
Taking Advice from (Dis)Similar Machines:
The Impact of Human-Machine Similarity on Machine-Assisted Decision-Making

Nina Grgić-Hlača,1,2 Claude Castelluccia, 3 Krishna P. Gummadi 1

1 Max Planck Institute for Software Systems
2 Max Planck Institute for Research on Collective Goods

3 Inria
nghlaca@mpi-sws.org, claude.castelluccia@inria.fr, gummadi@mpi-sws.org

Abstract

Machine learning algorithms are increasingly used to assist
human decision-making. When the goal of machine assis-
tance is to improve the accuracy of human decisions, it might
seem appealing to design ML algorithms that complement
human knowledge. While neither the algorithm nor the hu-
man are perfectly accurate, one could expect that their com-
plementary expertise might lead to improved outcomes. In
this study, we demonstrate that in practice decision aids that
are not complementary, but make errors similar to human
ones may have their own benefits.
In a series of human-subject experiments with a total of 901
participants, we study how the similarity of human and ma-
chine errors influences human perceptions of and interactions
with algorithmic decision aids. We find that (i) people per-
ceive more similar decision aids as more useful, accurate,
and predictable, and that (ii) people are more likely to take
opposing advice from more similar decision aids, while (iii)
decision aids that are less similar to humans have more op-
portunities to provide opposing advice, resulting in a higher
influence on people’s decisions overall.

1 Introduction
Machine decision aids assist human decision-makers in a va-
riety of scenarios, ranging from medical diagnostics (Esteva
et al. 2017) to bail decision-making (Angwin et al. 2016).
The potential societal impact of using machine decision aids
in real-world settings sparked concerns about their accuracy
and fairness (Angwin et al. 2016; Barocas and Selbst 2016).
Decades of research on machine learning can be leveraged
to optimize machine decision aids for accuracy, while more
recent research in the FAccT community proposed methods
for alleviating some concerns about their fairness (Choulde-
chova 2017; Friedler, Scheidegger, and Venkatasubramanian
2016; Grgić-Hlača et al. 2018; Hardt et al. 2016; Kleinberg,
Mullainathan, and Raghavan 2017; Zafar et al. 2017a,b), ac-
countability and transparency (Caruana et al. 2015; Datta,
Sen, and Zick 2016; Lakkaraju, Bach, and Leskovec 2016;
Lakkaraju and Rudin 2017; Lipton 2016; Ribeiro, Singh,
and Guestrin 2016; Wachter, Mittelstadt, and Russell 2017).

However, machine decision aids, as the name suggests, do
not make the final decisions — they assist human decision
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makers. Hence, when designing decision aids, it is crucial to
consider not only the decision aids’ accuracy and fairness,
but also how human decision-makers take their advice.

Recent work proposed machine learning algorithms
which account for the presence of human agents in their
learning procedure (De et al. 2020; Madras, Pitassi, and
Zemel 2018; Meresht et al. 2020; Wilder, Horvitz, and Ka-
mar 2020). A common thread underlying much of this re-
search is the idea that designing algorithms with skills com-
plementary to human ones may lead to better decision-
making outcomes (Bansal et al. 2019; Horvitz and Paek
2007; Kamar, Hacker, and Horvitz 2012; Tan et al. 2018;
Wilder, Horvitz, and Kamar 2020; Zhang, Liao, and Bel-
lamy 2020), in line with the intuition presented in Figure 1.

How would we expect people to react to advice from a
decision aid that complements human skills? Daniel Kah-
neman’s notion of a modern Turing test (Kahneman 2021)
posits that it is acceptable for a system to make mistakes a
human might make, but it needs to avoid making mistakes
that people would find to be absurd. Additionally, prior re-
search in social psychology found that people are more re-
ceptive to advice from advisors more similar to themselves
(Chan et al. 2017; Faraji-Rad, Samuelsen, and Warlop 2015;
Suls, Martin, and Wheeler 2000; Yaniv, Choshen-Hillel,
and Milyavsky 2011). In this paper, we study the compar-
ative (dis)advantage of using similar or complementary de-
cision aids in machine-assisted decision-making, where hu-
man agents make decisions upon receiving machine advice.
Experiment. In this paper, we experimentally test how the
similarity of the decision aid’s errors to typical human er-
rors influences human advice-taking behavior. We compare
decision aids which are equally accurate overall, but dif-
fer with respect to the type and distribution of their errors.
Namely, they differ with respect to how similar their errors
are to human errors: human-like, anti human-like, or ran-
dom. Decision aids with human-like errors make mistakes
for inputs where human respondents are also found to be
the least accurate on average. Conversely, decision aids with
anti human-like errors make mistakes complementary to hu-
man ones. They are accurate where humans tend to make
mistakes, while making mistakes for inputs where most hu-
man respondents make accurate predictions. Finally, deci-
sion aids with random errors are between these two ex-
tremes, and have randomly distributed errors.
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(a) Decision aid with errors complementary to human errors. (b) Decision aid with errors similar to human errors.

Figure 1: Illustration: Examples of decision aids with errors complementary (Fig. 1a) or similar (Fig. 1b) to human errors. Green
shading denotes areas where predictions are accurate, while red denotes inaccurate ones. The three panels in both subfigures
show the distributions of human, machine, and joint human and machine errors respectively. Complementary decision aids
provide a better upper bound on the accuracy of joint human and machine decisions (H✓∪ M✓) in the best case scenario,
where humans take all correct advice, but no incorrect advice. On the other hand, similar decision aids provide a better lower
bound (H✓∩ M✓) in the worst case scenario, where people take all incorrect machine advice, and no correct advice.

I.e., human-like decision aids make mistakes for questions
that most people would find difficult to answer correctly,
while anti human-like decision aids make mistakes only for
questions that the majority of people would find easy to an-
swer correctly. In terms of Kahneman’s notion of a modern
Turing test (Kahneman 2021), errors made by anti human-
like decision aids may hence be perceived as egregious or
absurd, since most humans would not make such errors.

To quantify the relationship between machine errors and
human advice-taking, we conduct a series of human-subject
experiments, in which we present respondents with machine
advice and measure how the advice influences their deci-
sions. Specifically, we utilize the Judge-Advisor paradigm
(JAS), commonly used to study human advice-taking behav-
ior (Bonaccio and Dalal 2006), where the decision aids serve
as advisors, while human respondents retain decision rights.

To test the robustness of our findings across different
domains, we consider three distinct decision-making sce-
narios: age estimation, criminal recidivism prediction, and
dating preference prediction. As an additional robustness
check, we consider two degrees of decision aid accuracy: de-
cision aids that achieve the same degree of accuracy as typ-
ical human decisions, compared to decision aids that vastly
outperform typical humans in terms of decision accuracy.
Contributions. We conducted a large-scale online study
with 901 participants, exploring the impact of machine er-
rors on human advice taking. We found that people’s per-
ceptions and advice taking behavior depend on the similar-
ity of the decision aid’s errors to typical human errors. In
particular, we find that:

• People perceive decision aids that make errors similar to
human ones as more useful, accurate, and predictable.

• People are more likely to take opposing advice from deci-
sion aids which make errors more similar to human ones.

• Nevertheless, people are significantly more likely to
receive opposing advice from complementary decision
aids. Hence, despite the lower influence of their oppos-

ing advice, complementary decision aids have a higher
influence on people’s decisions overall.

We follow up this confirmatory analysis with an ex-
ploratory analysis of the effects of human-machine simi-
larity on the accuracy of people’s decisions. We find that
the use of complementary decision aids leads to a slightly
greater increase in our respondents’ accuracy. However, we
also find that complementary decision aids are significantly
farther from reaching their full potential for improving ac-
curacy, since people are more likely to take opposing advice
from decision aids that are more similar to them.

1.1 Related Work
Algorithmic decision aids nowadays advise human decision
makers in a plethora of domains, ranging from bail decisions
(Angwin et al. 2016) to medical diagnostics (Esteva et al.
2017). Hence, it is not surprising that much recent research
has studied people’s advice taking behavior in machine-
assisted decision-making settings. Our research contributes
to this interdisciplinary line of work, building up on prior
research in social psychology and computer science.

Research in social psychology has studied how people
perceive, react to and utilize machine advice compared to
human advice (Madhavan and Wiegmann 2007). The results
are mixed, and the findings vary across decision-making
tasks (Vodrahalli, Gerstenberg, and Zou 2021). The major-
ity of studies have reported evidence of algorithm aversion,
finding that people tend to favor human advice over ma-
chine advice (Burton, Stein, and Jensen 2020; Dietvorst,
Simmons, and Massey 2015, 2018; Dzindolet et al. 2002;
Mahmud et al. 2022; Prahl and Van Swol 2017). People are
also found to perceive machine decisions as less fair and
trustworthy than human ones in tasks perceived to require
human skills (Lee 2018). On the other hand, some studies
reported algorithm appreciation (Logg 2017; Logg, Minson,
and Moore 2019), finding that people were more receptive
to machine advice than to human advice.
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The insights related to algorithm aversion from Dietvorst,
Simmons, and Massey (2015) are particularly relevant for
our research: after observing humans and algorithms make
the same mistake, people are found to lose confidence in
algorithms more quickly than in humans, and opt for human
advice over algorithmic advice. In our work, we hypothesize
that this preference for human errors over algorithmic errors
may go beyond the identity of the advisor, and that it may
relate to expectations about the advisor’s behavior. Namely,
we study how people react to observing algorithms make
errors that are similar to typical human mistakes compared
to mistakes that very few people would make.

Recent work in computer science studied how people take
advice from machine learning based decision aids. Green
and Chen (2019a,b) studied how machine advice impacts the
accuracy and fairness of human decisions. Several studies
explored which factors impact the magnitude and quality of
a decision aid’s influence. For instance, prior work explored
the effects of the accuracy of machine advice (Salem et al.
2015; Yin, Wortman Vaughan, and Wallach 2019; Yu et al.
2016, 2017), the interpretability and explainability of ma-
chine advice (Poursabzi-Sangdeh et al. 2018; Wang and Yin
2021; Zhang, Liao, and Bellamy 2020), providing warnings
about machine limitations (Engel and Grgić-Hlača 2021),
and varying the stakes associated with the decision-making
task (Grgić-Hlača, Engel, and Gummadi 2019).

The work closest to ours is that of Yin, Wortman Vaughan,
and Wallach (2019), which studied the effects of a decision
aid’s stated and observed accuracy on human advice taking
behavior. In their experiments, they found that people were
more likely to take advice from decision aids with a higher
stated and observed accuracy than from less accurate ones.
In this paper, we hypothesize that people’s advice taking be-
havior depends not only on the amount of errors the decision
aid makes (i.e., its accuracy), but also on the type of errors
it makes. Specifically, we explore how human advice-taking
behavior is influenced by observing algorithms make errors
with varying degrees of similarity to typical human errors.

Much recent research in CS highlights the benefits of
human-machine complementarity in joint human-machine
decision-making (Bansal et al. 2019; Horvitz and Paek 2007;
Kamar, Hacker, and Horvitz 2012; Tan et al. 2018; Wilder,
Horvitz, and Kamar 2020; Zhang, Liao, and Bellamy 2020),
especially in settings where algorithms allocate decision
rights, such as the learning to defer framework (De et al.
2020; Madras, Pitassi, and Zemel 2018; Meresht et al. 2020;
Wilder, Horvitz, and Kamar 2020). The intuition is straight-
forward. During the training phase, the algorithm prioritizes
ensuring high predictive accuracy for inputs where humans
are expected to make mistakes. Algorithms can make deci-
sions when they are confident in their predictions, and other-
wise defer decisions to their human collaborators. However,
in many real-world settings algorithms are used as decision
aids, whereas humans — such as judges or doctors — retain
decision rights. Hence, a decision aid’s impact depends on
people’s reactions to the provided advice. In this work, we
study if the benefits of complementarity hold in machine-
assisted decision-making, and if decision aids more similar
to humans also exhibit some desirable properties.

2 Methodology
Hypotheses. Inspired by the notion of a modern Turing
test (Kahneman 2021) and prior work in social psychology
which found that people are more receptive to advice from
similar advisors (Chan et al. 2017; Faraji-Rad, Samuelsen,
and Warlop 2015; Suls, Martin, and Wheeler 2000; Yaniv,
Choshen-Hillel, and Milyavsky 2011), we build upon prior
work in machine-assisted decision-making reviewed in Sec-
tion 1.1 to form three main hypotheses:

Comparing decision aids of equal accuracy, which differ
with respect to the degree of similarity between the decision
aid’s and typical human errors,
Hypothesis 1: People perceive similar decision aids as more
a) useful, b) accurate, and c) predictable.
Hypothesis 2: People are more likely to take opposing ad-
vice from similar decision aids.

Still, since complementary decision aids have less over-
lap with human decisions, they have more opportunities to
give opposing advice. Hence, even though the likelihood of
taking any individual piece of opposing advice from comple-
mentary decision aids may be lower (H2), we hypothesize:
Hypothesis 3: Complementary decision aids have a higher
overall influence on human decisions.

We additionally engage in an exploratory analysis, to in-
vestigate the relationship between human-machine similar-
ity and the accuracy of people’s decisions.

2.1 Stimulus Material
Vignettes. In our experiments, we consider three differ-
ent decision-making scenarios: dating preference prediction,
criminal recidivism prediction, and age estimation. This set
of scenarios covers a broad range of possible applications of
machine decision aids. Firstly, these tasks differ with respect
to their potential societal impact, with dating preference pre-
diction on one end, and criminal recidivism prediction on
the other. Secondly, they differ with respect to the type of
thinking required by the decision-maker (Kahneman 2011),
with age estimation being close to System 1, or fast think-
ing tasks, while dating and recidivism prediction being close
to System 2, or slow thinking tasks. Finally, these scenarios
provide decision makers with different amounts and types of
information (images or natural language text).

The dating preference prediction task leverages data from
a speed dating experiment gathered by Fisman et al. (2006).
After being shown a summary of a speed date, our re-
spondents were asked to predict if the speed dating partic-
ipant wanted to see their date again. The speed date sum-
maries contained information about the participants’ demo-
graphics, romantic expectations and impressions about their
date, as shown in Figure 8a in the Supplementary Material
(SM).1 Yin, Wortman Vaughan, and Wallach (2019) previ-
ously used this dataset in their study of machine-assisted
decision-making, and the format of our vignettes exactly
replicates theirs.

The criminal recidivism prediction task uses the ProPub-
lica COMPAS dataset (Angwin et al. 2016). Our respon-

1Full paper including the Supplementary Material (SM) avail-
able at https://arxiv.org/abs/2209.03821.
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dents were shown defendants’ profiles, and asked to pre-
dict if they will commit a new crime within two years. The
defendants’ profiles contained information about the defen-
dants’ gender, age, and criminal history, as shown in Figure
8c in the SM. This dataset was previously used for studying
machine-assisted decision-making (Grgić-Hlača, Engel, and
Gummadi 2019) and algorithmic fairness (Dressel and Farid
2018; Zafar et al. 2017a; Grgić-Hlača et al. 2018; Corbett-
Davies and Goel 2018; Chouldechova 2017).

Finally, the age estimation task relies on the IMDB-WIKI
dataset gathered by Rothe, Timofte, and Gool (2015, 2018).
We showed respondents images of people’s faces, and asked
them to estimate if they are above or below the age of 21, as
depicted in Figure 8d in the SM.

For each of the three datasets, we selected a random sub-
set of 50 data points to use as vignettes in our experiments.
All of the datasets were cleaned, and incomplete or other-
wise defective data points were removed prior to the ran-
dom subset selection process. For the age dataset, which was
skewed towards images of people above the age of 21, we
additionally enforced class balancing constraints.
Decision Aids. To construct decision aids that have vary-
ing degrees of similarity to human errors, we first gathered
data about how accurate humans are in our three decision-
making scenarios. For each of the scenarios, we recruited
approximately 100 respondents (a total of 305 respondents)
and asked them to make predictions for all 50 data points
from the respective dataset. As a measure of human accuracy
for a specific data point, we used the fraction of respondents
whose prediction matched the ground truth. For our sample
size, the margin of error for human accuracy estimates is
10%, for a 95% confidence level.2

To construct the decision aids used in the main experi-
ment, we relied on (i) estimates of the fraction of people
who make accurate predictions for a given vignette, and (ii)
ground truth labels. For each decision aid, we started with
the ground truth labels and flipped a certain fraction of labels
to achieve the desired degree of human-machine similarity
and accuracy.3 Human-like decision aids made errors only
where people were most likely to make errors as well. More
formally, they maximized the similarity between human and
machine decisions, subject to an accuracy constraint. On the
other hand, anti human-like decision aids made errors only
where people were most likely to make correct decisions.
I.e., they made mistakes that people are unlikely to make.
More formally, they minimized the similarity between hu-

2After conducting the main experiment, we evaluated whether
these human accuracy estimates coincided with the accuracy of
people’s pre-advice decisions in the main experiment. For each vi-
gnette, we calculated the difference between the fraction of people
who made an accurate prediction in the first study and in the sec-
ond study, prior to receiving machine advice. We found that for all
three datasets the difference between people’s accuracy in the two
studies was not significant, with a mean close to 0.

3We opted for this synthetic approach to generating machine
advice in order to ensure that we fully control the structure of the
errors, to test our hypotheses. In real-world applications, ML based
decision aids would be trained, as discussed in the Design Implica-
tions subsection of Section 4.

man and machine decisions, subject to an accuracy con-
straint. Finally, random decision aids had errors distributed
uniformly at random, given an accuracy constraint.

As a robustness check, we developed decision aids at two
levels of accuracy: human majority vote accuracy and super-
human accuracy. The former set of decision aids achieves
the same degree of accuracy as the majority vote of human
predictions did for the same decision-making scenario (Age:
76%, COMPAS: 60%, Speed Date: 64%). The latter has a
superhuman accuracy of 84%, fixed across all three scenar-
ios. We chose an accuracy of 84% to ensure that these deci-
sion aids outperform the human majority vote in all decision
making tasks, while still making some errors (which is a pre-
requisite for studying our research questions).

We developed and ran experiments with 18 distinct de-
cision aids ({COMPAS, Age, Speed Date} × {human-like,
random, anti human-like} × {majority vote accuracy, super-
human accuracy}). E.g., for the Age dataset, an anti human-
like decision aid with human majority vote accuracy has an
accuracy of 76%. It makes incorrect predictions for 24% of
data points, which were selected according to the accuracy
of human predictions. Specifically, since it is the anti human-
like decision aid, it makes incorrect predictions for the data
points where the observed human accuracy was the highest.
An example of mistakes made by the human-like and anti
human-like decision aids for the COMPAS dataset is shown
in Figure 10 in the SM.

2.2 Experimental Design
Experimental Procedure. Our experiment consisted of two
phases: the (first) test-drive phase and the (second) predic-
tion phase, in line with the design of Yin, Wortman Vaughan,
and Wallach (2019) and Dietvorst, Simmons, and Massey
(2015). In each phase, respondents answered questions
about 25 vignettes — a total of 50 vignettes (Figures 8a, 8c,
and 8d in the the SM). For each vignette, respondents made
a preliminary pre-advice prediction, before observing ma-
chine advice, and then making their final post-advice predic-
tion (Figure 8b in the SM). Before commencing the exper-
iment, participants were shown an introductory text which
described the decision-making task and the details of the ex-
perimental setup (Figures 7a and 7b in the SM).

In the test-drive phase, after each post-advice prediction,
respondents received feedback about the accuracy of their
own prediction and the decision aid’s advice, thereby getting
a chance to build a mental model of the decision aid. To
incentivize respondents to put effort into building a mental
model of the machine’s predictions in the test-drive phase
of the experiment, we informed them that they could earn
monetary rewards in the prediction phase.

In the prediction phase, we explored how the mental mod-
els formed in the test phase influence people’s advice-taking
in the second phase. We did not provide feedback about
the respondent’s and the decision aid’s accuracy after every
question, in order to minimize the risk of the respondents
updating their mental model of the machine’s errors (Fig-
ure 8b in the SM, without the last paragraph). Following
the approach of Dietvorst, Simmons, and Massey (2015),
we used monetary incentives only in the prediction phase.
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For each correct prediction, we rewarded respondents with
a $0.10 bonus, and penalized them the same amount for
each incorrect prediction. Similar financial incentives have
been shown to encourage respondents to provide accurate
responses (Chittilappilly, Chen, and Amer-Yahia 2016; Har-
ris 2011).

At the end of each phase of the experiment, we gathered
data about the respondents’ perceptions of the decision aid’s
performance (Figures 9a, 9b and 9c in the SM). Specifically,
we asked people to estimate their own and the decision aid’s
accuracy, and to assess their ability to predict the machine’s
predictions, as well as the machine’s usefulness. We gath-
ered this data twice, once at the end of each phase of the
experiment. Immediately afterwards, we informed the par-
ticipants how well they and the machine decision aid actu-
ally performed on the previous 25 questions.
Experimental Conditions. Our experiment has a between-
subjects, randomized, full-factorial design with three fac-
tors: human-machine similarity (3 levels), decision-making
scenario (3 levels), and decision aid accuracy (2 levels). We
employ a repeated measures design, where each respondent
makes 50 predictions. Each decision-making scenario con-
siders a fixed set of 50 data points. Following the design of
Yin, Wortman Vaughan, and Wallach (2019), the data points
are split into two subsets, ensuring that each decision aid
achieves the same predictive accuracy on both subsets re-
spectively. In each phase, we show participants one of the
subsets, and vary the order of subsets across participants. To
prevent order-bias (Redmiles et al. 2017), we show the vi-
gnettes in random order in each phase.
Dependent Variables. We used data about people’s pre and
post-advice predictions to measure the influence of machine
advice on peoples decisions and their accuracy. We con-
sider two measures of influence on decisions: (i) overall in-
fluence, defined as the difference between post-advice and
pre-advice agreement with machine advice, and (ii) condi-
tional influence, defined as the overall influence for data
points where people’s pre-advice decisions disagreed with
machine advice, i.e., the influence of opposing advice. Sim-
ilarly, we define the overall and conditional influence on ac-
curacy by comparing the accuracy of the respondents’ pre
and post-advice predictions. We also used data about the de-
cision aid’s perceived usefulness, accuracy, and predictabil-
ity, gathered at the end of each experimental phase.

2.3 Data Collection
We recruited respondents using the online crowd-sourcing
platform Prolific. Prolific is an alternative to MTurk, com-
monly used for recruiting participants for online human-
subject studies in academic research (Palan and Schitter
2018). We recruited respondents who have self-reported to
be US nationals, had an approval rate of at least 95% on pre-
vious studies, and have completed at least 100 studies so far.

In our experiments, we included two simple instructed re-
sponse items as attention check questions (e.g., ”Please re-
spond to this question by selecting Somewhat disagree as the
answer.”). Similar instructed response items are commonly
employed for identifying careless responses in survey data
(Meade and Craig 2012). In our analysis, we discarded the

Demographic Attribute Sec. 3.1 Sec. 3.2 - 3.4 Census
Female 56% 48% 51%
Asian 10% 14% 6%
Black 7% 7% 13%
Hispanic 8% 7% 18%
White 70% 69% 61%
Other 5% 3% 4%
> Bachelor’s degree 57% 56% 30%
< 35 years 63% 59% 46%
35− 54 years 31% 31% 26%
55+ years 6% 10% 28%
Liberal 54% 59% 33%†
Conservative 12% 15% 29%†
Moderate 27% 23% 34%†
Other 7% 4% 4%†

Table 1: Survey Samples. We targeted respondents who have
self-reported to be US nationals, and have completed at least
100 studies on Prolific with an approval rate ≥ 95%. The
respondents’ demographics are compared to the 2016 U.S.
Census (U.S. Census Bureau 2016), and Pew data on politi-
cal leaning (Pew Research Center 2016) (marked with †).

responses of all respondents who did not complete the sur-
vey, or did not successfully complete both attention check
questions. Our final sample consists of 901 respondents who
successfully answered both attention check questions.

We ran two sets of experiments. In the first experiment we
gathered data for modeling the accuracy of human decisions
(Section 3.1). 305 out of 320 respondents (95%) correctly
answered the attention check questions. The average com-
pletion time for this set of surveys was 14 minutes, and re-
spondents were paid a base fee of £2 for taking part in this
experiment (i.e., slightly above $11 per hour).

In the second experiment we gathered data for testing
our hypotheses (Sections 3.2 - 3.4). 92% of respondents an-
swered both attention check questions correctly, resulting in
a sample of 596 respondents. On average, participants took
21 minutes to complete the survey. Respondents were paid
a base fee of £2.5 for taking part in the experiment (i.e.,
slightly above $9.3 per hour). Additionally, the respondents
could earn bonus payments based on their performance, as
described in Figure 7b in the SM.

To assess participant satisfaction and identify any issues
with the experiments, participants were asked to answer a
series of questions about their experience. In both experi-
ments participants reported that they found the survey inter-
esting (mean ratings of 4.3 and 4.6 on a 5-point Likert scale
for the first and second experiment respectively), that they
found the questions easy to understand (mean ratings of 4.7
and 4.8 respectively), and that they would like to take part in
a similar survey in the future (4.6 and 4.8 respectively).

In Table 1 we report the detailed demographics of the
samples we used to model the accuracy of human decisions
(1st column) and to test our hypotheses (2nd column). Since
the respondents are US nationals, we additionally compared
the sample demographics to the 2016 US Census (U.S. Cen-
sus Bureau 2016), and Pew Research Center’s data on polit-
ical leaning (Pew Research Center 2016) (3rd column). On a

78



1 25 50
Vignettes

0.00

0.25

0.50

0.75

1.00
Fr

ac
. h

um
an

 re
sp

on
se

s 
co

rr
ec

t COMPAS

(a) COMPAS

1 25 50
Vignettes

0.00

0.25

0.50

0.75

1.00

Fr
ac

. h
um

an
 re

sp
on

se
s 

co
rr

ec
t Age

(b) Age

1 25 50
Vignettes

0.00

0.25

0.50

0.75

1.00

Fr
ac

. h
um

an
 re

sp
on

se
s 

co
rr

ec
t Speed date

(c) Speed Date

Figure 2: Distribution of human errors for the COMPAS [left], Age [center], and Speed date [right] dataset. The y-axis shows
the percent of human predictions that were correct for a given vignette. The vignettes are sorted increasingly w.r.t. y-axis values.

high-level, our respondents are more educated, younger, and
more liberal than the general US population. Also, our sam-
ple consists of more white and Asian respondents, and fewer
black and Hispanic respondents than the US population.

2.4 Analysis
Throughout the paper, we utilize descriptive statistics to
summarize the basic information about our data. We corrob-
orate these findings with statistical hypothesis testing.

To study the causal effect of the experimental manipula-
tions on people’s perceptions and behavior, we employ lin-
ear mixed models. We account for repeated measures by in-
cluding crossed random effects terms for respondents and
questions. For H1, we rely on a multivariate multiple linear
regression with three dependent variables: perceived useful-
ness (5-point Likert scale from -2 to 2), accuracy ([0, 1]) and
predictability (5-point Likert scale from -2 to 2). For H2 and
H3, we utilize a multiple linear4 regression with the overall
and conditional influence of advice as dependent variables
respectively. For each of the three hypotheses we build two
models, one including only human-machine similarity as an
independent variable, and one which also includes the con-
trol variables (experimental phase, accuracy, and dataset).

Human-machine similarity is a categorical variable with
3 levels: Human-like, Random, and ¬Human-like. In all of
the models, we use the Random level as the reference cate-
gory. I.e., the estimated regression coefficients for Human-
like and ¬Human-like treatments convey information about
the effect of the respective treatment compared to the Ran-
dom treatment. We additionally perform Wald tests on the
estimated regression coefficients of the Human-like and
¬Human-like treatment to directly compare their effects.

3 Results
3.1 Designing the Decision Aids
The first step in studying the effects of human-machine sim-
ilarity on people’s advice taking behavior was designing ma-

4We utilize a linear regression for ease of interpretation of coef-
ficients, especially of interaction effects. For a discussion on the ap-
plicability of linear models for binary dependent variables, please
refer to Hellevik (2009). Our results remain qualitatively the same
when a logistic regression is applied on the binary dependent vari-
ables in H2 and H3.

chine decision aids with varying degrees of similarity to hu-
man errors. To do so, we gathered data about human deci-
sions, to understand for which inputs people typically make
accurate predictions, and for which they make mistakes.

In Figure 2, we show the distribution of human errors
for each of the three datasets separately. For each vignette,
we show the percent of respondents who made an accu-
rate prediction (without algorithmic assistance). We find that
people’s accuracy varies between datasets and between vi-
gnettes. Each dataset consists of data points where peo-
ple are overwhelmingly correct (on the right of the x-axis),
and data points where most respondents made incorrect de-
cisions (on the left of the x-axis). In other words, each
dataset has vignettes with varying degrees of human accu-
racy, which will enable us to design decision aids with vary-
ing degrees of similarity of human and machine errors.

For the COMPAS dataset, the mean accuracy of people’s
responses was 0.59. For 60% of the vignettes, more than
half of respondents made an accurate prediction. People’s
performance in terms of accuracy on the COMPAS dataset
was comparable to that reported in prior work (Dressel and
Farid 2018; Grgić-Hlača, Engel, and Gummadi 2019). For
the Speed date dataset, people had a mean accuracy of 0.59,
and an accurate majority vote for 64% of the vignettes. Fi-
nally, for the Age dataset, people were more accurate, with a
mean accuracy of 0.72, and an accurate majority vote predic-
tion for 76% of the vignettes. We used this data to construct
human-like (H), random (R) and anti human-like (¬H) deci-
sion aids, as described in Section 2.

3.2 Human Perceptions of Machine Performance
In this section, we present our results on people’s percep-
tions about the decision aids’ performance. Specifically, we
explore the relationship between human-machine error sim-
ilarity, and the decision aids’ perceived usefulness, accuracy
and predictability.

Descriptively, Figure 3 shows that human-machine sim-
ilarity is positively correlated with all three perceptions of
performance. In Figure 3a, we see that human-like decision
aids are on average rated as more useful than random ones,
which are in turn rated as more useful than anti human-like
decision aids. The same pattern holds for the perceived accu-
racy in Figure 3b, and predictability in Figure 3c. The mean
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Figure 3: Perceptions of machine predictions for decision aids with human-like (H), anti human-like (¬H), and randomly dis-
tributed (R) errors. The perceived usefulness and predictability were rated on a 5-point Likert scale. On the plots, -2 corresponds
to the lowest rating of usefulness and predictability, and 2 corresponds to the highest. The perceived accuracy was reported as
the estimated number of correct predictions, as shown in Figure 9a in the SM, and was converted to a value ∈ [0, 1] in our
analysis. Human-like decision aids are perceived as more useful, accurate, and predictable than anti human-like decision aids.

Model 1 Model 2

Usefulness
Human-like 0.0674 (0.074) 0.0500 (0.071)
¬ Human-like -0.328∗∗∗ (0.074) -0.330∗∗∗ (0.071)
Second Phase -0.0419 (0.057)
High Acc. 0.673∗∗∗ (0.058)
Age D. -0.0351 (0.071)
Speed Date D. 0.0199 (0.071)
Intercept 0.630∗∗∗ (0.052) 0.320∗∗∗ (0.076)

Accuracy
Human-like 0.0135 (0.015) 0.00942 (0.013)
¬ Human-like -0.0471∗∗ (0.015) -0.0488∗∗∗ (0.013)
Second Phase -0.00450 (0.006)
High Acc. 0.145∗∗∗ (0.011)
Age D. 0.0588∗∗∗ (0.013)
Speed Date D. 0.00929 (0.013)
Intercept 0.723∗∗∗ (0.011) 0.630∗∗∗ (0.013)

Predictability
Human-like 0.338∗∗∗ (0.072) 0.333∗∗∗ (0.071)
¬ Human-like -0.225∗∗ (0.072) -0.230∗∗ (0.071)
Second Phase -0.134∗ (0.057)
High Acc. 0.217∗∗∗ (0.058)
Age D. 0.197∗∗ (0.071)
Speed Date D. -0.0309 (0.071)
Intercept 0.232∗∗∗ (0.051) 0.136 (0.076)

Table 2: Dependent variables: Perceived usefulness, accu-
racy and predictability. For non-binary variables, the refer-
ence categories are the Random Treatment and the COM-
PAS Dataset. Standard errors in parentheses. * symbols next
to coefficients indicate their statistical significance as fol-
lows: * p < 0.05, ** p < 0.01, *** p < 0.001. N = 1192.
Wald tests show that the coefficients associated with the
human-like and anti human-like treatment are significantly
different for all three perceptions, with p < 0.001.

perceived usefulness and predictability of human-like deci-
sion aids are 0.4 and 0.6 points higher (on a 5-point Likert
scale) than of anti-human like ones, and human-like decision
aids are also perceived as 6% more accurate.

Model 1 in Table 2 and the subsequent Wald test on its

coefficients show that the observed difference between the
perceptions of human-like decision aids (H) and anti human-
like ones (¬H) is statistically significant with p<0.001.
However, the difference between the random decision aid
(R) and human-like decision aids (H) is significant only for
the perceived predictability. This gives us

Result 1. People perceive human-like decision aids
as more useful, accurate, and predictable than anti
human-like decision aids.

Control Variables. This pattern holds when we control for
the decision-making task, the decision aid’s accuracy, and
the experimental phase. Figure 11 in the SM shows the re-
sults from Figure 3 separated by these three control vari-
ables. Model 2 in Table 2 shows that the differences between
the perceived usefulness, accuracy and predictability of H
and ¬H are statistically significant even when controlling
for the aforementioned variables.

Model 2 in Table 2 also provides interesting insights about
the effects of the control variables. The accuracy of the de-
cision aid significantly impacted all three perceptions. More
accurate decision aids were perceived as more useful, accu-
rate, and predictable. The effects of the experimental phase
and the dataset were not consistent across all three percep-
tions. The experimental phase had a borderline significant
effect only on predictability. In the second phase, where peo-
ple did not observe feedback about the decision aid’s per-
formance after every question, people rated decision aids as
less predictable. The Speed Date dataset did not lead to sig-
nificantly different perceptions than the COMPAS dataset.
However, for the Age dataset, where the baseline human
(and hence machine) accuracy was significantly higher than
in the other two datasets, people rated the decision aids as
more accurate and predictable.

3.3 Human Receptiveness to Machine Advice
After discussing the effect of human-machine similarity on
human perceptions, we move on to commenting on human
advice taking behavior. As a first sanity check, we test if
machine advice had an effect in the expected direction. As
shown in Table 3, we found that many people updated their
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(f) Conditional Change: Bad Advice

Figure 4: Influence of machine advice on respondents’ agreement with the advice, for decision aids with human-like (H), anti
human-like (¬H), and randomly distributed (R) errors. Pre and post-advice agreement, as well as the conditional change in
agreement are higher for human-like decision aids than for anti human-like decision aids. On the other hand, for the overall
change in agreement, the opposite pattern holds. Figures 4e and 4f compare the conditional change in agreement for good and
bad advice separately.

Agreement Treatments
Pre Post H R ¬H

0 0 0.145 0.306 0.418
0 1 0.111 0.137 0.150
1 0 0.012 0.009 0.006
1 1 0.732 0.549 0.426

Table 3: Distribution of the respondents’ decisions with re-
spect to the four possible agreement configurations, for each
of the three treatments. The first two columns show the four
configurations, where 0 denotes disagreement and 1 denotes
agreement with machine advice.

decisions after receiving opposing advice (the likelihood of
doing so varies across treatments, as discussed below), but
very few people changed their pre-advice decision after ob-
serving that the machine agrees with them. Namely, in the
third row we see that very few respondents (≤ 1%) initially
agreed with machine advice and then switched their decision
and disagreed with it after observing confirming advice. I.e.,
machine advice affects people’s decisions in the expected
direction. Next, we explore the variation across treatments.

Figure 4a shows how the agreement of human pre-advice
decisions with machine advice varies across decision aids.
As intended by the design of our decision aids, pre-advice
agreement is positively correlated with human-machine sim-
ilarity. Using a linear mixed model and a subsequent Wald
test, we confirmed that this effect is statistically significant,
with a p-value < 0.001. This sanity check demonstrates that

Model 1 Model 2

Human-like -0.0296∗ (0.012) -0.0308∗∗ (0.011)
¬ Human-like 0.0163 (0.012) 0.0173 (0.011)
Second Phase 0.0277∗∗∗ (0.006)
High Acc. 0.0749∗∗∗ (0.010)
Age D. -0.0743∗∗∗ (0.015)
Speed Date D. -0.0104 (0.016)
Intercept 0.128∗∗∗ (0.010) 0.105∗∗∗ (0.013)

Table 4: Dependent variable: Overall agreement change. For
non-binary variables, the reference categories are the Ran-
dom Treatment and the COMPAS Dataset. Standard errors
in parentheses. * symbols next to coefficients indicate their
statistical significance as follows: * p < 0.05, ** p < 0.01,
*** p < 0.001. N = 29800. Wald tests show that the coef-
ficients associated with the human-like and anti human-like
treatment are significantly different, with p < 0.001.

our decision aids successfully achieve their designated de-
gree of similarity to human decisions.

After this sanity check, we move on to analyzing partic-
ipants’ post-advice decisions. Figure 4b show that people’s
post-advice decisions follow the same pattern as their pre-
advice decisions. I.e., even after receiving machine advice,
people’s decisions are more similar to the human-like de-
cision aids than to anti human-like decision aids. Using a
linear mixed model and a subsequent Wald test, we found
that this effect is also significant, with a p-value < 0.001.

In Figure 4c, we focus on the overall change in agree-
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Model 1 Model 2

Human-like 0.124∗∗∗ (0.032) 0.102∗∗∗ (0.030)
¬ Human-like -0.0453 (0.025) -0.0436 (0.022)
Second Phase 0.0736∗∗∗ (0.012)
High Acc. 0.184∗∗∗ (0.020)
Age D. -0.111∗∗∗ (0.028)
Speed Date D. -0.0305 (0.030)
Intercept 0.309∗∗∗ (0.020) 0.231∗∗∗ (0.024)

Table 5: Dependent variable: Conditional agreement change,
i.e., agreement change for instances where pre-advice deci-
sions disagreed with machine advice. For non-binary vari-
ables, the reference categories are the Random Treatment
and the COMPAS Dataset. Standard errors in parentheses. *
symbols next to coefficients indicate their statistical signifi-
cance as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.
N = 12578. Wald tests show that the coefficients associated
with the human-like and anti human-like treatment are sig-
nificantly different, with p < 0.001.

ment, calculated as the difference between post and pre-
advice agreement. While both pre and post-advice decisions
showed a positive correlation between human-machine sim-
ilarity and agreement, the change in agreement exhibits the
opposite pattern. Human-like decision aids lead to a slightly
lower (by 5 percentage points) overall increase in agreement
than anti human-like ones. This finding is corroborated by
the regression and Wald test in Table 4, Model 1, with a p-
value < 0.001. This gives us

Result 2. Anti human-like decision aids have a higher
overall influence than human-like decision aids.

However, it is important to keep in mind that the pre-
advice agreement rates for anti human-like decision aids
were significantly lower than for human-like ones. Hence,
people had more opportunities to receive, and consequently
take, opposing advice from anti human-like decision aids
than from human-like ones. Next, we account for this.

In Figure 4d, we calculate the conditional change in
agreement as the difference between post and pre-advice
agreement, for instances where people initially disagreed
with machine advice. I.e., this measure captures the amount
of received opposing advice that was taken. With this, we
control for the differences in pre-advice agreement rates
across treatments. Even though the overall change in agree-
ment was higher for anti human-like decision aids, the
conditional change is higher for human-like decision aids.
Specifically, the likelihood of taking opposing advice from
human-like decision aids was 17 percentage points higher
than for anti human-like ones (0.43% vs 0.26%). This re-
sult is corroborated by the regression and Wald test shown
in Table 5, Model 1, with a p-value < 0.001. This leads to

Result 3. Human-like decision aids have a higher con-
ditional influence than anti human-like decision aids.

Control Variables. All of the findings hold when we control
for the decision-making task (i.e., for the dataset), the deci-
sion aid’s accuracy, and the experimental phase. This can be
seen in Figure 12 in the SM, where the results from Figure 4

Model

Human-like Treatment 0.127∗∗ (0.042)
¬ Human-like Treatment -0.0883∗∗ (0.028)
Advice Correct 0.156∗∗∗ (0.028)
Human-like # Advice Correct -0.0265 (0.041)
¬ Human-like # Advice Correct 0.0788∗∗ (0.030)
Intercept 0.210∗∗∗ (0.025)

Table 6: Dependent variable: Conditional agreement change.
This Model builds up on Model 1 from Table 5 by account-
ing for the correctness of machine advice. Interactions are
denoted by #. The reference category is the Random treat-
ment. Standard errors in parentheses. * symbols next to co-
efficients indicate their statistical significance as follows: *
p < 0.05, ** p < 0.01, *** p < 0.001. N = 12578.

are separated by the three aforementioned control variables.
We show that our results also remain statistically significant
when we introduce these control variables in Tables 4 and 5,
Model 2.

As was the case for perceptions, the control variables
again have a significant effect on advice taking behavior. As
seen in Tables 4 and 5, Model 2, the control variables have a
consistent effect on both overall and conditional agreement.
The coefficients indicate that people were more likely to take
machine advice in the second experimental phase.5 Also,
people were more likely to take advice from more accurate
decision aids. There was no significant difference between
advice taking for the COMPAS and Speed Date dataset, for
which people have a similar baseline accuracy. However, for
the Age dataset, where their baseline accuracy was higher,
people were less likely to take machine advice.

3.4 Impact of Advice on Human Accuracy
In this Section, we conduct an exploratory study, and de-
scribe the impact of human-machine similarity on the accu-
racy of people’s decision in our experiments.
Comparing the Influence of Good and Bad Advice. The
impact of people’s advice taking behavior on the accuracy
of their decisions depends not only on the amount of ad-
vice that is taken, but also on the quality of the taken ad-
vice. In Figures 4e and 4f, we show the conditional change
in agreement for correct and incorrect advice separately.
Specifically, Figure 4e depicts the influence of good advice,
i.e., the fraction of times people change their incorrect pre-
advice decision after observing correct machine advice. On
the other hand, Figure 4f shows how people react to bad ad-
vice, i.e., the fraction of times people update their correct
pre-advice decision after receiving incorrect advice.

Firstly, and reassuringly, we observe that good advice was
more influential than bad advice, for all of the decision aids.
However, we see differences in the magnitude of influence
across treatments. Human-like decision aids have a higher
conditional influence (i.e., people exhibit a higher propen-

5This difference could be caused by the introduction of mone-
tary incentives and removal of feedback about performance in the
second phase, or other factors, such as learning or fatigue effects.
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Figure 5: Influence of machine advice on respondents’ accuracy, for decision aids with human-like (H), anti human-like (¬H),
and randomly distributed (R) errors. Pre and post-advice accuracy, and the conditional change in accuracy are higher for
human-like decision aids than for anti human-like decision aids. Human-like decision aids were also closer to reaching their
full potential in terms of improving the respondents’ accuracy. However, for the overall change in accuracy, the opposite holds.

sity to take opposing advice), both for correct advice and for
incorrect advice. I.e., people are more likely to take good
advice from human-like decision aids, but they are more
likely to reject bad advice from anti human-like decision
aids. These observations are corroborated by the regression
in Table 6. Hence, our results do not show evidence that
varying the degree of human-machine similarity might help
people distinguish between good and bad machine advice.
Impact on Accuracy. Figure 5a shows that, descriptively,
people’s pre-advice accuracy is on average equal across
treatments. I.e., as expected, before observing machine ad-
vice, people were equally accurate in all of our treatments.
Using a linear mixed model, we found that the difference
across treatments is indeed not significant, with a Wald
test p-value of 0.7982. However, the post-advice accuracy
slightly differs across treatments, as visible in Figure 5b.
Using a linear mixed model, we found that post-advice ac-
curacy is higher for the anti human-like treatment, with a
borderline significant Wald test p-value < 0.05.

In Figure 5c, we focus on the overall change in accuracy,
calculated as the difference between post and pre-advice ac-
curacy. Consistently with our finding about the post-advice
accuracy, we observe that the anti human-like treatment
leads to a slightly higher overall change in accuracy. Us-
ing the same statistical analysis as above, we found that this
effect is also borderline significant, with a p-value < 0.05.

Next, we discuss the conditional change in accuracy, cal-
culated as the difference between post and pre-advice accu-
racy, for instances where a respondent’s pre-advice decision
disagreed with machine advice. In Figure 5d, we observe
that human-like decision aids lead to a higher conditional

change in accuracy. Again, this effect is found to be border-
line statistically significant, with a p-value < 0.05.

All of the findings related to people’s accuracy are in line
with the findings on people’s advice taking behavior, from
Section 3.3. Since the decision aids are on average more
accurate than humans (i.e., they provide more good advice
than bad advice), and good advice was more influential than
bad advice, machine advice positively impacted the accu-
racy of people’s responses in line with their advice taking
propensity. The overall influence of anti human-like advice
is higher, and so is the overall change in accuracy. On the
other hand, the conditional influence of human-like advice
is higher, and so is the conditional change in accuracy.

While Figure 5 shows the decision aids’ impact on accu-
racy averaged across all vignettes, in Figure 6 we show how
the decision aids impacted people’s accuracy for specific vi-
gnettes (averaged across the two experimental phases and
degrees of accuracy). We observe that for vignettes where
most people made errors (left side of the plots), the human-
like decision aid (red line) also made errors and hence the
anti human-like (green) decision aid had a more positive im-
pact on the respondents’ accuracy. However, for instances
where most people made correct predictions (right side of
plots), the human-like (green) decision aids helped many of
the remaining respondents correct their decisions, unlike the
anti human-like (green) decision aid which steered some of
the respondents away from their initially correct responses.
Potential for Improving Accuracy. Next, we go back to
the illustration from Figure 1. Using the same reasoning as
the one applied in the illustration, we can conclude that anti
human-like decision aids have the potential to improve the
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Figure 6: Influence of machine advice on respondents’ accuracy. The bars show the respondents’ pre-advice accuracy, while the
lines show their post-advice accuracy, for decision aids with human-like (red line) and anti human-like (green line) errors. On
the x-axis, the 50 vignettes are sorted increasingly w.r.t. the fraction of respondents’ whose pre-advice decision was correct. We
observe that on the left side of the plots (where people are more prone to errors) the anti human-like decision aid impacts the
respondents’ accuracy more positively on average. On the right side of the plots (where people are less likely to make errors)
the human-like decision aid improves accuracy, while the anti human-like one reduces people’s accuracy.

accuracy of human decisions more than human-like decision
aids. I.e., for cases where humans make incorrect predic-
tions, anti human-like decision aids are more likely to be
able to give people correct advice. In the following analysis,
we try to account for this. We explore how close the post-
advice accuracy of human decisions is to the upper bound
given by the union of the responses where humans were cor-
rect and those where the decision aids were correct.

Figure 5e shows the results of this analysis. This plot
shows the fraction of correct post-advice decisions, amongst
all of the decisions where either the decision aid’s advice
was correct or the human respondent’s pre-advice decision
was correct. This analysis aims to capture the fraction of the
upper bound on accuracy that was achieved. Here we found
that human-like decision aids reached more of their full po-
tential than anti human-like decision aids. This difference
was confirmed to be statistically significant, with a p-value
< 0.001. I.e., even though the overall increase in accuracy
was slightly higher for anti human-like decision aids (Fig.
5c), they were significantly farther from reaching their full
potential for improving human decisions.

4 Discussion
Limitations and Future Work. In our experiments, we con-
sidered synthetic decision aids with three degrees of simi-
larity to human decisions, three binary prediction tasks, and
two degrees of predictive accuracy. Future work could study
additional variables or more fine-grained levels of these vari-
ables. E.g., the human-like decision aids we studied made
mistakes only where humans made them as well, while the
anti human-like decision aids made mistakes only where
most humans were accurate. These differences may be less
severe for real-world decision aids, and it is hence worth
conducting further research varying the degree of human-
machine similarity beyond the three degrees we studied.

We compared decision aids that make mistakes for differ-
ent inputs. In a multi-class (e.g., emotion recognition) or re-
gression (e.g. real-estate price or continuous age estimation),
setting, one could also compare decision aids that make dif-

ferent types of mistakes for the same input. E.g., people and
human-like decision aids might underestimate the true value
of a certain vignette in a regression, while anti human-like
decision aids might overestimate it.

Future studies could also consider other respondent sam-
ples, e.g., representative of the US population or other non-
US populations. For decision aid used by professionals in
the real world (e.g., the COMPAS tool for predicting crimi-
nal recidivism used by judges in the US legal system), it may
also be interesting to test whether our findings hold for the
relevant population of real world decision makers.

In our work we focused on experimentally testing the ef-
fect of human-machine similarity on human perceptions and
utilization of machine decision aids. Past research has iden-
tified other factors that also influence how people take ma-
chine advice, such as the interpretability and explainability
of machine advice (Poursabzi-Sangdeh et al. 2018; Wang
and Yin 2021; Zhang, Liao, and Bellamy 2020), and future
research could explore if these factors moderate the effects
of human-machine similarity. Finally, future work in so-
cial psychology could study the psychological mechanisms
which underlie the observed effect of human-machine sim-
ilarity on advice taking. As a first step in this direction, we
provide a brief discussion on this below.
Underlying Psychological Mechanisms. As reported in
Section 3.2, people perceive human-like decision aids as
more predictable, accurate and useful. The predictability of
others’ future actions has long been recognized as a cru-
cial component of interpersonal trust (Rempel, Holmes, and
Zanna 1985), and was also shown to be critical for human
trust in automation (Hoff and Bashir 2015; Madhavan and
Wiegmann 2007). People’s receptiveness to advice was also
shown to be correlated with the inferred quality and accu-
racy of an advisor’s advice (Bonaccio and Dalal 2006). Fi-
nally, the perceived usefulness of information technologies
is highly predictive of the adoption of such technologies
(Davis 1989; Karahanna and Straub 1999). Hence, people’s
perceptions about the comparative advantages of human-like
decision aids in terms of their predictability, accuracy and
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usefulness may lead to the observed higher receptiveness to
opposing advice given by such systems.

One crucial mediator of the effect of human-machine sim-
ilarity on advice taking could be trust, which is found to pos-
itively affect receptiveness to advice (Bonaccio and Dalal
2006). As mentioned in Section 1.1, literature on algorith-
mic aversion has found that people tend to lose trust in
algorithms more quickly than in human advisors after ob-
serving them make the same mistakes (Dietvorst, Simmons,
and Massey 2015). We comment on two concepts which are
found to affect trust resilience, which go beyond the hu-
man/algorithmic identity of the advisor and may explain our
observations: error severity and anthropomorphism.

The magnitude of a system’s errors was shown to be cor-
related with the magnitude of users’ loss of trust (Rossi et al.
2017; Weun, Beatty, and Jones 2004). It is possible that
human-like mistakes are perceived as less severe, while anti
human-like errors are perceived as egregious, hence leading
to lower trust resilience for complementary decision aids.
Anthropomorphism refers to the tendency to ascribe human-
like characteristics to non-human agents (Epley, Waytz, and
Cacioppo 2007). Prior research has found that a robot’s be-
havior affects the degree of anthropomorphism (Duffy 2003;
Złotowski et al. 2015). More anthropomorphic machine ad-
visors were observed to exhibit higher degrees of trust re-
silience (De Visser et al. 2016). Hence, decision aids which
make mistakes more similar to human ones may also be an-
thropomorphized more, and in turn be trusted more.
Perceptions vs Behavior. Next we briefly comment on the
relationship between people’s perceptions about the decision
aids (covered in Section 3.2) and their advice taking behav-
ior (discussed in Sections 3.3 and 3.4).

People perceived human-like decision aids as more useful
than anti human-like decision aids. To explore if people’s
perceptions of usefulness correspond to the observed use-
fulness of the decision aids in practice, it is necessary to de-
fine what constitutes usefulness in this setting. One possible
definition could be that machine advice is useful if it leads
to an increase in the accuracy of people’s decisions.6 In our
experiments, human-like decision aids — which were per-
ceived as more useful — were more successful in reaching
their potential for improving accuracy. However, the overall
increase in accuracy was slightly larger for anti human-like
decision aids, and hence perceptions about the decision aids’
usefulness arguably did not coincide with the observed im-
pact of the advice on the accuracy of people’s decisions.

Human-like decision aids were also perceived as more ac-
curate than anti human-like decision aids. Since all of the
compared decision aids were equally accurate, people’s per-
ceptions did not coincide with the factual reality.

Finally, in terms of the perceived predictability of ma-
chine advice, human-like decision aids again received higher
ratings. Given the higher overlap between people’s decisions
and those of human-like decision aids, it seems plausible
that people were able to predict human-like machine ad-
vice better. In future research, it would be interesting to test

6Other possible definitions of usefulness might aim to capture
the ease and speed of decision-making, or other similar factors.

whether people are actually better in predicting such advice.
Design Implications. With the increasing popularity of ML
algorithms that aim to complement human skills, it is im-
portant to understand the effects of human-machine comple-
mentarity on machine-assisted decision-making. Our find-
ings about the effects of human-machine similarity on peo-
ple’s perceptions and utilization of machine advice have im-
portant implications for the design of decision aids, partic-
ularly in settings where human agents are the final decision
makers, while algorithmic decision aids serve as advisors.

Depending on the normative goals of utilizing machine
assistance, it may be beneficial to use decision aids with dif-
ferent degrees of human-machine similarity. To ensure that a
decision aid has a high influence for specific pieces of advice
(e.g., a set of especially important or sensitive decisions),
one may opt for human-like decision aids. The same holds if
the normative goal is to ensure that people perceive the deci-
sion aid more favorably in terms of its usefulness, accuracy
and predictability. On the other hand, if the goal is to maxi-
mize the overall influence of machine advice, a decision aid
complementary to humans might be a better choice.

To tailor the degree of human-machine similarity to the
normative goals of interest it is necessary to have access
to models of human decision-making. Such models can
be trained using data about people’s past decisions in the
relevant decision context. With access to models of hu-
man decision-making, developers can control the similar-
ity between people’s and algorithmic mistakes in various
ways. One simple approach would entail leveraging predic-
tive multiplicity (Marx, Calmon, and Ustun 2020). Namely,
when multiple competing decision aids exhibit similar de-
grees of accuracy, one could select the decision aid based
on the degree of human-machine similarity. Alternatively,
when only one decision aid is available, one could manip-
ulate the perceived similarity of human and algorithmic er-
rors by selectively choosing when the algorithm provides ad-
vice (e.g., by avoiding to give advice for inputs where most
people are predicted to (dis)agree with the machine advice).
Finally, future research may enable the development of al-
gorithms which in addition to optimizing for predictive ac-
curacy can also optimize for the degree of similarity of hu-
man and machine decisions. This line of research fits well
within existing efforts on developing machine learning al-
gorithms which account for the presence of human agents
in their learning procedure (De et al. 2020; Madras, Pitassi,
and Zemel 2018; Meresht et al. 2020).
Conclusion. Our work contributes to the growing body of
research on machine-assisted decision-making by studying
a specific factor that may influence people’s advice taking
behavior: the degree of similarity between the decision aid’s
errors and typical human errors. In a series of large-scale on-
line experiments, we experimentally show that human per-
ceptions and utilization of algorithmic advice are in fact in-
fluenced by the similarity of human and machine errors. We
invite future interdisciplinary research in social psychology
and computer science, that will both provide deeper insights
about the psychological mechanisms underlying our find-
ings, and promote the development of algorithmic decision
aids which may account for human-machine similarity.
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The purpose of our research is to identify factors which
influence how people perceive and utilize machine decision
aids, in order to support the design of decision aids that will
effectively assist human decision-making. However, it is im-
portant to note that, as is the case for much research on hu-
man perceptions and behavior, these findings could also be
utilized with malicious intent to steer people towards per-
ceiving and utilizing decision aids in undesirable ways (e.g.,
over-relying on low quality decision aids, or under-relying
on high quality decision aids).
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