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Abstract

Successful knowledge graphs (KGs) solved the historical
knowledge acquisition bottleneck by supplanting an expert
focus with a simple, crowd-friendly one: KG nodes represent
popular people, places, organizations, etc., and the graph arcs
represent common sense relations like affiliations, locations,
etc. Techniques for more general, categorical, KG curation do
not seem to have made the same transition: the KG research
community is still largely focused on methods that belie the
common-sense characteristics of successful KGs.

In this paper, we propose a simple approach to acquiring and
reasoning with class-level attributes from the crowd that rep-
resent broad common sense associations between categories.
We pick a very real industrial-scale data set and problem: how
to augment an existing knowledge graph of places and prod-
ucts with associations between them indicating the availabil-
ity of the products at those places, which would enable a KG
to provide answers to questions like, “Where can I buy milk
nearby?” This problem has several practical challenges, not
least of which is that only 30% of physical stores (i.e. brick
& mortar stores) have a website, and fewer list their prod-
uct inventory, leaving a large acquisition gap to be filled by
methods other than information extraction (IE). Based on a
KG-inspired intuition that a lot of the class-level pairs are
part of people’s general common sense, e.g. everyone knows
grocery stores sell milk and don’t sell asphalt, we acquired
a mixture of instance- and class- level pairs (e.g. (Ajay Mit-
tal Dairy, milk), (GroceryStore, milk), resp.) from a novel
3-tier crowdsourcing method, and demonstrate the scalability
advantages of the class-level approach. Our results show that
crowdsourced class-level knowledge can provide rapid scal-
ing of knowledge acquisition in this and similar domains, as
well as long-term value in the KG.

Introduction

From the outset, knowledge graphs (KGs) have prominently
used crowdsourcing for knowledge acquisition, both from
the perspective of scaling out graph creation and long-
term maintenance, solving the historical knowledge acquisi-
tion bottleneck by revisiting the expert systems assumption
that knowledge should be acquired from experts. As a re-
sult, popular KGs like Freebase (now Google’s Knowledge
Graph) are composed primarily of popular “common sense”
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entities and relations in the world that people are exposed to
regularly and that can be acquired from and validated by the
crowd.

Similarly, today Google Maps overlays data on maps
about the different places or establishments (stores, restau-
rants, hospitals, etc.) worldwide, and crowdsourcing plays a
central role in the acquisition and maintenance of this infor-
mation (Lagos, Ait-Mokhtar, and Calapodescu 2020). Users
contribute opening hours, locations, reviews, etc., as well as
categorical information about places such as whether it is
a supermarket, department store, etc., which makes KGs a
natural representation for this information.

Despite such heavy and widespread success of KGs for
representing entities in the world and their properties, there
has not been much attention paid in the research commu-
nity to class-level attributes in KGs (Taylor 2017): graph
edges between nodes that represent categorical terms, what
they might mean and how to acquire them.! Practical and
industrial KG edges remain almost exclusively at the in-
stance level (e.g. McDonalds serves Big Mac), and a few
KGs may encode class-level domain/range constraints (e.g.
Restaurants serve Food), but no KG includes attributes of
classes that represent our common-sense knowledge about
them (e.g., Burger Joints serve burgers). There has certainly
been a lot of research published in the sub-fields of Knowl-
edge Representation on axiomatic knowledge acquisition (Ji
et al. 2020), but these methods are not well-suited for crowd-
sourcing and have not made the transition to any industrial
KG settings.

In this paper we explore the question of acquiring com-
mon sense class-level attributes from the crowd and apply-
ing those attributes effectively with other sources of infor-
mation to solve a knowledge-base completion (KBC) prob-
lem (Bordes et al. 2013), in which we measure success by
the precision and recall of graph edges. We take a particular
problem, that of understanding the catalog of products sold
at each store on earth. Such a KG could be used to answer
questions like, “Where can I buy an umbrella nearby?” (see
Fig. 1). We call this problem local shopping and it is one
that is of interest tosearch engines like Google.?

"For the purposes of this paper we use the words type, category,
class interchangeably, as well as attribute, property, relation.
“https://support.google.com/merchants/answer/9825611?hl=en
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Figure 1: Google Maps local shopping search results for um-
brellas in NYC shows stores that sell them

Local shopping, compared to on-line shopping, poses a
significant practical knowledge acquisition problem because
shopping transactions do not occur on-line and therefore
data about what products are being sold at what stores is
not broadly available, making it a sort of “dark matter” of
the web — we know it’s there but can’t directly observe it.
Exceptions, such as Amazon Go, are rare, with less than
30% of stores worldwide having a website and even fewer
that include a product catalog.’ Indeed, our data shows that
web pages and merchant feeds account for less than 1% of
the total matrix of products at stores. To address this short-
age of web information, we harness the crowd in three tiers:
users around the world who have visited stores and volun-
tarily provide instance-level product availability (e.g. Ajay
Mittal Dairy sells Milk); a much smaller set of paid raters
who curate class-level attributes connecting common sense
store and product categories (e.g. Grocery Stores sell Milk);
and a very small set of paid operators who call stores to
confirm the instance-level associations as evaluation ground-
truth labels. The intuition behind this combination is that a
lot of the instance-level associations are obviously true or
false at the categorical level, and that acquiring knowledge
at that level can jump-start the instance-level acquisition and
help it be more productive: don’t waste a user’s efforts an-
swering about milk or asphalt at an individual grocery store
when simple common sense tells us the answer. Due to the
prominence of common sense curation in our approach, we
call the project Shopping Sense.

To our knowledge, acquiring class-level attributes from
the crowd in order to jump-start a KBC problem has not been
attempted before, and there are very few examples of KBC
problems at this scale (tens of millions of stores wordwide

3https://www.forbes.com/sites/jiawertz/2018/05/17/how-
brick-and-mortar-stores-can-compete- with-e-commerce-
giants/\#2019f5a23cc0
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and more than 10k products). The project and approach led
to a successful worldwide launch of local shopping results
overlaid on a map in a major search product, details of which
will be provided upon acceptance to maintain anonymity.
Due to the complexity and scope of the deployed project, we
focus here on the real-world knowledge acquisition aspect
of the work, and present a few simplified experiments that
demonstrate how the acquired knowledge can be used for
KBC. The contributions of this paper are primarily:

* To demonstrate that class-level bipartite knowledge ac-
quisition can be effective in approximating instance-level
knowledge (Error of Ratings section);

* A crowdsourcing approach to acquire such class-level
knowledge for the local shopping problem (PRODCAT
Data Collection Task section);

¢ Experimental results that show the effective combina-
tion of class- and instance- level knowledge from various
sources used in the launched system (Results section).

The approach has generalized to other bipartite relations
between places and types of entities that are organized in a
taxonomy, such as dishes at restaurants, services at profes-
sional offices, etc., as well as a wide range of other bipartite
graph problems where common sense or categorical knowl-
edge prevails as defaults, such as ingredients for dishes, lin-
nean taxonomies of living creatures, etc.

Problem Formulation

We start with an initial knowledge graph G'(Zs UC, Rr U
Rsc)- The graph nodes are set of store and product cate-
gories {c; € Cgs}, {¢, € Cp} respectively, so that C =
Cs U Cp forms the set of all categories, as well as the store
instances {is € Zg} (we do not have access to product
instances). The edges of the graph are the class/instance
(also known as type) relation between store instances and
store categories {(is,cs) € Rr}, and the subclass relation
{{cs, ) € Rsc} the subclass relation with a disjointness
constraint

<£L’,y> 6,R’SC' — {x,y}CCSEB{x,y}CCp

so that the relation is only defined over pairs of categories
belonging to the same type. Lastly each of these primitive
sets are disjoint Zg N Cs = Zs N Cp = Cs N Cp = (), mak-
ing G’ tripartite. As usual, Rgc forms a partial order within
each (store and product) category partition, and is transitive
over the subcategory relation so that (z,y) € Rr A (y, z) €
Rsc — (z,z) € Ry. This is meant to capture a traditional
kind of knowledge-graph scenario.

Problem 1 The local shopping problem is the extension of
G 10 G(ZsUC, RTURscURUR¢) through the addition
of the class-level product availability relation {{(cs,c,) €
Rc} and the instance-level product availability relation
{(is,cp) € Ri}.

The store instances {i; € Zg} represent individual physi-
cal stores like Trader Joe’s at 142 14th St. (TJ142), each of
which is typed with some number of store categories {c; €
Cs} like Supermarket. The product categories {c, € Cp}



Figure 2: Example subset of graph G with a store instance i,
a store category c;, its parent category ¢/, a product category
cp, its parent c;, and the class- and instance- level product
availability relations between them.

represent the types of products on the shelves of all stores,
such as Milk or Dairy, so that {{(TJ142, Milk) € R}
means that particular Trader Joe’s sells Milk. Note that a
more complete definition of the local shopping problem
would include the extension of Cp to instances (i.e. store
inventory), but we do not have access to that data, and use
this definition as a simplification that serves to answer most
local shopping queries.

This simplification is best understood as a matrix R :
Zs x Cp representing Ry, where R; ; are observations (or
predictions) that store i sells product j. With enough ob-
served R; ;, collaborative filtering methods (e.g. matrix fac-
torization) can be exploited to predict unobserved values
from observed ones. Moving between matrix and graph rep-
resentation can be done in a variety of ways, such as thresh-
olding matrix values into discrete edges in Ry, or using a
graph formalism that supports confidence values on edges.

We argue that the real world grounding of the R associ-
ation in people’s everyday experience allows us to exploit
meaningful common sense categorical knowledge for the
problem of acquiring the edges in R¢, and use simple de-
feasable methods to then infer the edges in the graph for the
relation R ;.

Vocabulary

The local shopping system and all the experiments described
in this paper use the open Google My Business (GMB) cate-
gories* for store categories (Cs) and Google Product Tax-
onomy%’ for the product categories (Cp). Each set comes
with a taxonomic structure that we encode as the Rg¢ re-
lation, every category has at least one parent category with
the exception of the top-level (most general) categories, and

*“https://support.google.com/business/answer/3038177/\#
categories
Shttps://bayareawebsitedesigner.com/gmb-categories/
Shttps://www.google.com/basepages/producttype/taxonomy.
en-US.txt
https://feedonomics.com/google_shopping_categories.html
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Terms

KBC Knowledge Base Completion
GMB Google my Business (source store categories)
GPT Google Product Taxonomy (source product categories)
uGc User Generated Content
Crowd Sense Our approach
Knowledge Graph
{is € Ig} set of store instances
{cs €Cg} set of store categories
{cp €Cp} set of product categories
(cs,cl)) € Rse store subclass/class relation
(cp C;> € Rsc product subclass/class relation
(ig,cs) € Ry store class/instance type relation
(cs,cp) € Re class-level product @ store availability relation
(is,cp) € Ry instance-level product @ store availability relation
g’ base KG of store/product classes and store instances
g G’ extended with R o and R
R; Likelihood that store instance 7 sells product class j
Crowd Task
Wz, p rater score for store (class or instance) x and product class p
Qe,p number of “always” answers
Ve,p number of "never answers
Yi,p number of "yes” answers
nip number of "no” answers

Table 1: Glossary of Terms

a few categories have multiple parents.

There are roughly 15k categories in Cp, that are similar in
semantics to UPC codes, grounding out in 18 top-level cate-
gories. The GMB categories include many that are unrelated
to local shopping, so we restrict (Cs) to those below store,
resulting in roughly 1k with a single root.

These two taxonomies have different graphical structure:
the product taxonomy is fairly deep, and the place taxon-
omy under store is fairly shallow, yet they align surprisingly
well. For example, there is a deep taxonomy of products un-
der “Grocery”, and a store category “Grocery Store”. There
are a few misalignments, for example “Batteries” are un-
der “Electronics” but are sold at “Drugstores”. A few of
these misalignments are ameliorated by hybrid categories
like “Household products,” which is an additional ancestor
for “Batteries”. Note that we do not change the taxonomies
or memberships; as defined in Sec. Problem Formulation,
we treat the initial graph G’ as given.

Finally, Google Maps has tens of millions of stores world-
wide that form Zg; each has a category label which is dis-
played in the maps UI under the place name and user rating,
giving us the edges in R-. A large part of these labels are as-
signed by merchants, some by users, some by operators and
others by machine automation. These labels are generally
high quality, with precision over 0.8. The largest source of
inaccuracies are store labels that are more general than they
need to be, when a more appropriate category exists. The
labeling infrastructure requires a single “primary” category,
while many places could be categorized in several ways.

Answers from Users

The system for which we performed the crowdsourcing de-
scribed in this paper is quite large and complex, and is
launched and available to users worldwide. It uses a DNN
model to predict R pairs from signals that include informa-
tion extraction (IE) from store web pages, direct merchant



feeds, store type, and dozens of other features that include a
significant amount of user-generated content (UGC).

Google Maps provides the facility to contribute and verify
UGC of various kinds. Users voluntarily add reviews, pho-
tos, venue categorization, and attributes (e.g. “has Wi-Fi”)
through these map-based apps. We have added a similar set
of UGC yes/no questions for product availability (an exam-
ple is shown in Fig.3). Volunteers who have visited the store
and use our app can answer up to ten questions that pro-
vide us, after more than two years, with the largest source of
instance-level pairs (R ), far greater than web IE, merchant
feeds, or any other source. This UGC is in contrast and in
addition to the class-level acquisition (R¢) described in the
next section.

The biggest challenge in collecting these UGC pairs is se-
lecting ten products to ask at each store from the thousands
of products we know about. We combine two methods to
help target an optimal set of products per store: active learn-
ing and the categorical data we describe below. The full de-
tails and evaluation of this collection method is the subject of
a future paper, we briefly point out that the R pairs we ac-
quire from a paid crowd can serve as a guide for recognizing
obvious (i, ¢,) pairs, e.g. (GroceryStore, Milk) is obvi-
ously true, (GroceryStore, Asphalt) is obviously false, so
if {is, GroceryStore) € Ry, remove Milk, Asphalt from
the set of UGC targets for store 75. Next, since the underly-
ing launched system uses a large DNN model, we can rank
the reduced set of products per store by their utility to the
model, such as their distance to the classifier boundary.

Crowd Sense

The obvious way to gather the edges in R ; would be to use
store inventory or transaction records. The problem with this
approach is that local shopping is still mostly an off-line pro-
cess worldwide, and we do not have large-scale access to
transactional data that gives us these observations. Google
provides stores a way to share their catalogs or inventory
on-line, but much fewer than 5% of stores worldwide have

o

Strand Book Store
~ You visited last week
Can you buy this here? Paper clips, clamps &
fasteners

@

NOT SURE

Figure 3: Example question used to gather UGC.
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made use of it. Our data showed that web pages and mer-
chant feeds together accounted for less than 1% of the space
of R;. To address the rapid acquisition and scaling of data
in R, we explored the acquisition of edges in R¢.

Crowd Hypothesis

The intuition driving our approach is that the crowd can pro-
vide the class-level knowledge (R¢) by appealing to their
common sense experience; everybody knows that, e.g. “All
supermarkets sell milk”. Reality is more complicated, and
the true problem is first dominated by what products are ob-
viously not sold, and second by products that are usually,
but not always, sold at some type of store. For example, Im-
pact Wrenches are not ever found in Drugstores, and Wasabi
Peas, while they are found almost exclusively in grocery
stores, are not found in all of them. What we really aim for
the crowd to provide is a distribution of products available at
stores of a given type. This is where a lot of existing knowl-
edge graph methods fail, especially at the class-level, as they
rely on an assumption of discreteness.

It may seem that we could ask individual people to an-
swer a question like, “What percent of stores of type c; sell
product ¢,?” However, research in human computation has
shown that individuals cannot reliably answer such ques-
tions (Surowiecki 2005). Based on previous work (Aroyo
and Welty 2014, 2015; Welty et al. 2012), we hypothesized:

Hypothesis 1 asking multiple raters about the same cate-
gorical pairs would produce a distribution of answers that
approximate the real world distribution of R .

In other words, if 80% of raters say that oat milk is sold at
grocery stores, then 80% of grocery stores will sell oat milk.

Before testing our hypothesis, we ran numerous pilots to
tune task hyper-parameters, asking raters questions about
11k (cs, ¢,) pairs: from 5-25 raters per pair, 154 store types
and 3600 products in five countries, and variations on the
question phrasing. We settled on: five raters per pair, ran-
domly selected from a pool of 130 raters in five coun-
tries, sourced from contracted operators through an in-house
crowdsourcing platform, and the question, “Would you ex-
pect to find ¢, products in stores of the category c,?”
with four answer options (“Always Available”, “Sometimes
Available”, “Never Available”, “I don’t know”).

Under these settings, our final PRODCAT task (see be-
low) gathered 25k (cs, ¢,) pairs with 5 labels per country,
that through inference (g.v. Sec. Data Sources) resulted in
over a billion (is, ¢p) pairs, 99% of which were negative. It
took six weeks to run and analyze the pilots, and two weeks
to run the final task.

Data Collection Tasks

Another way to state our hypothesis is that the categorical
crowd disagreement should reflect the real world distribu-
tion, but disagreement can have many causes that are not
related to the desired distribution. The various pilot tasks we
ran represented a gradual refinement of the data and task de-
scriptions to eliminate disagreement from other causes. We
report here on four different approaches:



RANDOM To confirm the sparsity of R, we randomly
and independently selected category pairs from Cg x Cp,
weighing the selection from Cg proportionally to the num-
ber of stores belonging to each category (i.e. larger cate-
gories are more likely to be selected). Pairs were presented
to 5 raters from the same country. This RANDOM task con-
firmed that the vast majority of pairs are “obvious” negatives
(asphalt at grocery stores, cars at violin shops, etc.), as more
than 95% of the pairs resulted in 5 “Never” ratings.

SINGLETON To address the sparsity shown in RAN-
DOM, we leveraged web signals (see Sec. Data Sources) to
select pairs with more likelihood to be available at stores
within a given category, and presented one pair at a time to
5 raters from the same country. This resulted in rating scores
ranging from all-5 “Always Available” to all-5 “Never Avail-
able”, but skewing towards the positive side. The SINGLE-
TON task results showed disagreement from other causes,
described in Sec. Ambiguity.

MATRIX To address the disagreement due to ambiguity
(Sec. Ambiguity), we designed a novel matrix presentation
of class-level pairs, with four {c; € Cs} as the columns and
a set of 100-200 {c, € Cp} as the rows, depending on our
ability to match products to the store categories using web
signals. Figure 5 shows the matrix presentation (with data
sampled through the PRODCAT method below). The ad-
vantage of this presentation is that raters familiarized them-
selves with a category and answered many questions related
to it, rather than having to understand one pair at a time. This
approach still produced some unwanted disagreements due
to difficulty understanding some of the products, esp. very
specific ones, and we were concerned that the web signals
were biasing our sample towards availability patterns of on-
line stores, rather than our target class of stores without web
pages. Most importantly, the amount of time the raters spent
per (cs, ¢p) dropped by 50%.

PRODCAT The final crowdsourcing task used the MA-
TRIX presentation but changed to a dynamic method that
sampled the (c,c,) pairs starting at the top of the prod-
uct taxonomy, and working down the Rg¢ relation from
most general to most specific. It was not useful to treat
the store taxonomy this way, as it is very shallow. When a
pair was given an overall negative label, we did not sam-
ple any subcategories and inferred a negative label for all
descendents (a few inferred-negative categories would get
sampled if they had another parent category with a non-
negative label). For example, since Auto parts stores do not
sell Grocery and (Dairy, Grocery) € Rgc, we did not ask
(Auto parts stores, Dairy). Electronics are not sold at Phar-
macies but Batteries are, and (Batteries, Electronics) €
Rsc, which would supress asking that pair. Fortunately,
(Batteries, HouseholdProducts) € Rgc, and House-
holdProducts are sometimes sold at Pharmacies, allowing
us to ask (Batteries, Pharmacies).

This top-down taxonomic pruning eliminated any need
for the web signals, and accounted for the sparsity at a very
high level, since (by accident or ontology) the store and
product taxonomies were well aligned: e.g. Auto parts stores
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sell Auto parts and do not sell Groceries. Higher level cate-
gories also made a lot more sense to raters when presented
with a sub-category, e.g. Sports & Outdoor Electronics with
Fitness Trackers, and since our rater pool did not vary much,
they became familiar with the taxonomic distinctions as they
progressed down the taxonomy over time.

Ambiguity
In the pilot experiments we observed disagreement in the

results that did not support our crowd hypothesis, but were
caused by ambiguity mainly in the product categories:

e product is a material, substance (e.g. plastic, starch,
arugula) or some product aspect (e.g. color, size)

e product is a brand (e.g. Avian, Kleenex) or contains a
brand name (e.g. Nike Sneakers, Todd’s boots)

* store or product is too specific (e.g. duck sauce, goat meat,
vanilla orchids, banner store)

* store or product is too generic (e.g. gift, organic food)
e product is regional (e.g. Harissa, Jajangmyeon)
e product is seasonal (e.g. christmas trees, flip-flops)

* product is polysemous in a way that is resolved by the
store type, e.g. “fish” in a grocery store vs. a pet store

In MATRIX and SINGLETON, for example, raters seem
more willing and able to answer the question, “Is milk sold
here?” compared to “Is dairy sold here?” In the latter case,
there is uncertainty over what minimum set of dairy items
(milk, cheese, butter, yogurt, etc.) would be needed for “sells
dairy” to be true, yet the equally rich sub-categories of milk
(whole milk, skim milk, organic milk, etc.) did not cause
the same uncertainty. When presented with the categories in
a top-down fashion, raters first dealt with their uncertainty
about “dairy” and applied it to the subcategories as well. For
many store types, raters were willing to give definite answers
about the other sub-types in subsequent tasks.

We specifically addressed the material, aspect and brand
problems by removing them from the product set, their treat-
ment is the subject of future work. We instructed the raters
to treat seasonal products as “year round”, after confirming
that users are less likely to search for such products out of
season. We updated the task design to allow raters to explore
the two taxonomies, but we found that grouping store cate-
gories by taxonomic (sibling and parent) relations in PROD-
CAT obviated this exploration.

Regional products produced disagreement esp. across
countries, where for the final tasks we sourced raters in five
countries. Often this showed up merely as “I Don’t Know”
answers which were not used in predicting Ry, but do show
up in IRR. More interesting cases included when a prod-
uct had a slightly different meaning, or was sold in different
types of stores, in different regions. For example, “syrup” in
France is sold in drug stores, and raters in other countries did
not agree. This is because in France “syrup” is cough syrup,
and this association did not exist elsewhere that we tested.
We save further analysis of regional differences for a future
paper, and absorbed these disagreements as inaccuracies in
the experiments below.
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PRODCAT Data Collection Task

The final design of the PRODCAT task presented a matrix of
(cs, ¢p) pairs to raters in five countries, five raters per coun-
try, and consisted of several elements:

* alist of store categories, c; € Cg
* alist of product categories, ¢, € Cp

* ¢, Cp pairs presented in an n X 4 matrix, where each c;
is a row and each c,, is a column; n ranged from 40-200
depending on our ability to find suitable products

* the matrix was prefaced with: “Would you expect to find
in country the products (in the columns) in stores of the
types (in the rows)?”

* each cell in the matrix connected one pair with four possi-
ble answers: “Always available”, “Sometimes available”,
“Never available”, and “I Don’t Know”

* the row and column headers ¢, and ¢, included links to an
image, a short description, and the position in the respec-
tive taxonomy

* raters were encouraged to explore the taxonomies in order
to better understand categories

* The column product types were chosen such that three
were taxonomy-related (sibling or more-specific child)
and one was not, e.g. “aspirin”, “notebooks”, “paper sup-

plies”, “lined paper”.
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Figure 5: Partial view of the PRODCAT data collection tem-
plate with example answers from one rater
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The final matrix PRODCAT crowd template is shown in
Fig. 5 with an example of answers provided by one rater.
Based on rater feedback and metrics shown in Sec. Relia-
bility of Ratings and Sec. Error of Ratings, this presenta-
tion helped resolve many forms of polysemy mentioned in
Sec. Ambiguity.

Reliability of Ratings

Tab. 2 shows a small sample of the CS task results for
R pairs; we have intentionally downsampled the ‘5-never’
pairs to show a mixture of different vote ratios.

Since the ratings of “Always”, “Sometimes” and “Never”
are ordered, we used Krippendorff’s a to measure the inter-

category product always | some | never
auto parts store pita 0 5
bakery Longline Vests

beauty supply store aromatherapy

bicycle store home furnishings

butcher shop quicklime

chinaware store watches

clothing store ‘Women’s Shirts

clothing store Petite Negligee

clothing store Truck Tailgate Caps

clothing store chameleon

clothing store typewriter ribbon

coffee store Instant Coffee

cosmetics store
drugstore
electronics store
feed store

fresh food market
fruits & vegetables
furniture store
furniture store
grocery store
grocery store
grocery store
home goods store

Non-Dairy Milk
tarragon

Canister Vacuums
cybex

Work Dresses
Turkey Sausage
Canopy Beds

Box Springs
Smart Light Bulbs
Frozen Clams

soy nuts

Storage Baskets

AN O A PO OO UVNO O PAEROOC O WVMUNO OO WMOO

—_—_0 OO0~ = 0000000 O0Ooo0O0 0o oo
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Table 2: Example CrowdSense Ratings on R¢ pairs



rater reliability, with the usual distance function:

0, ifr=y
0.5,
0.5,
1

. if = Sometimes V y = Sometimes
dist(z,y) = Y

if = Unknown V y = Unknown
s otherwise

Fig. 4(a) presents « scores for the various tasks. The RAN-
DOM baseline scored highest since its purpose was to con-
firm our sparsity estimate — with 95% items receiving all 5
ratings as “Never”, high agreement resulted. The SINGLE-
TON task was guided by the web signals, leading to pairs
that were more likely to be obviously “Always”, though
much more of a mixture than RANDOM. For MATRIX, we
began to actually explore the space of R where disagree-
ment indicates the distribution of R 7, and this is carried fur-
ther in the sampling used by PRODCAT. Hence, it makes
sense that the later task designs produced more disagree-
ment, because we targeted pairs that would have it. This
makes IRR a less than suitable measure for the adequacy
of the MATRIX and PRODCAT tasks.

Error of Ratings

Since IRR cannot reflect the quality of ratings where dis-
agreement is the desired result, we measure the error of dif-
ferent R pairs in predicting the distribution of Ry pairs, by
comparing ratings-based scores on R¢ pairs against UGC
scores on R; pairs obtained from users® (see Sec. Answers
from Users). Each class and instance level pair has a score:

Wg,p = {

where o ;, is the number of “always” answers for class-level
pairs (x,p) and v, , the number of “never” answers; and
Ya,p 18 the number of “yes” answers for store instance-level
pairs (x, p) and n , the number of “no” answers.

Next let Z, = {i : (i,¢) € Rr} be the instances of cate-
gory c under Ry. The mean absolute error of {(c, p) is:

Ziezc [wip — Wep
| Ze]
The idea is that if the class-level scores (w. ) are an ac-
curate prediction of the availability distribution at the in-
stance level, then they should model user observations at
individual stores (w;j), averaged over the size of the store
category (|Z.|). Fig. 4(b) shows the distribution of MAE
scores per category pairs for each of the four data collec-
tion tasks. Despite PRODCAT being a harder task due to the
sampled pairs, it performs much better than the other tasks,
with nearly half of its categories scoring in the lowest er-
ror range, clearly supporting our crowd hypothesis: the dis-
agreement on (¢, ¢,) pairs approximates the distribution of
(is,cp) when (is, cs) € R, according to user observations.

ifx € Cs
ifz € Ts

(alvp - Vl'yp)/(az,p + V;t.p)
(Yz,p — na,p)/(Yz,p + Na,p)

MAE((c,p) € R¢) =

Instance-Level Prediction Experiments
Data Sources
We compare and contrast several approaches for acquiring
and predicting the relations in R:

8We used user-generated content (UGC) for evaluation due to
the absence of a large, uniformly-sampled ground-truth dataset.
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CrowdSense (CS): 25k pairs of class-level associations
(cs,cp) € Re and an associated score for each pair we, c,,
collected through PRODCAT (as described above). In our
experiments, we treated the CS data as a static set, although
in practice it could grow or change over time like UGC.

User Responses (UGC): As described in Sec. Answers
from Users, we collected more than 100M instance-level
pairs from volunteer users around the world over a two year
period.® Most of the UGC pairs have a distribution of yes
and no answers, and more sophisticated processing of the
answers is possible, but for simplicity we use the majority
vote as the label in the experiments below, where we break
the data into sets representing the first n € [1, 24] months of
collection, to illustrate the growth of the data over time.

Web baseline (WeblE): The baseline approach to sup-
porting local shopping queries is the Web: using product
names mentioned on store web pages as part of an inverted
index that are matched to search queries for those products.
As discussed above, this approach for local shopping is lim-
ited by the coverage of local (aka brick & mortar) stores on
the web, which was under 30% (60% for the US) at the start
of this project in 2017, and has not increased substantially in
the years hence. WeblE is only able to obtain positive labels,
leaving negatives to be inferred from the complement.

To serve this paper, we isolated the product mention signal
from others used in modern web search (e.g. click-throughs,
co-occurrence, etc.) to produce the WeblE dataset, collecting
only the instance-level pairs in R ;. We used a named entity
recognizer to extract instance-level pairs (R; : Zg X Cp)
for stores with a web site that mention products on any of
the site’s pages, and used the extraction confidence proba-
bility. While other web sources (user reviews, coupons, pho-
tos, etc.) and more advanced product extraction techniques
(see (Wang et al. 2020)) might improve the recall for web
data, for most stores, this information simply is not avail-
able, and this baseline is a very good representation of that.
We treated the Web dataset as a single unchanging set; for
our experiments, the change over time was not significant
enough to measure.

WALS(UGC): Since predictions of the instance-level
pairs form a matrix, R ;,, an obvious approach is to use ma-
trix factorization on the matrix formed by one of the above
methods. We used an off-the-shelf WALS(Koren, Bell, and
Volinsky 2009) implementation on the UGC scores dis-
cussed below. Since WALS does not use “features”, but
rather a matrix of real values, we did not include other in-
puts to WALS in Fig. 6.

Evaluation

Ultimately our goal is to enable product queries to return
nearby stores on maps as well as (web) search results;
however, direct application impact metrics from our sys-
tem, which launched in mid-2020, are proprietary. Here we
focus on metrics for the part of the system dealing with
knowledge acquisition as one of knowledge-based comple-
tion(McNamee and Dang 2009; Welty et al. 2012).

°Collection continues, this two-year window was used for this
paper
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Figure 6: Precision, Recall, and F-measure for different ways of predicting R ;.

We collected 40k gold standard (is,cp) pairs by calling
each store %, asking them if they sold c,. The stores were
selected from among more than 50 countries with the top-5
countries being US (20%), JP (5%), IN (5%), GB (5%), BR
(4%); stores within each country were sampled uniformly
to provide a microcosm of representative demographics. We
used these pairs as a test set in the experiments below. As
with the CS and UGC approaches, the sparsity of R ; makes
uniformly sampling pairs wasteful. To achieve better class
balance, the WeblE baseline data was used to guide the col-
lection towards pairs that had an increased chance of being
true; for example, if a store’s webpage mentioned a prod-
uct we would try to call stores of the same type and ask
about that product. We targeted a positive/negative class bal-
ance of 50%, and targeted a stratification of the sampling
that preserved the 30/70 balance of stores with and with-
out websites. When evaluating against the gold standard, any
instance-level pairs that are present in the gold set but miss-
ing in the evaluated data are counted as negatives towards
recall. Tab. 3 shows a small sample of these.

Results

WebIE Since the values on the WebIE data for each
(is,¢p) € Ry are fractional in [0, 1], we determined the
lowest threshold with at least 0.80 precision and computed
recall based on that, resulting in a recall of 0.136 at 0.80 pre-
cision. This recall reflects the fraction of the stores with web
pages, the fraction of products mentioned on those pages,
and the recall of the product named entity recognition. We
did not independently measure these other factors, as Web
performance was merely a baseline. We also used WALS to
infer values for other instance-level pairs, improving recall
to 0.151 at 0.80 precision (not shown).

CS The primary hypothesis of this paper is the acquisition
of class-level associations in R from the crowd is an effec-
tive way of rapidly jump-starting instance-level associations
in R;. As described in Crowd Sense, we acquired 25k class-
level pairs from a paid crowd, each with a score w,, (see
Error of Ratings), and chose the following simple procedure
to infer the instance level pairs:

Wep >0Ace€Cs = (c,p) € Re
(¢,p) € Re Ai,c) € Rp = (i,p) € Ry
We then measured the effectiveness of the CS by compari-
son of the inferred edges in R to the Gold set, achieving a
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recall of 0.238 with a precision of 0.788. While this shows
a distinct improvement over WeblE, of more interest is the
combination, which improves recall to 0.351 — near perfect
complementarity — while slightly losing precision at 0.782
(for simplicity we do not show this in Fig. 6). The combina-
tion uses the WeblE or CS signal if the other is not present,
and the CS signal if they are both present, since the CS data
includes negatives and WeblE does not. (WALS inference
was ineffective here; see below.)

UGC The UGC dataset grows over time, while we treat
the Web and CS data as constant (see above). We expect
that, given enough time, UGC will overtake CS and WebIE
in recall, so an important question is how much time the CS
data is worth compared to UGC, and whether it continues to
show value. In Fig. 6, the blue line shows the precision, re-
call, and F1 score of the UGC data using the majority vote as
the label, and the red line shows the CS performance, which,
as noted above, doesn’t change. At around 11 months, the
UGC line crosses the CS line, indicating that CS is worth
about 11 months of UGC collection.

WALS(UGC) We populated the matrix R, from UGC
ws p scores, factorized R using WALS, and measured the
resulting dot-products against the Gold Standard dataset
choosing the 0.8 prec. threshold, shown in Fig. 6 in green.
Note that some of the (s, p) pairs in the Gold set were in the
training set, however the labels used in the training matrix
may be different than Gold, making it a fair comparison. As
in the previous experiments we broke the dataset into sets
representing the first n € [1,24] months of collected user

store category loc product available
7-Eleven convenience store Us distilled water FALSE
ALDI grocery store Us fruitcake TRUE
AURORA MKT store uUs Men’s Gloves FALSE
Adams Pharmacy pharmacy Us kool aid TRUE
Ag construcciones building materials PY Blinds TRUE
Alanyurt Gida general store TR Razor Blades TRUE
Amorino ice cream shop FR meat FALSE
Barnes & Noble book store Us blankets FALSE
Barstow Buick car dealer Us crown victoria | TRUE
Barstow Buick car dealer us gears TRUE
Bazar bazar BR mary kay FALSE

Table 3: Example gold standard R pairs



responses. WALS clearly improves over UGC.

CS+UGC While 11 months is the intersection point of the
metric values for CS and UGC independently, the CS data
is supposed to complement as well as jump-start the knowl-
edge acquisition. We tested the role of CS over time using
a simple “CS as default” combination, shown in Fig. 6 as
CS+UGC, in which the UGC label is used if present, and
the CS label is used if not. This line tracks the improvement
in recall over time from UGC collection, while jump starting
at the recall of CS. This is a clear demonstration of our core
research hypothesis.

Of particular interest is the comparison of WALS(UGC)
with CS+UGC. The former does eventually surpass the latter
after roughly 18m, but the CS+UGC combination is a strong
contender from an extremely simple method. This is again
clear evidence of our core hypothesis. Other ways of filling
the initial training matrix R ;, by combining CS, UGC, and
WeblE signals in various ways were tried but not included as
they do not outperform WALS(UGC). Of note is that the CS
signal does not work well with WALS, since it effectively
does what WALS itself should do with enough data - filling
in giant portions of the matrix with default values. Other ma-
chine learning approaches are certainly possible, indeed the
launched local shopping system uses a deep neural network
with many more features that are beyond the scope of this
paper, and measured at the scale of the web. The three sig-
nals reported here are very signifant features of that system,
and the full system improves significantly over search alone.

Related Work

The core of this work is overcoming a knowledge acquisi-
tion bottleneck in acquiring data reflecting the availability
of products at millions of brick&mortar stores worldwide.
The approach of harnessing class-level knowledge to the
infer instance-level knowledge is based on a long standing
idea in knowledge engineering (Minsky 1974). Other meth-
ods in the formal knowledge represention (KR) field have
never scaled to the level necessary for our problem, nor have
they considered the problem of how to acquire distributions
instead of discrete facts.

Information Extraction (IE) methods perform knowledge
acquisition of real-world entities from web text, and are dis-
cussed in (Zang et al. 2013). (Martinez-Rodriguez, Hogan,
and Lépez-Arévalo 2020) presents a survey of IE techniques
for populating semantic structures, e.g. entity extraction and
linking. In the context of shopping, research has mainly fo-
cused on product information extraction, e.g. crawling the
Web for offers to maintain product catalogs (Nguyen et al.
2011; Qiu et al. 2015a) with product specifications and at-
tributes (Qiu et al. 2015b; Kannan et al. 2011; Zheng et al.
2018; Wang et al. 2020), and IE methods for building prod-
uct knowledge graphs (Dong and al. 2020; Xu et al. 2020).
Our paper defines a method for linking these already defined
entities similar to (Dong and al. 2020), incorporating prod-
uct and store taxonomy knowledge.

Knowledge Base Completion (KBC)is the problem of in-
ferring missing entities and/or relations in an existing knowl-
edge graph based on existing ones, such as via link predic-
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tion (Bordes et al. 2013) or from a combination of sources
(Riedel et al. 2013). Our product x store category matrix
(Fig. 5) is inspired by the item-based collaborative filtering
matrix introduced in recommender systems (Sarwar et al.
2001; Ekstrand, Riedl, and Konstan 2011), and we leverage
a well-known collaborative filtering approach (Koren, Bell,
and Volinsky 2009) for KBC to demonstrate the additional
power of inference on our knowledge graph.

We use a knowledge graph as the basic representation and,
like most well known KGs, employ no general-purpose rea-
soning; hence, any inference we do must be defeasible. The
most relevant KR area would be reasoning with defaults e.g.
(Lang 2000), as our CS+UGC baseline mechanism for com-
bining (cs, ¢p) With (i, c,) pairs treats the first as a default
and the second as an override. Beyond this simple com-
bination strategy, which was first proposed by Quillian in
1967 (Quillian 1967), more sophisticated combinations of
CS+UGC with other forms of evidence are done using op-
timizations from machine learning. The full local shopping
system uses many signals, of which we’ve described only
three, that are combined using a deep neural network that
optimizes the prediction of observed labels for many billions
of (is, cp) pairs. While we exploit the taxonomies in Cs and
especially Cp to optimize the selection of class-level pairs
to acquire from workers (Lees et al. 2020), taxonomy-based
reasoning was only used for negative associations.

IE and KBC techniques have advanced the state-of-the-art
in capturing human knowledge in machine-readable form,
but there is still the need for human curation and crowd-
sourcing. Important milestones for crowdsourcing knowl-
edge acquisition at scale are Wikidata (Vrandeci¢ and
Kro6tzsch 2014) and Freebase (Bollacker et al. 2008), where
the crowd defines or curates real world entities and some
relationships between them, typically driven by Wikipedia.
With respect to KBC, (Revenko et al. 2018) proposes
a method for crowdsourcing categorical common sense
knowlegde from nonexperts for adding new relationships be-
tween nodes in the graph and ensuring consistencey with
existing relations. However in all these sources, the sparsity
of graph edges expressing relations between the class-level
nodes is high (Taylor 2017). Our work focuses directly on
that problem by acquiring both class-level and instance level
graph edges, and scaling the latter from the former.

The crowdsourcing approach we propose in this paper is
grounded in the theoretical framework of (Aroyo and Welty
2013, 2014), which breaks the constraints of typical method-
ologies for collecting ground truth, showing disagreement
is a necessary characteristic of annotated data; when inter-
preted correctly it can make evaluation of machine learning
models more attuned to real-world data (Dumitrache 2019).

The immense body of research on common sense and
crowdsourcing has directly influenced our work. The UGC
and Crowd Sense tasks drew on our knowledge of Games-
with-a-purpose such as Verbosity(von Ahn, Kedia, and
Blum 2006) for collecting common sense facts, Common
Consensus(Lieberman, Smith, and Teeters 2007) for gath-
ering common sense goals, GECKA(Cambria et al. 2016)
for common sense knowledge acquisition, Concept Game
(Herdagdelen and Baroni 2010) for verifying common sense



knowledge assertions, the FACTory Game (Lenat and Guha
1989) for facts verification and many others. (Rodosthenous
and Michael 2019) refer to common sense as “knowledge
about the world” and propose a hybrid (machine and human
tasks) workflow to gather general common sense knowledge
rules.

Active learning investigates efficiency for acquisition and
learning when acquiring training data for ML models. In
essence, the early stages of KG acquisition strongly repre-
sent the exploration side of the exploration vs. exploitation
tradeoff (Bondu, Lemaire, and Boullé 2010). ML models
during exploration do not have enough knowledge of the
space to be able to offer reliable judgements as to which
items (in this case, (is,cp) pairs) to acquire labels for. As
noted in the Data Sources section, class-level pairs can serve
as a guide for recognizing obvious (is, c,) pairs that likely
do not need labels, and conversely, high-disagreement pairs
are very likely to have instances that do. Thus the (cs, cp)
pairs can serve to stratify the (i, ¢,,) space, and make the job
of active learning easier by narrowing down their targets.

Perhaps the most similar crowdsourcing work to
ours studies the problem of approximating aggregation
queries (Trushkowsky et al. 2013), such as “How many
restaurants in San Francisco serve scallops?” While this ap-
proach works well for estimating counts, clearly it does not
scale for KBC.

Conclusions

The Shopping Sense project and the CrowdSense approach
were integral parts of a successful worldwide launch of lo-
cal shopping results overlaid on Google Maps, as shown in
Fig. 1. More recently, we launched local dining results that
responds to searches for dish names with restaurants that
serve that dish.

Due to the complexity and scope of the deployed project,
we focused on the real-world knowledge acquisition aspect
of the work, and presented a few simplified experiments that
demonstrate how the acquired class-level knowledge can
be used for KBC at the instance level. These experiments
may seem over-simplified, but they accurately capture the
impact of the three-tiered crowdsourcing approach on the
deployed product, in particular the rapid jump-start of the
place-product edges in the knowledge graph.

To achieve these results, we augmented an existing knowl-
edge graph of most stores on earth, their categories, and
a product taxonomy, by adding store to product edges.
We combined web-based information extraction (WeblE)
and direct user observations (UGC) with a novel collection
of class-level (store, product) pairs from the crowd (CS)
which were inferred to the instance-level based on class
membership. In two weeks of data collection we achieved
a recall of 0.24 at 0.80 precision against gold standard
instance-level labels, combining with WebIE to achieve 0.35
recall, which was the recall of UGC after 20 months, and of
a WALS model with UGC input in 18 months. We conclude
that the Crowd Sense approach uses human common sense
knowledge to rapidly jump start the kind of generalization
that ML systems are good at with a lot of data. This has im-
plications for practical ML and Human Computation.

Our class-level crowdsourcing results show that the dis-
agreement in categorical knowledge collected from the
crowd can indicate the distribution of that knowledge at the
instance level, rather than assuming the class-level associa-
tions are universally true: in other words, if 80% of raters say
“Grocery stores sell oat milk”, then ~ 80% of grocery stores
sell oat milk. These results held also for dishes at restaurants.

The taxonomy of products (and dishes) was used to guide
the sampling of class-level pairs in a way that helped us ad-
dress the sparsity of the Cg x Cp space, and only the negative
class-level attributes were accurate when inferred to more
specific categories, as opposed to the more traditional view
that positive attributes are “inherited.”

We found the categorical pairs which were rapidly ac-
quired were extremely useful in guiding the collection of
instance-level labels, since we did not have to ask users
about obviously available or unavailable products — this has
implications for active learning, and held also for dining.

Crowd Sense generalizes to other bipartite relations be-
tween places and types of entities that are organized in a
taxonomy, such as dishes at restaurants, services at profes-
sional offices, etc., as well as a wide range of other bipartite
graph problems where common sense or categorical knowl-
edge prevails as defaults, such as ingredients for dishes, lin-
nean taxonomies of living creatures, etc.

To see CrowdSense at work, type the name of a prod-
uct or dish into Google Maps (or Google Search). Results
that say “Sold here: product” come from the data we pub-
lished, as opposed to “In stock” (merchant feeds) and “Web-
page says:”. Anyone with a Google account can participate
in UGC (user generated content) acquisition. Users with lo-
cation tracking turned on (so that maps knows what places
the user has visited'®) can navigate to the ‘contribute’ tab
that allows them to rate and leave reviews, as well as review
facts and answer the yes/no questions regarding locations
they have visited.

10See https://maps.google.com/localguides/howto
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