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Abstract

Automatic predictions (e.g., recognizing objects in images)
may result in systematic errors if certain classes are not well
represented by training instances (these errors are called un-
knowns). When a model assigns high confidence scores to
these wrong predictions (this type of error is called unknown
unknowns), it becomes challenging to automatically identify
them. In this paper, we present the first work on leveraging
human intelligence to discover unknown unknowns (UUs) in
an iterative way. The proposed methodology first differenti-
ates the feature space generated by crowd workers labelling
instances (e.g., images) in an active learning fashion from
the space learned by the prediction model over a batch train-
ing phase, and thus identifies the predictions most likely to
be UUs. Next, we add crowd labels collected for these dis-
covered UUs to the training set and re-train the model with
this extended dataset. This process is then repeated itera-
tively to discover more instances of both unknown and under-
represented classes. Our experimental results show that the
proposed methodology is able to (i) efficiently discover UUs,
(ii) significantly improve the quality of model predictions,
and (iii) to push UUs into known unknowns (i.e., the model
makes mistakes but at least its classification confidence on
those instances is low so those predictions can be discarded or
post-processed) for further investigation. We additionally dis-
cuss the trade-off between prediction quality improvements
and the human effort required to achieve those improvements.
Our results bear implications on building cost-effective sys-
tems to discover UUs with humans in the loop.

1 Introduction
Supervised classification usually works under a close-world
assumption (Reiter 1981), where the predicted classes are
estimated based on training data. Attenberg, Ipeirotis, and
Provost (2015) argued that for classes that are not covered
by training data, the models may result in systematic errors
of mis-classification. These errors are called unknowns as
the trained model cannot make effective predictions for un-
seen classes. Lewis and Catlett (1994) proposed an uncer-
tainty sampling strategy for supervised learning, which se-
lects instances with uncertain labels and presents them to hu-
man experts to label. Such strategy, however, does not work
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Figure 1: An example of UUs where the model makes a
wrong classification but with a high confidence score. In this
case, the classification model is not able to identify such mis-
takes automatically.

when a model assigns high confidence scores to wrong pre-
dictions as these classification decisions are not uncertain
and thus are not able to be selected for further investigation.
This type of error, which is very difficult to detect due to the
high confidence of the model, is called unknown unknowns
(UUs) since the classification model is not aware that such
mistakes have been made. Figure 1 shows an example of
UUs that cannot be identified by the classification model. In
this example, a model is trained on a set of images for three
classes: zebra, bird and train. Thus, the model wrongly pre-
dicts an image of airplane being of class “bird” as the class
“airplane” is not covered by the training data. The confi-
dence score made by the model, however, is high (i.e., 0.999
for this prediction). Therefore, it becomes challenging to au-
tomatically recognize such incorrect classification decisions
(also known as UUs).

Recently, evaluation initiatives have been run for the UU
identification task1. Prior approaches proposed to address
this problem can generally be grouped into two classes:
algorithmic and crowdsourced. In algorithmic UU detec-
tion approaches, the selection of potential UU candidates is
based on the assumption that systematic biases would lead
to clusters of blind spots in the feature space. Lakkaraju
et al. (2017) proposed a partitioning scheme to cluster in-
stances in the test set and a multi-armed bandit algorithm
to pick up UUs that maximize utility functions. This work

1https://cats4ml.humancomputation.com/overview
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has later been extended by Bansal and Weld (2018) to as-
sign a higher utility value to the selected UUs that give a
better coverage of the test dataset, which they call a greedy
algorithm to discover UUs. Crowdsourced solutions, on the
other hand, leverage human intelligence to add data sam-
ples that do not exist in the training data. For example, the
“beat-the-machine” model (Attenberg, Ipeirotis, and Provost
2015) takes an open-world assumption and encourages hu-
man participants to submit instances that are missing in
training data by rewarding contributions proportionally to
the magnitude of system failures. Vandenhof (2019) pro-
posed a “contradict-the-machine” model that asks crowd
workers to generate examples that follow the model deci-
sion rules but that lead to a wrong classification result. Liu
et al. (2020) proposed an approach where humans define pat-
terns that are used to identify candidate UUs.

These existing solutions, however, have limitations. First,
algorithmic selection of potential (partitions of) UUs only
covers a subset of the test dataset (with top-n utility values)
while in the reality there may be a more diverse set of UUs
that are distributed sparsely in none of the selected partitions
and thus would be skipped. Therefore, we argue that the dis-
covery of UUs should investigate all the instances for which
predictions are made with high confidence scores (given that
the definition of UUs refers to high confidence classification
errors). Second, asking human workers to manually gener-
ate classification failure examples is not realistic for non-
textual data (e.g., images), and even looking for this ma-
terial in the “open world” (e.g., by means of web search)
is challenging and makes the scalability of such solutions
very limited. In fact, to understand the content of non-textual
data (e.g., image annotation and captioning), a number of
approaches have been proposed to automatically extract se-
mantics from multimedia content with or without humans-
in-the-loop (Jing et al. 2016; Venugopalan et al. 2017; An-
driluka, Uijlings, and Ferrari 2018; Wu et al. 2018). As the
way in which humans understand multimedia content (e.g.,
recognizing objects in images) may be influenced by the
context in which the content is presented (Zhang et al. 2019),
introducing a human input component in the system allows
us to build more human-like algorithms. Following this tech-
nique, we also propose to leverage human effort to discover
UUs. To this end, by involving humans in the loop, instead of
asking crowd workers to generate new instances, we rather
leverage human intelligence to select instances from the ex-
isting dataset and extend the training data with new labels
which are then used to re-train the model. Considering the
high cost and potentially low quality of crowd work, the key
challenges of such an approach lie in deciding (i) how much
human work is enough to reliably discover UUs, and (ii) how
to deal with noisy crowdsourced data for this particular task.
Since UUs are caused by under-representation or absence of
certain classes in the training set, we believe that providing
better coverage for these classes would effectively address
the problem.

Inspired by recent work (Yang et al. 2019), which em-
ployed humans to inspect potentially wrong labels in train-
ing datasets, we take a human-in-the-loop approach to iden-
tify what is missing or is under-represented in the training

data, and solve the UU detection problem in an iterative
way. Specifically, at each iteration, we differentiate the fea-
ture spaces generated by crowd workers labelling new in-
stances in an active learning fashion from the space learned
by the predictive model over the available training data, and
thus identify the predictions most likely to be UUs. Next,
we add these crowd generated labels for the discovered UUs
into the training set and re-train the model with this extended
dataset. This process is repeated iteratively to discover more
instances of both unknown and under-represented classes.
Our experimental results show that the proposed method is
able to efficiently discover UUs and significantly improve
the quality of model predictions. We also show that our
method can push UUs into known unknowns, where the
model still makes mistakes but, at least, its confidence score
for those instances is low so those predictions can be dis-
carded or post-processed.

To summarize, this work makes the following three-fold
novel contributions:
• We present an iterative approach in an active learning

manner for UU detection. By differentiating the latent
space generated by human input from the feature space
learned by the predictive model, we are able to under-
stand the difference between human and machine classifi-
cations and to identify the problematic predictions which
are likely to result in UUs. We then add labels for these
discovered UUs to the training set and re-train the model.
This process is repeated to discover more UUs.

• We look at the cost-efficiency trade-off between predic-
tion quality improvement and human effort required to
achieve that improvement. Due to the high cost of em-
ploying human labor, extra manual effort may not be ben-
eficial if it no longer contributes to the improvement of
the model prediction quality. This contributes to building
cost-effective workflows to discover UUs with humans in
the loop.

• We show that our approach not only is able to improve
the quality of the predictions by efficiently discovering
UUs, but it can also effectively lower the model confi-
dence on problematic predictions, pushing potential UUs
into uncertainty (e.g., known unknowns based on the re-
duced confidence score of UU instances). Thus, these in-
stances can be automatically selected for post-processing
to improve model classification quality.
To the best of our knowledge these three contributions

have not been made by any previous related research looking
at human-in-the-loop UU detection. The rest of this paper
is structured as follows. Section 2 provides an overview of
previous research on the discovery of UUs and on leverag-
ing human effort to improve machine learning performance
in dealing with both textual and multimedia content. In Sec-
tion 3, we present our methodology that iteratively discovers
UUs with humans-in-the-loop. In Section 4 we report ex-
perimental evaluation results to understand the effectiveness
and budget-efficiency of our method. In Section 5, we dis-
cuss our key observations and their implications on building
cost-effective systems to improve the performance of algo-
rithmic classification. Finally, in Section 6 we summarize
our findings and draw conclusions.
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2 Related Work
This section presents previous research related to UU dis-
covery and leveraging human intelligence to improve ma-
chine learning practice.

2.1 Discovering Unknown Unknowns
Discovering UUs has recently attracted research attention
because of the traditional close-world assumption (Reiter
1981) taken by machine learning where a pre-defined model
space and all the training data is required to be defined
in advance. Andriluka, Uijlings, and Ferrari (2018) pro-
posed to allow human annotators to decide the order in
which elements in the image should be labeled. By doing
this, the method allows them to address algorithmic errors
first and to identify model unknowns. Attenberg, Ipeiro-
tis, and Provost (2015) argued that for the cases not cov-
ered by the model space, there may exist systematic mis-
classification problems. Hence, they proposed the beat-the-
machine (BTM) model leveraging crowd intelligence to find
instances (with an “open-world” assumption) which have
been missed while training the model. Vandenhof (2019)
presented a hybrid model combining the advantages of both
crowdsourcing and algorithms to identify UUs by uncov-
ering model behaviors to crowd workers, and then asking
them to use given templates to generate examples that the
model would likely mis-classify. Despite the efficiency of
these methods which is obtained by adding additional sam-
ples to the existing dataset, their scalability is limited as gen-
erating a new piece of non-textual materials (e.g., image or
video) is challenging even in a crowdsourcing setup. Dif-
ferently from existing work, we propose to leverage human
effort to identify UUs in existing collections, and to add new
labels for them into the training set. This is aimed at im-
proving under-represented classes and shift towards a more
balanced training dataset.

Complementing human-centered approaches, algorithmic
solutions to identifying UUs have also been proposed.
Lakkaraju et al. (2017) identified systematic classification
bias and grouped test data into partitions on which they pro-
posed a multi-armed bandit algorithm (UUB) to identify in-
stances that lie in blind regions of the model space. Bansal
and Weld (2018) argued that clustering techniques may re-
sult in an incomplete discovery of UUs, and thus introduced
the concept of “effective coverage” to diversify utility val-
ues in identifying UUs that exist in other areas of the model
space. Ramakrishnan et al. (2018) assumed UUs occur fol-
lowing observable features rather than at random, and pro-
posed a framework based on reinforcement learning and hu-
man feedback to predict which instances are more likely to
be UUs. Liu et al. (2020) extended the BTM model (Atten-
berg, Ipeirotis, and Provost 2015) and proposed a hybrid
human-machine approach to identify UUs. Their method,
known as patterned beat-the-machine (P-BTM), first asks
human subjects to find patterns of UU instances and uses
the discovered UU patterns to train a second classifier. This
is then applied to identifying more UUs. As compared to
them, the iterative approach we propose in our paper is more
generalizable and applicable to cases in which defining pat-
terns would be more challenging for humans like in the case

of complex image datasets like the one we use in our exper-
imental evaluation.

While these state-of-the-art methods have shown the pos-
sibility to automatically discover UUs, none of them per-
forms the discovering process in an iterative manner like
we do in this work, thus making the discovery incremental
and cost-efficient. By investigating how the prediction qual-
ity can be improved and how the model confidence evolves
through iterations as we add identified UUs into the training
set and retrain the prediction model, we are able to under-
stand the cost-effectiveness trade-offs in involving humans
to discover UUs. Moreover, unlike existing methods, our ap-
proach is based on comparing two different feature spaces:
(i) the space learned by the deployed classification model
and (ii) the space generated by crowd worker contributions.
We measure the similarity between the two spaces and are
thus able to identify problematic classification decisions that
are most likely to be UUs.

2.2 Human Effort in Machine Learning

In machine learning research, human input has often been
leveraged to improve the quality of algorithmic output. For
example, explanatory debugging (Kulesza et al. 2010) in-
volves humans in the loop to help explain machine-learned
program failures. Similarly, Nushi et al. (2017; 2018) in-
volved humans to provide explanations for each failure and
potential fixes within image captioning systems. Sroka and
Braida (2005) and Zhang et al. (2019) have shown differ-
ences among humans and algorithms in understanding mul-
timedia content such as speeches and images. They claimed
that understanding how humans select features would be
beneficial for building more human-like systems.

Previous work has also aimed at building iterative human-
machine platforms to integrate human input into the learn-
ing processes. In computer vision, for example, iterative
collaboration systems such as Flock (Cheng and Bernstein
2015) and Fluid Annotation (Andriluka, Uijlings, and Fer-
rari 2018) have been designed for capturing informative fea-
tures from human input to generate hybrid machine learning
classifiers or to understand the errors made by algorithms.
On the other hand, human input is also leveraged in an active
learning fashion (Joshi, Porikli, and Papanikolopoulos 2009;
Siddiquie and Gupta 2010; Kovashka, Vijayanarasimhan,
and Grauman 2011), where the algorithms first make ini-
tial predictions that are then corrected by humans. This pro-
cess is repeated until certain criteria (e.g., model perfor-
mance) are satisfied. For example, Rother, Kolmogorov, and
Blake (2004) developed an iterative algorithm that uses hu-
man editing to correct initial the segmentation between im-
age foreground and background. Yao et al. (2012) proposed
an incremental learning approach that iteratively refines the
model to detect presented objects in images and videos. Fol-
lowing this type of research, we also leverage human input to
address the problem of UU detection in an iterative way. In
addition, by measuring the improvement of the model qual-
ity, we are able to understand whether or not the cost of in-
volving extra human work is justified by the improvement
of model performance.
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3 Methodology
To address the most challenging scenario where it is diffi-
cult for humans to generate examples for non-textual content
(Attenberg, Ipeirotis, and Provost 2015; Vandenhof 2019),
in our work we focus on the discovery of UUs in image
datasets. Specifically, we define the task as identifying ob-
jects that cannot be recognized by the machine learning
model but are actually present in the images. To this end,
we use the MS COCO dataset (Lin et al. 2014) for our ex-
periments as these images are complex and close to real
world scenarios. For simplicity, we use images that are la-
beled as containing only one type of object2. We use im-
ages containing the six most frequently appearing objects
in the dataset (i.e., giraffes, airplanes, zebras, clocks, birds,
and trains), and define each type of object as a class that the
model should identify in the images. This constitutes our en-
tire image collection D. To create an initial training set (de-
noted by D0) with unknown bias, we only use three classes
from the original D to set up D0 (i.e., the other three classes
are manually removed to obtain D0) while keeping all the
six classes equally represented in the test set throughout the
entire process3.

Algorithm 1 presents the entire process of our iterative
approach to discover UUs. In each iteration (Line 2 to 19),
we first train a classifier to predict the object in the image,
and thus obtain a set of features fmac for each image and a
confidence score c for each prediction p (Line 4). Then, we
ask human subjects to describe the important objects repre-
sented in these test images asking them to write natural lan-
guage text of a certain length (Line 5). Thus, we are able to
extract features fhum from the human generated text (Line
6), allowing us to compare human-generated features with
the features learned by the model from training images (i.e.,
fmac). To differentiate the two feature spaces (Line 8 to 16),
we pick up each image (denoted bym) as a “query” and sim-
ulate the task of searching for the most similar images. This
allows us to understand how the two spaces differ from one
another by looking at similar images. For a given image m,
we assume that m has a higher chance to be a UU when the
querying results are less similar by using fmac as compared
to using fhum (detailed explanation in Section 3.2). Note
that we skip images for which the prediction confidence is
below a threshold τ (Line 9 to 10), as we are looking for
UUs that, by definition, are incorrect predictions with high
confidence.

Based on feature spaces comparison, we identify k prob-
lematic predictions that are most likely to be UUs and move
these identified UUs into training data (Line 17) by collect-
ing labels for them and replacing them in the test set by
randomly adding new instances from the remaining images
(Line 18). Then we re-train the model with this extended
dataset, and repeat this process to discover more instances
of unknown and under-represented classes until all classes
are well represented in the training data. In the following,
we provide detailed explanations of the functions used in
Algorithm 1.

2An image may still contain multiple instances of that object.
3We maintain the size of test set at 1000 for the entire process.

Algorithm 1: Iterative algorithm to discover UUs
Input: D0 with unknown bias, entire image collection D
Parameter: τ : confidence threshold,

k: top-k potential UUs to select iteratively
Output: balanced training set, prediction confidence

1: Let trainSet = D0, testSet = random(D −D0),
text = ∅

2: while ¬(all six classes are well represented) do
3: model = train(trainSet)
4: p〈fmac, c〉 = predictmodel(testSet)
5: text← Read human input for testSet
6: fhum = extractFeature(aggregate(text))
7: Let ρrank = ∅
8: for m ∈ testSet do
9: if c(m) < τ then

10: Skip m and go to next
11: else
12: simmac(m) = cos(fmac(m), fmac(n))
13: simhum(m) = cos(fhum(m), fhum(n))

(∀n ∈ testSet ∧ n 6= m)
14: ρrank ← Γ(simmac(m), simhum(m))
15: end if
16: end for
17: trainSet← {m | m ∈ testSet ∧

ρrank(m) ∈ mink(ρrank)}
18: testSet = random(D − trainSet), text = ∅
19: end while
20: return 〈trainSet,p〈c〉〉

3.1 Generating Feature Spaces

To improve training performance, we use the popular pre-
trained deep model ResNet50 (He et al. 2016) to extract
deep features from the entire collection D. Then, we fol-
low a random sampling strategy to select 1000 images with
three classes equally represented as D0, which has a bias
obtained by removing training evidence for the other three
classes. Next, we train an SVM (Hearst et al. 1998) classifier
with D0 and use this classifier to obtain the predicted labels
and confidence scores on the test dataset (Algo. 1 Line 3 to
4). Note that other pre-trained deep models such as AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), VGG (Simonyan
and Zisserman 2015) or ResNet101 (He et al. 2016) lead to
similar results.

Since our goal is to identify objects in images, given the
complexity of the images, we ask crowd workers to cre-
ate a textual description for these images. To simulate the
crowdsourcing task, we use the MS COCO captions dataset
(Chen et al. 2015), which contains captions for each im-
age generated by five independent human subjects over the
Amazon MTurk platform. To extract the objects that the
crowd mentions being present in the images, we adopt nat-
ural language processing (NLP) to analyze and aggregate
their text (Algo. 1 Line 6). Based on the assumption that ob-
jects are primarily described by noun phrases, we first apply
Part-of-Speech (POS) tagging to mark up each word (e.g.,
noun, verb, etc.) in these textual descriptions. Then, we ex-
tract two types of words: singular nouns (NN) and plural
nouns (NNS), followed by plural to singular normalization
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and converting all characters into lower case. After this step,
we obtain a set of nouns for each image representing the
objects that have been mentioned by five different crowd
workers. Considering the possibility of different workers us-
ing synonyms to describe the objects (e.g., airplane versus
aeroplane), we then use WordNet (Miller 1995) to examine
synonyms for each of these words, and pick up one as the
“representative” word for each set of synonyms. Based on
these representative words, we then count for each image
their occurrence in the five text descriptions as a proxy for
the frequency of object mentions by the five workers. Given
the fact that these objects may sometime be described using
super- or sub-concepts (e.g., bird versus pigeon, where “pi-
geon” is a “bird”), we again use WordNet to increase the fre-
quency score of words at higher levels if workers mentioned
it using a lower level word in the taxonomy. Specifically, if
a word x appears in the path of other word y to the root r
in the WordNet taxonomy (i.e., y is a subclass of x), then
the frequency score of x is increased by the fraction of the
length of the path from x to r divided by the length of the
path from y to r, or |level(x)−level(r)||level(y)−level(r)| . With this method, we
are able to rank objects identified by crowd workers to select
the key one in each image.

After obtaining, for each image, a list of objects ranked by
frequency, we adopt TF-IDF (Ramos et al. 2003) and adapt
the formula to our use case to generate vectorial represen-
tations of the features extracted from the text generated by
crowd workers (i.e., fhum, see Algo. 1 Line 6). For a given
image m, we use the frequency (denoted by qi) of each ob-
ject (word) oi divided by the sum of all frequency scores
(i.e.,

∑
∀oi for m qi) as its relative “term frequency” (TF) and

define “inverse document frequency” (IDF) as the logarithm
of the total number of images divided by the number of im-
ages that contain oi. In this way, we are able to obtain a
TF-IDF feature vector extracted from human generated text
for each image (i.e., fhum).

3.2 Mining Unknown Unknowns
To understand how the human generated latent space dif-
fers from the machine learned feature space, we measure
the similarity of the two spaces by looking at where simi-
lar images are placed. We take a given image m as query4,
and compute the cosine similarity of m with all other im-
ages by fmac and fhum (Algo. 1 Line 12 to 13). In this way
we obtain two lists of images ranked by similarity scores us-
ing fmac and fhum, respectively. Note that we focus on the
ranking produced by the similarity scores rather than on their
similarity values as we are interested in retrieving the most
similar images (e.g., top-100 results) to the query image m.
The two feature spaces (i.e., learned by the predictive model
and from human input) can then be compared by computing
the ranking correlation ρrank of the two ranked lists for each
query image (Algo. 1 Line 14). For a query image m, a high
ρrank(m) value implies that the retrieved images are similar

4Following previous work (Lakkaraju et al. 2017; Bansal and
Weld 2018; Maurer and Bennette 2018), we set the confidence
threshold τ = 0.65, and only consider images whose prediction
confidence is at or above this threshold.

by either using fmac or fhum. This indicates that fmac(m)
in the space learned by the predictive model is comparable to
fhum(m) in the space generated using human input. By con-
trast, a low ρrank(m) value suggests that the most similar
images retrieved by fmac are different from those obtained
by fhum, and thus the prediction of m may be problematic
and likely to be a UU.

We adopt rank-biased overlap (RBO) (Webber, Moffat,
and Zobel 2010) as our metric to compute ranking corre-
lations (i.e., Γ(•), see Algo. 1 Line 14) due to its ability
to (i) weight top ranked items more than the lower ranked
ones (as we focus on top ranked similar images); (ii) han-
dle incomplete rankings in a consistent way (as the query
results may not have a full coverage of all similar images in
the test set); and (iii) naturally adjust to any arbitrary cut-
off (e.g., considering top-100 similar images per query as
we do in our experiments). RBO measures the overlap be-
tween two ranked lists at incrementally increasing depths.
Its value goes from 0 (completely different rankings) to 1
(exactly same rankings).

3.3 Expanding Training Set
Based on ρrank, we select k images5 with the lowest ρrank
and add their labels into the training set (Algo. 1 Line 17).
We re-train the model with this extended dataset. To mimic
a real scenario, we assign labels by aggregating the crowd-
sourced text for the selected images rather than the label
which was originally removed from the training. We use the
same method as extracting features of human input (Algo. 1
Line 6), and then are able to obtain the label for each image
by picking up the word bearing the highest frequency score.
To extend the train set, one way is to pick images for the
three missing classes inD0 (i.e., clock, airplane and giraffe).
We call this method Pick3. Considering a more complex
scenario in which problematic predictions with high confi-
dence but low ρrank for known classes (e.g., predicting a
striped bird to be a zebra) are also worth being added to the
training set, we additionally consider picking images for all
(i.e., six pre-defined) classes when expanding the training
set. We call this method Pick6. Then, we re-train the model
with the extended dataset and iteratively repeat the entire
process to identify more instances of unknown and under-
represented classes. We stop when all six classes are well
represented in the training set (Algo. 1 Line 2)6.

4 Results
4.1 Identification of Unknown Unknowns
Figure 2 shows the number of images per class in the train-
ing set at each iteration. In the Pick3 approach (Fig. 2a), the
number of images for all the three known classes remains

5We set k = 100 in our experiment.
6The initial stopping criteria is based on the number of any UU

class images exceeding the initial number (e.g., 300) of images for
known classes. In our results (see Fig. 4) we also show that adding
200 images may lead to a comparable prediction quality as when
using 300 images per class. Thus, such stopping criteria may be
easily adjusted as required.
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Figure 2: Number of images for each class in the training set
over iterations while using (a) Pick3 and (b) Pick6. Nota-
tion: bird (16), zebra (24), train (7), airplane (5), giraffe (25),
clock (85).

the same over the iterations (i.e., 329, 322 and 330 repre-
senting images of birds, zebras and trains, respectively). In-
stead, the number of images for the three unknown classes
increases as we progress with more iterations. In the Pick6
approach (Fig. 2b), the number of images for all classes in-
creases as more iterations are performed. This shows how al-
gorithmic predictions can sometimes differ from human per-
ception even if these classes are well represented in the train-
ing set. For example, some images identified as UUs are not
really UUs, but are instead images of the other three known
classes7. This shows that when our method picks the most
problematic predictions (by comparing between human-data
and machine-data generated spaces), the picked images may
also include some instances of known classes (along with
some for UU classes) due to the different positions of a spe-
cific image in the two generated spaces. This is because in
the dataset, even though we only use images labeled as con-
taining a single type of object, these images are indeed com-
plex and may contain multiple objects (e.g., a bird on the wa-
ter). Such complex images may be understood differently by
the learning algorithm and by humans, and, thus, they may
be positioned differently in the two spaces (i.e., human-data
and machine-data generated spaces).

7Note that we have in total six classes in our experiment: Three
UU classes and three known classes.

Iteration Known Classes Unknown Classes Total(Pick3) Correct Wrong Correct Wrong

1 479 (46.2%) 29 (2.8%) — 529 (51.0%) 1037 (100%)
2 457 (46.3%) 28 (2.8%) 92 (9.3%) 410 (41.6%) 987 (100%)
3 453 (46.3%) 39 (4.0%) 224 (22.9%) 262 (26.8%) 978 (100%)
4 459 (46.5%) 37 (3.7%) 302 (30.6%) 189 (19.2%) 987 (100%)
5 453 (45.8%) 35 (3.5%) 371 (37.5%) 130 (13.2%) 989 (100%)
6 423 (44.5%) 39 (4.1%) 366 (38.5%) 122 (12.9%) 950 (100%)
7 468 (45.4%) 47 (4.5%) 410 (39.8%) 106 (10.3%) 1031 (100%)
8 445 (45.6%) 47 (4.8%) 391 (40.0%) 94 (9.6%) 977 (100%)
9 467 (44.7%) 59 (5.6%) 425 (40.6%) 95 (9.1%) 1046 (100%)

Iteration Known Classes Unknown Classes Total(Pick6) Correct Wrong Correct Wrong

1 479 (46.2%) 29 (2.8%) — 529 (51.0%) 1037 (100%)
2 485 (48.0%) 27 (2.7%) 21 (2.1%) 476 (47.2%) 1009 (100%)
3 491 (47.9%) 30 (2.9%) 54 (5.3%) 450 (43.9%) 1025 (100%)
4 472 (46.5%) 29 (2.9%) 92 (9.0%) 423 (41.6%) 1016 (100%)
5 438 (47.5%) 24 (2.6%) 120 (13.0%) 340 (36.9%) 922 (100%)
6 450 (46.4%) 36 (3.7%) 176 (18.1%) 309 (31.8%) 971 (100%)
7 463 (46.6%) 32 (3.2%) 242 (24.3%) 258 (25.9%) 995 (100%)
8 455 (46.4%) 34 (3.5%) 283 (28.8%) 209 (21.3%) 981 (100%)
9 434 (45.5%) 30 (3.1%) 307 (32.2%) 183 (19.2%) 954 (100%)

10 447 (46.2%) 40 (4.1%) 346 (35.8%) 134 (13.9%) 967 (100%)
11 421 (45.6%) 39 (4.2%) 344 (37.2%) 120 (13.0%) 924 (100%)
12 438 (44.8%) 46 (4.7%) 379 (38.7%) 115 (11.8%) 978 (100%)
13 444 (45.6%) 45 (4.6%) 383 (39.4%) 101 (10.4%) 973 (100%)
14 425 (45.4%) 41 (4.4%) 372 (39.7%) 98 (10.5%) 936 (100%)
15 438 (45.5%) 49 (5.1%) 373 (38.8%) 102 (10.6%) 962 (100%)
16 442 (44.7%) 49 (4.9%) 415 (42.0%) 83 (8.4%) 989 (100%)
17 425 (44.8%) 49 (5.2%) 378 (39.8%) 97 (10.2%) 949 (100%)
18 404 (43.7%) 52 (5.6%) 377 (40.8%) 91 (9.9%) 924 (100%)
19 401 (42.9%) 53 (5.7%) 382 (40.9%) 98 (10.5%) 934 (100%)

Table 1: Number (and percentage) of predictions made over
iterations with a breakdown by both prediction correctness
(i.e., correct or wrong) and groundtruth (i.e., known classes
covered by D0 or unknown classes missing in D0) using the
Pick3 (top) and Pick6 (bottom) approaches.

Since the training data size for all six classes increases
after each iteration by the Pick6 approach, this method re-
quires more iterations (i.e., 19, see Fig. 2b) to have at least
one unknown class (e.g., airplane) equally represented in
the training set. Compared to this, the Pick3 approach only
needs 9 iterations (Fig. 2a). It is evident that the number of
discovered UUs varies from class to class. This shows that
for some classes the problematic predictions are easier to
identify while for other classes it is more difficult.

4.2 Quality of Algorithmic Predictions
To evaluate prediction quality we use precision, recall and
F1 as our evaluation metrics for each of the six classes and
compute the overall prediction accuracy over all classes at
each iteration of the algorithm. For a given class u, a true
positive (TP) is defined as a match between the predicted
label v and the class, i.e., v = u. Otherwise, it is a false
negative (FN) for class u and a false positive (FP) for class
v. The overall prediction accuracy is defined as the number
of correctly predicted labels divided by the total number of
predictions.

Table 1 shows the number of correct and wrong predic-
tions at each iteration using both Pick3 and Pick6 ap-
proaches. We group these predictions into four categories:
(i) correct prediction of known classes (i.e., bird, zebra and
train), (ii) wrong prediction of known classes, (iii) correct
prediction of unknown classes (i.e., airplane, giraffe and
clock), and (iv) wrong prediction of unknown classes. Since
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Figure 3: Quality of the predictions over iterations in terms
of F1 score per class and overall accuracy, using (a) Pick3
and (b) Pick6 approaches. Notation: bird (16), zebra (24),
train (7), airplane (5), giraffe (25), clock (85), overall accu-
racy (acc).

we manually remove three (out of six) classes in D0, the
model is not able to correctly predict the three unknown
classes at the first iteration. As we progress with the it-
erations, the number of correct predictions for the three
unknown classes increases gradually using both methods,
suggesting that by adding training instances for unknown
classes (see Fig. 2) the model performance is improved. Fig-
ure 3 shows F1 scores and overall accuracy values for the
predictions using both Pick3 and Pick6. Since half of the
true labels are missing from the training set D0, the over-
all accuracy of the prediction in the first iteration is 0.46 for
both methods as the three unknown classes cannot be cor-
rectly predicted by the model. With more iterations being
performed, the overall accuracy increases going up to 0.83
in iteration 5 using Pick3 (Fig. 3a) and up to 0.82 in itera-
tion 10 using Pick6 (Fig. 3b). The overall accuracy for both
methods does not improve much afterwards.

In terms of F1 scores, three unknown classes (i.e., air-
plane, giraffe and clock) get 0 in the first iteration because
the predictive model cannot recognize them. As more it-
erations are performed, the F1 scores for these classes in-
crease significantly until the fifth and tenth iterations for
Pick3 (Fig. 3a) and Pick6 (Fig. 3b) and then remain at the
same levels, respectively. This explains why the overall ac-
curacy does not improve much afterwards. On the contrary,
F1 scores in the first iteration for the three known classes are
0.53, 0.83 and 0.57 for bird, zebra and train, respectively.

Figure 4: F1 scores for the three unknown classes over the
number (in log scale) of images included in the training data,
using (a) Pick3 and (b) Pick6. Notation: airplane (5), gi-
raffe (25), clock (85).

This shows how the learning algorithm has extracted some
features that make zebra images well distinguishable from
other classes, and thus most UUs are images classified as
bird or train rather than zebra.

Among the three unknown classes (i.e., airplane, giraffe
and clock), the improvement of the prediction quality for air-
plane happens at a higher rate than for clock or giraffe. This
is because there are more airplane images identified as UUs
and subsequently added into the training set after each iter-
ation (see Fig. 2). This observation implies that the features
learned by the predictive model for airplane images show
the largest deviation from human perception. This makes the
airplane class be the first to get an equal train set size as the
three known classes (see Fig. 2). On the other hand, due to
the complexity of the images (e.g., presence of multiple ob-
jects), adding too many examples to the training set does not
necessarily improve the quality of the predictions (e.g., the
F1 scores for both airplane and bird decrease after iteration
16 by Pick6 approach, see Fig. 3b) or can even increase
the number of wrong predictions of the known classes (see
Tab. 1). Figure 4 shows the improvement of the prediction
quality by means of F1 scores for the three unknown classes
with respect to the number of images included in the training
data. We can observe that by adding 100 images per class,
the F1 score can reach high values (around 0.8) and does
not increase much as we add more than 200 images for each
class. This can be achieved in five iterations using Pick3
and in ten iterations using Pick6 (see Fig. 2). This bears
implications on the decision of when to stop with iterations
(Algo. 1 Line 2) in order to obtain the most cost-effective
benefits (see Sec. 3.3).

4.3 Effects on Model Confidence
Next, we look at how the confidence of the predictions
changes over iterations. Recall that UUs are defined as in-
correct predictions with high confidence scores. To under-
stand how the confidence scores for the predictions of un-
known classes (i.e., airplane, giraffe and clock) differ from
those for the predictions of known classes (i.e., bird, zebra
and train), we group them by the correctness of the predic-
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Figure 5: Confidence of the predictions over iterations by (a) Pick3 and (b) Pick6 approaches. The predictions are grouped
into four categories: (i) correct prediction of known classes (i.e., bird, zebra and train), (ii) wrong prediction of known classes,
(iii) correct prediction of unknown classes (i.e., airplane, giraffe and clock), and (iv) wrong prediction of unknown classes.

tions (i.e., correct or wrong) and the groundtruth labels (i.e.,
known or unknown classes). Figure 5 shows the evolution
of the confidence scores over iterations with a breakdown
in the four groups: (i) correct prediction of known classes,
(ii) wrong prediction of known classes, (iii) correct predic-
tion of unknown classes, and (iv) wrong prediction of un-
known classes. At the first iteration, due to the absence of
the three unknown classes inD0, all the predictions for these
classes are incorrect (see Tab. 1). However, the confidence
scores of these wrong predictions (mean 0.785 and median
0.823) are higher than those of the wrong predictions for
known classes (mean 0.678 and median 0.649) in this itera-
tion (Fig. 5ab). Using a Mann-Whitney U test8, we conclude
that this difference is statistically significant (p < 0.01).
This confirms the existence of UUs, as the model assigns
high confidence scores to wrong predictions.

As more images of unknown classes are being added
to the training set, in the second and third iterations (see
Fig. 2ab) the confidence score of wrong predictions for un-
known classes drops significantly (Fig. 5ab) (Mann-Whitney
U test reveals statistically significant difference, p < 0.01).
This shows that by adding some (but not enough) labels
for unknown classes and re-train the model, the prediction
uncertainty for these classes increases when they are incor-

8We adopt the Mann-Whitney U test (Mann and Whitney 1947)
to examine the differences among these scores across iterations as
the score distribution is not interval scaled.

rectly predicted. This suggests that the predictive model can,
to some extent, realize that mistakes are being made just af-
ter three iterations. As we progress doing more iterations,
the confidence of wrong predictions for unknown classes
decreases to a comparable level to that of wrong predic-
tions for known classes at Iteration 2 and Iteration 9 using
Pick3 (Fig. 5a) and Pick6 (Fig. 5b), respectively. We do not
observe statistically significant difference between the two
groups. Meanwhile, the confidence of correct predictions for
unknown classes is higher than that of wrong predictions for
these classes in all iterations (i.e., from Iteration 2) using
both Pick3 and Pick6 approaches (Mann-Whitney U test,
p < 0.01). These observations show that the performance of
the model in predicting unknown classes (as either correct
or wrong predictions) is similar to that in predicting known
classes (i.e., wrong predictions being assigned lower confi-
dence scores) after introducing a certain number of labels
for unknown classes into the training set. The discriminative
power of the model in distinguishing (potentially) wrong
predictions from correct ones manifests that UUs have been
pushed into known unknowns, where the mistakes made by
the model are able to be identified by the low confidence.

Another observation we can make is that the prediction
confidence decreases in the first few iterations of correct pre-
dictions for both known and unknown classes, as well as
those of wrong predictions for unknown classes. This can be
explained by the increased diversity of images (e.g., differ-
ent objects with the same background) when the training set
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Figure 6: Comparison with baseline methods: (a) number of identified UUs and (bc) F1 of the model prediction after retraining.

expands. When we add more images for unknown classes
to the training set in subsequent iterations, the model confi-
dence for correct predictions goes gradually up again. Con-
fidence scores of correct predictions for unknown classes
become similar to those for known classes from Iteration 7
and Iteration 15 onward using Pick3 (Fig. 5a) and Pick6
(Fig. 5b) respectively. This suggests that after learning from
a more balanced training set where all classes are better-
represented (see Fig. 2), the predictive model is able to make
more reliable predictions.

4.4 Comparison with Baseline Approaches
In both UUB (Lakkaraju et al. 2017) and coverage-based
methods (Bansal and Weld 2018), the instances (i.e., images
in our dataset) in the test set are selected and used to query
human subjects one by one and the corresponding human la-
bel (regarded as the groundtruth) is used to make a decision
on selecting the next instance (or cluster) to query human
subjects for. Thus, we compare the proposed method with
these two human-in-the-loop approaches by assuming that
a certain number (e.g., 100) of instances are required to be
selected. We evaluate selected instances from two perspec-
tives: (i) the number of true UUs among selected images,
and (ii) the quality (i.e., F1 averaged across all UU classes)
of the model prediction after we add all selected images to
the training set and retrain the model.

Figure 6 presents the comparison between our methods
and baseline approaches9. We can see that our method (i.e.,
Pick6) outperforms the baseline approaches in terms of the
number of identified UUs (Fig. 6a). In terms of model pre-
diction quality after retraining (see Fig. 6b), as coverage-
based approach is able to select images that have a better
coverage of the three UU classes, it exhibits a better im-
provement of average prediction quality than our approach
while selecting up to 500 images to retrain the model. In-
deed, our method works iteratively and tends to select in-
stances that bear the highest dissimilarity between human
and machine generated spaces. Thus, the images selected
by our method may come from the classes having the most
problematic predictions, and, for this reason, these images
may not have a balanced coverage of all UU classes. On the
other hand, as more instances (e.g., more than 500 images)

9We execute the baseline methods 10 times to reduce the im-
pact of the random seeds used in their initialization steps. This is
reflected by the boxplots in Figure 6.

are being selected by our iterative method and the coverage
of all UU classes is improved, our method shows better per-
formance than the baseline approaches. If the existence of
UUs is known a priori (i.e., we can directly pick instances of
UU classes to retrain the classification model), our Pick3
method exhibits better performance than the baseline ap-
proaches (see Fig. 6c). This indicates that by selecting the
most problematic images, our method is able to improve the
model performance (based on F1 score) more efficiently as
compared to the other methods in terms of the required in-
stances with human generated labels.

5 Discussion
Through the experimental results presented in the previ-
ous section, we have shown that our human-in-the-loop ap-
proach is effective in the discovery of UUs and can improve
the quality of the prediction model by iteratively selecting
new instances to be labelled. Our proposed method can be
generalized to address the UU detection problem that may
be caused by other reasons like, for example, covariate shifts
(Sugiyama and Kawanabe 2012). As the method looks at
the prediction results, it collects manual labels for selected
instances from the test set, and finally adds these selected
instances to expand the training data. If the UU problem
is caused by distributional differences between training and
test data, for example, adding new data points from the test
set would gradually address this problem. Thus, our method
is also effective to address such UU causes.

In our experiments, we show that it is possible to effec-
tively identify the most problematic predictions by feature
space differentiation. Measuring the distance of each image
to other images allows us to understand how the relations
among these images differ from one space to another. In
this way, we are able to identify which images have different
representations in the machine generated space, compared to
the human generated space. Then, adding these images to the
training set results into better quality predictions. This bears
implications on understanding the machine learning black-
box from a human point of view (Krause, Perer, and Ng
2016) and, in turn, on building more human-like algorithms
to process multimedia content, for example. In our experi-
ments, some complex images may result in positioning dif-
ferences across the human and machine generated spaces.
For this reason, some images from known classes may also
be picked up by our method in each iteration (if the image is

80



complex). In Iteration 1 of our Pick6 method (see Fig. 6a),
for example, of the 100 images that are picked up, 55 (out of
100) images are from UU classes (i.e., the other 45 images
of from known classes)10. On the other hand, our method is
not restricted to working on image data as it uses the human-
data generated space to differentiate the machine-data gen-
erated space and it assumes the human generated data as
groundtruth. As our method relies on feature space differ-
entiation, it is independent of the types of data in which
UU problems are present. As humans are able to generate
text (e.g., writing comments) for different types of data like
videos, so it is possible to construct the two required feature
spaces we introduce in this work. Therefore, our iterative
human-in-the-loop approach is directly applicable to other
scenarios, such as identifying UUs in textual content.

An iterative approach can also provide a more cost-
effective UU detection method. In the proposed methodol-
ogy, we initially set the stopping condition as having all
classes well represented in the training data (Algo. 1 Line
2). The prediction quality in our experiments, however, in-
dicates that having 100 (and no more than 200) images per
class to train the model is enough to obtain good quality pre-
dictions (see Fig. 4). Depending on the characteristics of the
task (e.g., the complexity of the images to be classified), we
may even need to perform fewer iterations to achieve good
quality predictions (e.g., we only need five rather than ten
iterations of Pick6 to get good predictions of “airplane” im-
ages, see Fig. 3b). On the other hand, adding more images to
the training set allows to make more reliable predictions, as
the (median) confidence scores for correct predictions for
both known and unknown classes increase over iterations
(see Fig. 5). Such findings are valuable in a crowdsourc-
ing setting and allow for new stopping criteria to be defined
to provide the most cost-effective trade-offs. Since querying
crowd workers is expensive, we do not want to access extra
human work if it does not contribute to improving prediction
quality given that certain reliability is achieved.

Moreover, our iterative approach shows its ability to make
UUs become known unknowns, where incorrect predictions
come with low confidence scores. In our experiment, in the
first iteration the predictive model makes high confidence
predictions for unknown classes (see Fig. 5) but these pre-
dictions are actually wrong (see Tab. 1), as they are UUs
(i.e., errors which are blind to the model). After performing
two more iterations, the model confidence of wrong predic-
tions for unknown classes drops significantly. This shows
that by adding discovered UUs to the training data, the pre-
dictive model becomes aware of uncertain predictions that
are likely to be wrong. As more iterations are performed,
the model confidence of wrong predictions becomes distin-
guishable from that of correct predictions for both known
and unknown classes. Thus, these potentially incorrect pre-
dictions can now be automatically identified using their con-
fidence scores being below a certain threshold. Because
of the existence of UUs, an uncertainty sampling strategy

10Note that the method picks 100 images per iteration, where
some images from known classes are also picked up by other meth-
ods (including baseline approaches, see Fig. 6a).

(Lewis and Catlett 1994) does not work as UU instances do
not come with low confidence scores. By pulling down the
confidence scores of wrong predictions, we are able to make
the uncertainty sampling strategy work again. This bears im-
plications on building hybrid human-machine systems to ef-
ficiently discover UUs with a constrained manual annotation
budget. For example, by asking humans to identify a cer-
tain amount of UUs with just a few iterations, we are able
to push UU instances into known unknowns, and then use
uncertainty sampling strategy to automatically select prob-
lematic predictions for manual post-processing. Such a two-
stage process would benefit AI practitioners in cutting costs
or in making the most of their budget to carry out experi-
ments and build products.

6 Conclusions
Automatic prediction models may result in wrong but high
confidence classification decisions. This usually happens
when certain classes are absent or under-represented in the
training data. In this paper, we present the first work that
leverages human intelligence in an active learning fashion
to discover unknown unknowns. By comparing the feature
space generated by human input from that learned by the
predictive model from images, we iteratively discover the
unknown and under-represented classes in the training data
and extend it to re-train the model.

The experimental results show that the proposed method
is able to significantly improve model prediction quality,
as well as to effectively push UUs to known unknowns by
reducing the model confidence for UU instances so that
they may be automatically selected for post-processing af-
ter initial human intervention. We also provide insights of
the trade-off between the prediction quality improvements
and the human efforts required to achieve those improve-
ments. These results bear implications on the design of cost-
effective and task-dependent systems to discover unknowns
with humans in the loop.

Our method relies on space differentiation that looks at
how instances are positioned in each (human- or machine-
generated) space. This is computed by ranking each instance
relative to other instances in the space. In the extreme case
where all instances are identical and indistinguishable in the
representational space, our method would not be able to de-
tect UU instances, which is a limitation. This case, however,
is not likely to occur in practice as in real-world scenario in-
stances are usually modeled by multi-dimensional represen-
tations (e.g., image embeddings) and instances being identi-
cal would require all the features being the same. In fact, our
method can generate effective rankings as long as at least
one feature dimension is different for different instances,
making our approach applicable across data types.
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