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Abstract

The usage of crowdsourcing to recruit numerous participants
has been recognized as beneficial in the human-computer in-
teraction (HCI) field, such as for designing user interfaces
and validating user performance models. In this work, we
investigate its effectiveness for evaluating an error-rate pre-
diction model in target pointing tasks. In contrast to models
for operational times, a clicking error (i.e., missing a target)
occurs by chance at a certain probability, e.g., 5%. There-
fore, in traditional laboratory-based experiments, a lot of rep-
etitions are needed to measure the central tendency of error
rates. We hypothesize that recruiting many workers would
enable us to keep the number of repetitions per worker much
smaller. We collected data from 384 workers and found that
existing models on operational time and error rate showed
good fits (both R2 > 0.95). A simulation where we changed
the number of participants NP and the number of repeti-
tions Nrepeat showed that the time prediction model was ro-
bust against small NP and Nrepeat, although the error-rate
model fitness was considerably degraded. These findings em-
pirically demonstrate a new utility of crowdsourced user ex-
periments for collecting numerous participants, which should
be of great use to HCI researchers for their evaluation studies.

Introduction
In the field of human-computer interaction (HCI), a major
topic is to measure the time needed to complete a given task.
Examples include measuring a text-entry time (Banovic
et al. 2019; Cui et al. 2020), a time to learn a new key-
board layout (Jokinen et al. 2017), and a menu-selection
time (Bailly, Lecolinet, and Nigay 2016). In these studies,
generally, laboratory-based user experiments have been con-
ducted. That is, researchers recruit 10–20 students from a
local university and ask them to use a specified apparatus
to perform a task in a silent room. However, researchers are
recently aware of the risk of conducting a user experiment
with a small sample size; e.g., the statistical power is weak
(Caine 2016).

For research involving user experiments on graphical user
interfaces (GUIs), it has recently become more common to
recruit workers through crowdsourcing services (Cockburn
et al. 2020; Findlater et al. 2017; Komarov, Reinecke, and
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Gajos 2013; Matejka et al. 2016; Yamanaka, Shimono, and
Miyashita 2019). Previous studies have typically focused on
designing better GUIs or conducting user experiments to
evaluate novel interaction techniques compared with base-
lines to demonstrate that a proposed method is statistically
better than a baseline.

Another major topic in HCI is deriving user performance
models and empirically validating them. Conventionally,
there are two representative metrics for GUI operations to
be modeled: time and error rate (Wobbrock et al. 2008). A
well-known model to predict the operational time for tar-
get pointing tasks is Fitts’ law (Fitts 1954), or referred to as
Fitts’s law in some papers (MacKenzie 2002). In user ex-
periments to evaluate the model fitness in terms of R2, ten
or 20 university student participants typically join a study
and are asked to point to a target repeatedly. For example,
researchers set three target distances and three target sizes
(i.e., nine task conditions in total), and the participants re-
peatedly click a target 15 times for each task condition. The
average time for these 15 clicks is recorded as the final score
for a participant (Soukoreff and MacKenzie 2004).

In addition to operation times, the importance of predict-
ing how accurately users can perform a task has recently
been emphasized (Bi and Zhai 2016; Do, Chang, and Lee
2021; Huang et al. 2018, 2020; Park and Lee 2018; Ya-
manaka et al. 2020). In contrast to measuring the target-
pointing times, where the time to click a target can be mea-
sured in every trial, the error rate is computed after re-
peatedly performing a single task condition (15 trials in
the above-mentioned case). For example, if a participant
misses a target in one trial, the error rate is recorded as
1/15× 100 = 6.67%; if there are ten participants, one miss
corresponds to 0.667% in the end. Because errors can occur
by chance, evaluating error-rate models often requires more
data (repetitions) for each task condition to measure the cen-
tral tendency of the error rate. To evaluate the model’s pre-
diction accuracy more precisely, researchers have asked par-
ticipants to perform more repetitions, as it is often difficult to
collect numerous participants for lab-based experiments. For
example, a previous study on touch-based error-rate models
set 40 repetitions for each task condition collected from 12
participants. In this case, one miss corresponded to a 0.208%
error rate (Yamanaka and Usuba 2020).

However, for crowdsourced user experiments with GUIs,
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researchers cannot set a large number of repetitions per task
condition. To enable crowdworkers to concentrate on a given
task, it is recommended to set short task completion times, as
workers switch to other tasks every 5 min on average (Gould,
Cox, and Brumby 2016). Hence, forcing a routine GUI op-
eration task that takes, e.g., 40 min (Huang et al. 2018) or 1
hour (Park and Lee 2018; Yamanaka et al. 2020) would be
harmful in terms of accurate measurement of the error rates.
This could be considered a disadvantage of crowdsourced
GUI study. An alternative to increasing the number of rep-
etitions per task condition is simply to recruit more work-
ers. This would enable the error rates to be measured more
precisely, which would lead to a good prediction accuracy
by the error-rate model (our research hypothesis). Even if
the number of repetitions is only ten, utilizing 300 work-
ers would mean that one miss corresponds to 0.033%. This
is much more precise than the above-mentioned examples
with error rates such as 0.208%.

However, there are several crowdsourcing-specific uncer-
tainties that might affect the user performance results. For
example, crowdworkers use different mice, displays, oper-
ating systems, cursor speed configurations, and so on; these
factors significantly affect the target pointing performance in
terms of both time and accuracy (Casiez and Roussel 2011;
MacKenzie, Kauppinen, and Silfverberg 2001). In addition,
while studies have shown that the performance model on
time (Fitts’ law) is valid for crowdsourced data, crowdwork-
ers tend to be more inaccurate than lab-based participants in
target pointing tasks (Komarov, Reinecke, and Gajos 2013),
where error rates approximately two times higher or more
have been observed (Findlater et al. 2017). Therefore, we
would avoid claiming that user-performance models vali-
dated in crowdsourced studies are always applicable to lab-
based controlled experiments. Also, it is not reasonable to
interpret that the results such as error rates and operational
times are directly comparable with lab-based participants;
rather, we should consider that our results are internally
valid.

Nevertheless, if an error-rate model we test exhibits a
good fit (e.g.,R2 > 0.9), HCI researchers would have access
to a powerful tool, crowdsourcing, to evaluate their newly
proposed error-rate prediction models. Such a result stands
to expand the application range of crowdsourcing in HCI;
this motivated us to conduct this work. Our contributions
are as follows.

• We conducted a crowdsourced mouse-pointing experi-
ment following the Fitts’ law paradigm. In total, we
recorded 92,160 clicks performed by 384 crowd work-
ers. Our error-rate model showed a good fit with R2 =
0.9581, and cross-validation confirmed that the model can
predict new (unknown) task conditions, too. This is the
first study that demonstrates a GUI error-rate model hold-
ing to crowdsourced user data.

• We simulated how the number of participants NP and the
number of repetitions per task condition Nrepeat affected
the model fitness. We randomly sampled a limited portion
of the entire workers (NP from 10 to 320), and while each
worker performed ten trials per task condition, we used
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Figure 1: (a) We use the Fitts’ law paradigm in which users
point to a vertically long target. A clicked position is illus-
trated with an ‘x’ mark. (b) It has been assumed that the click
positions recorded in many trials distribute normally, and its
variability would increase with the target width. (c) An error
rate is computed based on the probability where a click falls
outside the target.

only the data for the first Nrepeat trials (from 2 to 10). Af-
ter testing the model fitness over 100 iterations, we found
that increasing NP improved the prediction accuracy as
well as increasing Nrepeat could. The effect of NP and
Nrepeat on the fitness was more clearly observed for the
error-rate model than the time model, which suggests that
crowdsourcing services are more suitable for evaluating
novel error-rate models.

Related Work
Time Prediction for Pointing Tasks
For comparing the sensitivity of time and error-rate predic-
tion models against NP and Nrepeat, we examine a robust
time-prediction model, called Fitts’ law (Fitts 1954). Ac-
cording to this model, the time for the first click, or move-
ment time MT , to point to a target is related to the index of
difficulty ID measured in bits:

MT = a+ b · ID = a+ b · (A/W + 1) , (1)

where a and b are empirical regression constants, A is the
target distance (or amplitude), and W is its width (see Fig-
ure 1a). There are numerous formulae for calculating the ID ,
such as using a square root instead of the logarithm or using
the effective target width (Plamondon and Alimi 1997), but
previous studies have shown that Equation 1 yields excellent
model fitness (Soukoreff and MacKenzie 2004). Using this
Fitts’ law, researchers can measure MT s for several {A,W}
conditions, regress the data to compute a and b, and then pre-
dict the MT for a new {A,W} condition by applying the
parameters of {a, b, A,W} to Equation 1.

Error-rate Prediction for Pointing Tasks
Researchers have also tried to derive models to predict the
error rate ER (Meyer et al. 1988; Wobbrock et al. 2008; Park
and Lee 2018). In practice, the ER should increase as partic-
ipants move faster, and vice versa (Batmaz and Stuerzlinger
2021; Zhai, Kong, and Ren 2004). In typical target point-
ing experiments, participants are instructed to “point to the
target as quickly and accurately as possible,” which is in-
tended to balance the speed and carefulness to decrease both
MT and ER (MacKenzie 1992; Soukoreff and MacKenzie
2004).
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In pointing tasks, as the target size decreases, users have
to aim for the target more carefully to avoid misses. Accord-
ingly, the spread of click positions should be smaller. If re-
searchers conduct a pointing experiment following a typical
Fitts’ law methodology, in which two vertically long targets
are used and participants perform left-right cursor move-
ments, the click positions would follow a normal distribution
(Figure 1b) (Crossman 1956; MacKenzie 1992). Formally
speaking, a click point is a random variable X following
normal distribution: X ∼ N(µ, σ2), where µ and σ are the
mean and standard deviation of the click positions on the x-
axis, respectively. The click point variability σ is assumed to
proportionally relate to the target width, or to need an inter-
cept, i.e., linear relationship (Bi and Zhai 2016; Yamanaka
and Usuba 2020; Yu et al. 2019):

σ = c+ d ·W, (2)

where c and d are regression constants. The probability den-
sity function for a normal distribution, f(x), is

f(x) =
1

σ
√
2π
e−(x−µ)2/(2σ2). (3)

If we define the target center as located at x = 0 with the
target boundary ranging from x1 to x2 (Figure 1c), the pre-
dicted probability for where the click point X falls on the
target, P (x1 ≤ X ≤ x2), is∫ x2

x1

f(x)dx =
1

2

[
erf

(
x2 − µ
σ
√
2

)
− erf

(
x1 − µ
σ
√
2

)]
, (4)

where erf(·) is the Gauss error function:

erf(z) =
2√
π

∫ z

0

e−t
2

dt. (5)

Previous studies have shown that the mean click point is lo-
cated close to the target center (µ ≈ 0), and µ is not signif-
icantly affected by the target distance A (Bi and Zhai 2016;
MacKenzie 1992; Yamanaka and Usuba 2020). Given the
target width W , Equation 4 can be simplified and the ER is
predicted as

ER = 1− P
(
−W

2
≤ X ≤ W

2

)
= 1− erf

(
W

2
√
2σ

)
. (6)

Similarly to the way Fitts’ law is used, researchers measure
σ for several {A,W} conditions, regress the data to com-
pute c and d in Equation 2, and then predict the σ for a new
{A,W} condition. In this way (i.e., using the predicted σ
based on a new W ), we can predict the ER with Equation 6
for a new task condition. While there are similar but more
complicated versions of this model tuned for pointing tasks
in virtual reality systems (Yu et al. 2019) and touchscreens
(Bi and Zhai 2016), to our knowledge, there has been no
report on the evaluation of this model for the most funda-
mental computer environment, i.e., PCs with mice.

Crowdsourced Studies on User Performance and
Model Evaluation for GUIs
For target pointing tasks in PC environments, Komarov et
al. found that crowdsourced and lab-based experiments led

to the same conclusions on user performance, such as that
a novel facilitation technique called Bubble Cursor (Gross-
man and Balakrishnan 2005) reduced the MT compared
with the baseline point-and-click method (Komarov, Rei-
necke, and Gajos 2013). Yamanaka et al. tested the ef-
fects of target margins on touch-pointing performance using
smartphones and reported that the same effects were con-
sistently found in crowdsourced and lab-based experiments,
e.g., wider margins significantly decreased the MT but in-
creased the ER (Yamanaka, Shimono, and Miyashita 2019).
Findlater et al. showed that crowdworkers had significantly
shorter MT s and higher ERs than lab-based participants in
both mouse- and touch-pointing tasks (Findlater et al. 2017).
Thus, they concluded that crowdworkers were more biased
towards speed than accuracy when instructed to “operate as
quickly and accurately as possible.”

Regarding Fitts’ law fitness, Findlater et al. reported that
crowdworkers had average values of Pearson’s r = 0.926
with mice and r = 0.898 with touchscreens (Findlater
et al. 2017). Schwab et al. conducted crowdsourced scrolling
tasks and found that Fitts’ law held with R2 = 0.983
and 0.972 for the desktop and mobile cases, respectively
(Schwab et al. 2019) (note that scrolling operations follow
Fitts’ law well (Zhao et al. 2014)). Overall, these reports
suggest that Fitts’ law is valid for crowdsourced data regard-
less of the input device. It is unclear, however, how the NP
affects model fitness, because these studies used the entire
workers’ data for model fitting.

The only paper that tested the effect of NP on the fitness
of user-performance models is a recent work by Yamanaka
(Yamanaka 2021). He tested modified versions of Fitts’ law
to predict MT s in a rectangular-target pointing task. The
conclusion was that, although he changedNP from 5 to 100,
the best-fit model did not change. However, because he used
all Nrepeat clicks, increasing NP always increased the total
data points to be analyzed, and thus the contributions of NP
andNrepeat could not be analyzed separately. We further an-
alyze this point in our simulation.

In summary, there is a consensus that a time prediction
model for pointing tasks (Fitts’ law) shows a good fit for
crowdsourced data. However, ER data have typically been
reported as secondary results when measuring user perfor-
mance in these studies. At least, no studies on evaluating
ER prediction models have been reported so far. If we can
demonstrate the potential of crowdsourced ER model eval-
uation, at least for one example task (target pointing in a PC
environment), it will motivate future researchers to inves-
tigate novel ER models with less recruitment effort, more
diversity of participants, and less time-consuming data col-
lection. This will directly benefit the contribution of crowd-
sourcing to the HCI field.

User Experiment
We conducted a traditional cyclic target-pointing ex-
periment on the Yahoo! Crowdsourcing platform
(https://crowdsourcing.yahoo.co.jp). Our affiliation’s
IRB-equivalent research ethics team approved this study.
The experimental system was developed with the Hot
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Session:
3/25

Targets:
7/11

Errors: 2

WA

Click target as quickly & accurately as possible

Time: 3.74 sec

Result of Session 3:
Time: 6.61 sec
Errors: 3

Take a break now if needed.
Click this area to go to the next session.

a

b

Figure 2: Task stimuli used in the experiment. (a) Partici-
pants clicked alternately on each target when it was red. (b)
At the end of a session, the results and a message to take a
break were shown.

Soup Processor programming language. The crowd-
workers were asked to download and run an executable file
to perform the experimental task.

Task, Design, and Procedure
In the task window (1200× 700 pixels), two vertically long
targets were displayed (Figure 2a). If the participants clicked
the target, the red target and white non-target rectangles
switched colors, and they successively performed this ac-
tion back and forth. If the participants missed the target, it
flashed yellow, and they had to keep trying until successfully
clicking it. We did not give auditory feedback for success or
failure, as not all the participants would have been able to
hear sound during the task. A session consisted of 11 cyclic
clicks with a fixedA×W condition. After completing a ses-
sion, the participant saw the results and a message to take a
break (Figure 2b).

The experiment was a 3 × 8 within-subjects repeated-
measures design with the following independent variables
and levels: three target distances (A = 300, 460, and 630
pixels) and eight widths (W = 8, 12, 18, 26, 36, 48, 62,
and 78 pixels). These values were selected so that the val-
ues of ID ranged widely from 2.28 to 6.32 bits, which
sufficiently covered easy to hard conditions according to a
survey (Soukoreff and MacKenzie 2004). Each participant
completed 24 (= 3A × 8W ) sessions. The order of the 24
conditions was randomized. Before the first session, to al-
low the participants to get used to the task, they performed
a practice session under a condition with A = 400 and
W = 31 pixels, i.e., parameters that were not used in the
actual 24 data-collection sessions. This experimental design
was tuned with reference to the authors’ pilot study; with-
out having a break, the task completion time was 3 min 40
sec on average, which meets the recommendation for crowd-
sourced user experiments (Gould, Cox, and Brumby 2016).

The MT was measured from when the previous target
was successfully clicked to when the next click was per-
formed regardless of the success or failure (MacKenzie
1992; Soukoreff and MacKenzie 2004). Trials in which we
observed one or more clicks outside the target were flagged
as an error. The first left target acted as a starting button,
and the remaining ten trials’ data were measured to com-
pute MT , σ, and ER. After finishing all sessions, the par-
ticipants completed a questionnaire on their age (numeric),
gender (free-form to allow non-binary or arbitrary answers),
handedness (left or right), Windows version (free-form), in-
put device (free-form), and history of PC use (numeric in
years).

Participants and Recruitment
We recruited workers who used Windows Vista or a later
version to run our system. We requested no specific PC
skills, as we did not wish to limit our collection to only
high-performance workers’ data. Also, we did not use any a-
priori filtering options, such as the approval-rate threshold,
which require additional cost for the crowdsourcing service.
We made this decision because, if our hypothesis is sup-
ported with a less costly method, it would be more beneficial
for future research to recruit many more participants with
low cost for obtaining the central tendency of error rates.
Still, clear outlier workers who seemed not to follow our
instructions (such as performing the task too slowly) were
removed when we analyzed the data. As we show later in
the simulation analysis, this decision was not problematic
because Fitts’ law held well even if we analyzed only ten
workers’ data over 100 iterations (i.e., they exhibited typical
rapid-and-accurate pointing behavior).

On the recruitment page, we asked the workers to use a
mouse if possible. We made this request because, in our sim-
ulation analysis, we randomly selected a certain number of
participants (e.g., NP = 10) to examine if the model fit-
ness was good or poor. If these workers used different de-
vices (e.g., six mice, two touchpads, and two trackballs), we
might have wondered if a poor model fit was due to the de-
vice differences. Nevertheless, to avoid a possible false re-
port in which all workers might answer they used mice, we
explicitly explained that any device was acceptable, and then
removed the non-mouse users from the analysis.

Once workers accepted the task, they were asked to read
the online instructions, which stated that they should per-
form the task as rapidly and accurately as possible. This was
also always written at the top of the experimental window
as a reminder (Figure 2a). After they finished all 25 sessions
and completed the questionnaire, the log data was exported
to a csv file. They uploaded the file to a server and then re-
ceived a payment of JPY 100 (∼USD 0.92).

In total, 398 workers completed the task, including 384
mouse users. The mouse users’ demographics were as fol-
lows. Age: 16 to 76 years, with M = 43.6 and SD =
11.0. Gender: 300 male, 79 female, and 5 chose not to an-
swer. Handedness: 24 were left-handed and 360 were right-
handed. Windows version: 1 used Vista, 27 used Win7, 8
used Win8, and 348 used Win10. PC usage history: 0 (less
than 1 year) to 45 years, with M = 21.8 and SD = 7.82.
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In this study, we do not analyze these demographic data
in detail. For example, it has been reported that participants’
handedness (Hoffmann 1997), gender and age (Brogmus
1991) affect Fitts’ law performance. In our simulation, it is
possible that the data may be biased; e.g., when we select
NP = 10 workers, they are all males in their 60s. If re-
searchers want to investigate this point, controlling the sam-
pled workers’ demographics before executing the simulation
is needed.

For mouse users, the main pointing task took 3 min 45 sec
on average without breaks. With breaks, the mean task com-
pletion time was 5 min 42 sec, and thus the effective hourly
payment was JPY 1,053 (∼USD 9.69). Note that this effec-
tive payment could change depending on other factors such
as the times for reading the instructions and for uploading
the csv file.

Results

Outlier Data Screening

Following previous studies (Findlater et al. 2017; MacKen-
zie and Isokoski 2008), we removed trial-level spatial out-
liers if the distance of the first click position was shorter
than half of target distance A/2 (i.e., clicking closer to the
non-target than the target) to omit clear accidental opera-
tions such as double-clicking the previous target. Another
criterion used in these studies was to remove trials in which
the click position was more than twice of target width 2W
away from the target center. We did not use this criterion,
as we would like to measure error trials even where a click
position was≥(2W +1) pixels away from the target center.

To detect trial-level temporal outliers to remove extremely
fast or slow operations, we used the inter-quartile range
(IQR) method (Devore 2011), which is more robust than
the mean-and-3σ approach. The IQR is defined as the dif-
ference between the third and first quartiles of the MT for
each session for each participant. Trials in which the MT
was more than 3×IQR higher than the third quartile or more
than 3× IQR lower than the first quartile were removed.

For participant-level outliers, we calculated the mean MT
across all 24 conditions (3A × 8W ) for each participant.
Then, using each participant’s mean MT , we again applied
the IQR method and removed extremely rapid or slow par-
ticipants. The trial- and participant-level outliers were inde-
pendently detected and removed.

As a result, among the 92,160 trials (= 3A × 8W ×
10repetitions × 384workers), we identified 1,191 trial-level
outliers (1.29%). We also found two participant-level out-
lier workers. While the mean MT of all participants was
898 ms and the IQR was 155 ms, the outlier workers’ mean
MT s were 1,462 and 1,533 ms. Accordingly, the data from
all 480 trials were removed (= 3A × 8W × 10repetitions ×
2participants). They also exhibited trial-level outliers (i.e.,
there were overlaps); as a result, the data from 1,664 trials
were removed in total (1.81%), which was close to the rate
in a previous study (Findlater et al. 2017).

Analyses of Dependent Variables
After the outliers were removed, the data from 90,496 trials
(98.2%) were analyzed. The dependent variables were the
MT , σ, and ER.

Movement Time. We used the Shapiro-Wilk test (α =
0.05) and Q-Q plot to check the normality assumption
required for parametric ANOVAs. The MT data did not
pass the normality test, and thus we log-transformed the
data to meet the normality assumption. The log-transformed
data passed the normality test, and we used RM-ANOVAs
with Bonferroni’s p-value adjustment method for pairwise
comparisons. For the F statistic, the degrees of freedom
were corrected using the Greenhouse-Geisser method when
Mauchly’s sphericity assumption was violated (α = 0.05).

We found significant main effects of A (F1.909,727.1 =
2674, p < 0.001, η2p = 0.88) and W (F4.185,1595 = 6813,
p < 0.001, η2p = 0.95) on MT . A significant interaction
was found for A × W (F13.01,4955 = 14.23, p < 0.001,
η2p = 0.036). As shown in Figure 3a, the MT increased as
the ID increased (i.e., A increased or W decreased). Fitts’
law showed an excellent fitness with R2 = 0.9789.

Click Point Variability. The σ data and its log-
transformed data did not pass the normality test, and thus
we used a non-parametric ANOVAs with aligned rank trans-
form (Wobbrock et al. 2011) with Tukey’s p-value adjust-
ment method for pairwise tests. We found significant main
effects of A (F2,762 = 3.683, p < 0.05, η2p = 0.0096) and
W (F7,2667 = 6043, p < 0.001, η2p = 0.94) on σ. An in-
teraction of A×W was not significant (F14,5334 = 0.8411,
p = 0.62, η2p = 0.0022). The model fitness of Equation 2
(σ = a+ b ·W ) was quite high (R2 = 0.9966), as shown in
Figure 3b.

Our model assumes that σ is not affected by A, but the
result showed that A significantly affected σ. This statisti-
cal significance likely comes from the large number of par-
ticipants. When we checked this in more detail, we found
that the effect size of A was quite small compared with W
(η2p = 0.0096 vs. 0.94, respectively), and the mean σ values
for A = 300, 460, and 630 pixels were 7.258, 7.293, and
7.309 pixels, which fall within a 0.051-pixel range (< 1%).
In contrast, the σ values varied from 2.17 to 14.2 pixels due
to W . While we plotted 24 points (3A×8W ) in Figure 3b, it
looks as though there were only eight points, as the three σ
values for the three As were almost the same and thus they
overlapped.

Error Rate. The ER data and its log-transformed data did
not pass the normality test, and thus we again used a non-
parametric ANOVAs with aligned rank transform. We found
significant main effects of A (F2,762 = 6.732, p < 0.01,
η2p = 0.017) and W (F7,2667 = 96.90, p < 0.001, η2p =
0.20) on ER. An interaction of A ×W was not significant
(F14,5334 = 1.627, p = 0.064, η2p = 0.0043).

Using Equations 2 and 6, we can predict the ERs based on
given W values. The predicted and actually observed ERs
are shown in Figure 3c. The worst prediction error was 4.235
points in the case of (A,W ) = (300, 8). As a comparison,
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Figure 3: Model fitness results for (a) Fitts’ law and (b) click point variability. (c) Comparison of the predicted vs. observed
ERs.

previous studies on touch-based pointing tasks have reported
that the prediction error for W = 2.4-mm targets was 9.74
points (Bi and Zhai 2016) and that for 2-mm was 10.07
points (Yamanaka and Usuba 2020). While a direct com-
parison with touch operations is not particularly fruitful, the
tendency that prediction errors increase for smaller W s is
consistent between the previous studies and ours.

To formally evaluate our model’s prediction accuracy, we
computed the following three fitness criteria. The correla-
tion between predicted vs. observed ERs was R2 = 0.9581.
The mean absolute error MAE was 1.193%. The root mean
square error RMSE was 1.665%. In addition, to evaluate the
prediction accuracy for new (unknown) task conditions, we
ran a leave-one-(A,W )-out cross-validation. The three cri-
teria for the ER prediction were R2 = 0.9529, MAE =
1.272%, and RMSE = 1.814. The worst prediction error
was 4.805 points. These results indicate that, even for re-
searchers who would like to predict the ER for a new task
condition based on previously measured data, the prediction
accuracy would not be considerably degraded.

Simulation
Although ourNrepeat (10) was not large compared with pre-
vious studies on error-rate prediction models due to the time
constraint for crowdsourcing, we hypothesized that increas-
ing NP would improve the model fitness. We also won-
der how the model fitness changes when Nrepeat is much
smaller, which further shortens the task completion time for
workers. For example, if it were 5, the average task comple-

tion time would be 2 min 51 sec including breaks (i.e., half
of 5 min 42 sec). Note that Nrepeat must be greater than 1 to
compute the standard deviation σ.

We randomly selected NP workers’ data from the 384
mouse users by changing NP from 10 (typical lab-based
experiments) to 320 by doubling it repeatedly. The Nrepeat

changed from 2 to 10; if it was 2, we used only the first
two repetitions’ data and the subsequent eight trials were
removed. Outlier detection was run in the same manner as
if we had conducted an experiment newly with NP work-
ers. Then, we analyzed the R2 values for Equations 1 (Fitts’
law), 2 (click point variability σ), and 6 (ER). To handle
the randomness to select NP workers, we ran this process
over 100 iterations and averaged the R2 values for each of
NP ×Nrepeat.

The results are shown in Figure 4. First, we can visually
confirm that the time prediction model (a) showed the flat-
test fitness compared with the other two models (c) and (e).
The R2 values were consistently over 0.90, and after we
collected 20 participants or measured four repetitions, R2

was over 0.95 (b). This result supports the decision of pre-
vious studies’ lab-based experiments that recruited ten to 20
participants to examine Fitts’ law. While repeating 15 to 25
trials per task condition has been recommended (Soukoreff
and MacKenzie 2004), our results show that a much smaller
number of repetitions will suffice.

For the click point variability, as (c) shows, the model fit-
ness was relatively worse only when both NP and Nrepeat

are small. The increase in either NP or Nrepeat can resolve
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Fitts’ law (𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 � log2 𝐴𝐴/𝑊𝑊 + 1 )
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Figure 4: Simulation results on mean model fitness in R2 by changing NP and Nrepeat over 100 iterations.

this. For example, by collectingNP ≥ 80 workers or repeat-
ing ten trials, we obtain R2 > 0.95.

Lastly, for the error-rate model, the fitness was affected
by NP and Nrepeat most drastically, as shown in (e). Partic-
ularly for small NP values such as 10 and 20, the R2 val-
ues were less than 0.70 (f), which is a unique result com-
pared with the other two models that always showed R2

greater than 0.80 in (b) and (d). If we fully use ten repeti-
tions and would like to obtain a certain value of the model
fitness (such as R2 > 0.9), collecting 160 participants is
sufficient—more precisely, when we tested NP from 80 to
160 (step: 1), NP = 92 achieved R2 = 0.9029 > 0.9 for
the first time.

Figure 4e–f demonstrates that increasing NP can be a
viable alternative to increasing Nrepeat to obtain a higher
prediction accuracy for this error-rate model. Suppose we
have a case where researchers want to set a smaller Nrepeat

such as 3 instead of 10 due to (e.g.) asking workers to an-
swer more questionnaire items after the task. Even for this
case, by collecting NP = 320 workers, the model would
fit to the data with R2 > 0.9 in our data. Hence, although
the task completion time for crowdsourced user experiments
should not be too long (Gould, Cox, and Brumby 2016),
the easy recruitment for crowdsourcing enables researchers
to measure the central tendency of error rates. This benefit
of crowdsourcing is more critical for error-rate models than
time-prediction models, as we demonstrated here, which has
never been empirically reported before.

Discussion
Benefits and Implications of Using Crowdsourcing
for Error-rate Model Evaluation
In this study, we explored the potential of crowdsourcing
for evaluating error-rate prediction models on GUIs. As one
of the most fundamental operations, we utilized a Fitts’ law
task for its well-structured methodology. The results ob-
tained from 384 crowdworkers showed that the models on
Fitts’ law and the click point variability fit well to the em-
pirical data with R2 = 0.9789 and 0.9966, respectively, as
shown in Figure 3a–b. Using the predicted σ values based
on W , we then predicted the ERs for each A ×W condi-
tion, which yielded the correlation between predicted vs. ob-
served ERs of R2 = 0.9572. The other metrics (MAE and
RMSE ) and the cross-validation also showed the good pre-
diction accuracy of the model. On the basis of these results,
in addition to the time-prediction model, we empirically
demonstrated the first evidence that an error-rate model held
well even for crowdsourced user experiments, even though it
has been cautioned that crowdworkers are more error-prone
in GUI tasks (Findlater et al. 2017; Komarov, Reinecke, and
Gajos 2013).

The simulation to alter NP and Nrepeat showed that the
prediction accuracy of the error-rate model became bet-
ter when either of these values was larger. This effect was
more clearly observed for the error-rate model than the time-
and click-point-variability models. In particular for the time
model, the prediction accuracy reached close to the upper
limit (R2 = 1) even when the NP and Nrepeat were not
large, such as theR2 > 0.95 exhibited by ten workers shown
in Figure 4b. This suggests that the advantage of crowd-
sourcing in terms of its easy recruitment of numerous work-
ers is not so critical. In comparison, for the error-rate model,
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increasing the NP was still effective for NP ≥ 160.
Because the error rate is computed on the basis of occa-

sionally occurring operations (clicking outside the target),
researchers need more data to measure the theoretical value.
Thus, our result, i.e., that collecting more data would lead
to the theoretical value that a model estimates, is intuitive,
but it has never been empirically demonstrated until now.
Finally, our research hypothesis, “instead of increasing the
number of repetitions per task condition, recruiting more
workers is another approach to measure the error rates pre-
cisely, which will lead to a good prediction accuracy by the
error-rate model,” was supported. This is a motivating find-
ing for future studies on evaluating novel error-rate models
through crowdsourced user experiments.

Note that we compared the sensitivity of time and error-
rate models against NP and Nrepeat, but our purpose here
was not to claim that (e.g.) Fitts’ law is a better model than
the error-rate model. As described in the Introduction, an
MT is measured in every trial and then averaged after com-
pleting a session consisting of Nrepeat trials, but an ER is
computed after each session. Due to this difference, surmis-
ing that the error-rate model is inferior is not appropriate.
Although more participants are needed to obtain a good fit-
ness comparable with Fitts’ law, which could be a limitation
of the error-rate model, it does not necessarily mean that the
model is wrong or inaccurate. Collecting numerous partici-
pants can avoid reaching such a mistaken conclusion. This
point about making a conclusion based on an experiment
with small sample size has been made before (Caine 2016;
Kaptein and Robertson 2012), and our results again support
the importance of a large sample size. Using crowdsourcing
for error-rate model evaluation is a straightforward way to
enable the recruitment of hundreds of participants with a rea-
sonable time period, cost, and effort by researchers, which
enhances the contribution of crowdsourcing to an undevel-
oped use application.

Limitations and Future Work
Our claims are limited to the task we chose and its design.
We emphasized the usefulness of crowdsourced user exper-
iments for error-rate model evaluation, but we only tested a
GUI-task model implemented with mice following the Fitts’
law paradigm. Within this scope, we limited the task design
to horizontal movements where the effect of target height
was negligible. We assume that modified models can predict
ERs for more realistic targets such as pointing to circular
targets (Bi and Zhai 2016; Yamanaka and Usuba 2020), but
this needs further investigation in the future.

The model we examined was for selecting static tar-
gets, while recently models for more complicated tasks have
been proposed, including those for pointing to automatically
moving targets (Huang et al. 2019; Lee et al. 2018; Park and
Lee 2018), temporally constrained pointing such as rhythm
games (Lee and Oulasvirta 2016; Lee et al. 2018), and track-
ing a moving target (Yamanaka et al. 2020). We assume that
the benefit of using crowdsourcing services to recruit nu-
merous participants can be observed in these complicated
tasks more clearly than our 1D pointing task. For example,
pointing to a circular moving target needs more task param-

eters, such as the initial target distance A, its size W , move-
ment speed V , and movement angle θ (Hajri et al. 2011;
Huang et al. 2019). Because there are more task-condition
combinations than 1D-target pointing, it is difficult to ask
the participants to perform many repetitions per task condi-
tion, while recruiting numerous workers is easy in crowd-
sourced user studies. Investigating error rates in text input
tasks is another important topic in the HCI field (Banovic
et al. 2019; Cui et al. 2020) and would be a potential objec-
tive for crowdsourced user experiments.

A technical limitation specifically for our GUI-based ex-
periment was that we could not check if workers really fol-
lowed the given instruction, such as using mice and op-
erating as rapidly and accurately as possible. Similar con-
cerns have been reported before: for touch pointing tasks
with smartphones, researchers could not confirm whether
workers tapped a target with their thumb as instructed (Ya-
manaka, Shimono, and Miyashita 2019). Some other crowd-
sourcing platforms support an option that task requesters
can ask workers to shoot a video when they perform a task,
e.g., UIScope (http://uiscope.com/en). Still, this would cre-
ate heavier workloads for both the workers and the exper-
imenters. While these issues could not be completely re-
moved at this time, if they were resolved in the future, the
contribution to HCI would be significant.

Conclusion
We ran a crowdsourced user experiment to examine the ben-
efits of recruiting numerous participants for evaluating an
error-rate prediction model in a target pointing task, which
is one of the most fundamental operations in PC usage. By
analyzing the data obtained from 384 workers, we found that
our model held well with R2 > 0.95. Cross-validation also
supported the good prediction accuracy to the unknown task
conditions. In addition, when we randomly selected a lim-
ited portion of the entire workers from NP = 10 to 320
and used only a limited number of trial repetitions from
Nrepeat = 2 to 10, we found that the time prediction model
(Fitts’ law) reached R2 > 0.95 even if both of these values
were small, while the error-rate model showed quite low fit-
ness in that case. Thus, we empirically demonstrated that us-
ing crowdsourcing services for recruiting many participants
is more clearly beneficial for evaluating the error-rate pre-
diction model. Our findings should enhance the contribution
of crowdsourcing in the HCI field.
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