there may be theoretical cases where a candidate with
less than 5% of first choice votes can win a RCV election, this has
not happened in practice (FairVote 2022).

Case Studies
In this section, we highlight some interesting results and in-
sights we were able to infer by applying our algorithm on
the 2021 NYC Democratic Primary election-night data.

In Table 2, we provide some of the results of the postpro-
cessing step of Section 4. These results show, for selected
races, the minimum number of unknown (absentee) ballots
that each candidate needs to win to have a path to victory.
Note that this does not guarantee that a candidate’s victory
if they receive that number of absentee votes; it gives a lower
bound of the number of votes they would need to win in the
most favorable possible elimination path. This explains why
some candidates have a minimum number of 0 absentee bal-
lots. From this table, and the total number of absentee bal-
lots available in Table 1, it seems obvious that while some
candidates have a mathematically possible path to victory,
the chances of them winning are slim. For example, in the
Comptroller race, Michelle Caruso-Cabrera would need to
win at least 75% of absentee ballots, an unlikely outcome as
she only won 13.5% of the in-person ballots (Table 2).

June 2021 NYC Mayoral Democratic Primary The re-
sults of the Mayoral Primary were understandably the most
awaited results of the primary. That particular race turned
out to be a perfect illustration of the benefits and drawbacks
of RCV. On election night, Eric Adams was leading with
31.66% of ballots, Maya Wiley was second with 22.22% and
Kathryn Garcia third with 19.58%. Andrew Yang was a dis-
tant fourth with 11.66%. The data made public on election
night was limited to first choice votes. It was clear that vote
transfers would decide the election result and could lead to
surprises. A week after the election, a count of RCV was
performed only on in-person votes. The outcome showed
that once Andrew Yang was eliminated in the third-to-last
round, his vote transfers were enough for Kathryn Garcia to
edge out Maya Wiley by only 400 votes, only to lose to Eric
Adams in the last round.

These partial results raised more questions than they
answered: over 165,000 absentee ballots were still to be
counted. What if Maya Wiley were to be in the final round
against Eric Adams? Would she win against him? How
would votes transfer in other possible election orders? Could
the final two be Maya Wiley and Kathryn Garcia? What
would happen in that scenario?

Our algorithm would have been able to answer some of
these questions: Figure 3 shows the possible elimination
orders for the mayoral primary. All three candidates, Eric
Adams, Kathryn Garcia, and Maya Wiley had paths to vic-
tory, but Eric Adams was guaranteed to finish 1st or 2nd.

Table 2 provides more insights: our algorithm identifies
Maya Wiley needing a minimum of 66,440 (40%) of the
absentee ballots for a path to victory while Kathryn Garcia
would have needed a minimum 15,776 (9.5%) of the absen-
tee ballots for a path to victory. Eric Adams had a path to
victory that did not require him to win any absentee ballots
(such as an unlikely scenario where all absentee ballots are
shared among minor candidates). This would have shown
that all three were potential winners, but Maya Wiley had
to appear before the other two candidates in a much larger
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Figure 3: Possible Elimination Orders for the 2021 NYC
Democratic Mayoral Primary

number of absentee ballots to have a chance at winning.

June 2021 Kings Democratic Member of the City Coun-
cil 36th Council District Primary On election night, can-
didate Tahirah A. Moore was tied in second place with
Henry L. Butler (each at 4720 and 4721 ballots respectively)
in the first round. The first place candidate (and eventual
winner) Chi A. Osse was ahead of them by 2969 ballots. Our
algorithm identifies Tahirah A. Moore as the only other pos-
sible winner, despite Henry L. Butler having the same num-
ber of votes, when 1883 absentee ballots were present (ap-
proximately 8% of all the cast ballots). Moore needed a min-
imum of 1726 absentee ballots for a possible path to victory.
Therefore, on election night our algorithm could practically
identify the winner in this contest as it is unlikely Moore
would appear above Osse in 92% of the absentee ballots. In-
terestingly, the partial RCV count reported by NYC’s Board
of Election a week after the election, using only in-person
votes, shows Osse and Butler as the final two candidates, as
it explores only one possible elimination path.

June 2021 Kings Democratic Member of the City Coun-
cil 35th Council District Primary On election night, can-
didate Michael Hollingsworth was in second place, closely
trailing leading candidate (and eventual winner) Crystal
Hudson by 1291 ballots in the first round. Our algorithm
identifies Hollingsworth as the only other possible winner,
needing a minimum of 2121 absentee ballots for a possible
path to victory. However, there exists only 3089 absentee
ballots; it seems unlikely that Hollingsworth would receive
over 68% of the missing ballots and have a path to victory.
Therefore, by election night, we could have inferred that
there was likely only 1 winner for this contest even though
Hollingsworth and Hudson had 34.45% and 38.49% of the
election night ballots respectively.

June 2021 Kings Democratic Borough President Pri-
mary On election night, candidate Robert E. Cornegy Jr.
was in second place, trailing behind leading candidate (and

eventual winner) Antonio Reynoso by 22955 ballots (9% of
the total known ballots) in the first round. In third place was
Jo Anne Simon, who was 3927 votes behind Cornegy. Our
algorithm identifies Simon as the only other possible winner
to the eventual winner (Reynoso), needing a minimum of
18564 absentee ballots for a possible path to victory. These
results show that is was impossible for Cornegy to win, since
he had no possible path to victory, despite being in second
place on election night. However, Simon who was in third
place only needed about 58% of the absentee ballots for a
path to victory.

June 2021 New York Democratic Member of the City
Council 9th Council District Primary This is one of
three races from the NYC 2021 Primary with a come-
from-behind winner (FairVote 2022). While Bill Perkins had
21.1% of first-choice votes, ahead of Kristin Richardson Jor-
dan’s 19%, once all ballots were tallied and the RCV rounds
processed, Richardson won the race. Our algorithm identi-
fies both Richardson and Perkins as possible winners, and
further identifies that both have paths to victory without
needing to pick up absentee ballots depending on the order
in which other candidates are eliminated (Table 2).

June 2021 Kings Democratic Member of the City Coun-
cil 40th Council District Primary On election night, can-
didate (and eventual winner) Rita C. Joseph was in first place
with 5060 ballots (25.23% of the total known ballots) in the
first round. In second and third place are candidates Josue
Pierre and Kenya Handy-Hilliard, each with 4073 and 3849
ballots respectively. With 2275 absentee ballots, it might
seem that both of these candidates are likely to have a path
to victory. However our algorithm identified Joseph as the
only possible winner on election night (Table 1).

6 Conclusion
We presented an algorithm to identify possible winners of
Ranked-Choice Voting elections when all ballots have not
yet been tallied. Our approach allows for stakeholders to get
insights on the possible outcome of the election earlier than
in the current real-world scenarios where either all ballots
need to be tallied before the RCV round-by-round process
is performed, or a preliminary RCV tally is performed on
ballots known on election night, only considering one possi-
ble election outcome and potentially producing misleading
information.

The techniques proposed in this paper identify all still-
possible winners of a RCV election but do not assign prob-
abilities to their chances of winning. We are considering ex-
tending our work with a predictive model of absentee ballots
that takes into account the different demographics of voters
opting to vote absentee (Plescia, Sevi, and Blais 2021; Yoder
et al. 2021).

Our work provides critical tools to provide clarity to
voters and candidates on the election outcome and to in-
crease transparency and trust in RCV election processes.
This should prompt localities that use RCV as their election
mechanism to identify all possible winners when reporting
preliminary results and to make cast ballot data available to
the public as soon as possible for transparency.
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