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Abstract 
Data quality is a key concern for artificial intelligence (AI) 
efforts that rely on crowdsourced data collection. In the 
domain of medicine in particular, labeled data must meet high 
quality standards, or the resulting AI may perpetuate biases 
or lead to patient harm. What are the challenges involved in 
expert medical labeling? How do AI practitioners address 
such challenges? In this study, we interviewed members of 
teams developing AI for medical imaging in four subdomains 
(ophthalmology, radiology, pathology, and dermatology) 
about their quality-related practices. We describe one 
instance of low-quality labeling being caught by automated 
monitoring. The more proactive strategy, however, is to 
partner with experts in a collaborative, iterative process prior 
to the start of high-volume data collection. Best practices 
including 1) co-designing labeling tasks and instructional 
guidelines with experts, 2) piloting and revising the tasks and 
guidelines, and 3) onboarding workers enable teams to 
identify and address issues before they proliferate. 

 Introduction   
As artificial intelligence (AI) applications become more 
widespread, there is a growing need for high-quality labeled 
data. Many AI applications require large labeled data sets, 
on the order of tens of thousands of examples or more (Ting 
et al. 2017; Phene et al. 2019; Liu et al. 2020) to train and 
validate a sufficiently high-performing model. Often, such 
labels can only be collected via a large-scale labeling 
process (Gulshan et al. 2016; Nagpal et al. 2020). 
 Label quality has emerged as a key challenge (Daniel et 
al. 2018). Recent work has demonstrated that training with 
low-quality labels, identified by methods such as cross-
validation, results in poorer-performing models than when 
such labels are excluded (Hsu et al. 2020). Low label quality 
can pose many risks, including 1) models that are inaccurate, 
or that generalize poorly outside of the training sets, 2) 
significant time and resource costs, and 3) models that 
amplify worker bias (Jiang and Nachum 2020). Quality 

 
Copyright © 2021, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 

issues may not be apparent until after a model is trained and 
tested against a held-out set. 
 This challenge is further exacerbated in the application of 
AI to higher-risk domains, such as medical imaging. AI 
models have demonstrated performance equal to or greater 
than that of experts on diagnostic tasks such as identifying 
eye disease (Ting et al. 2017; Gulshan et al. 2019) or cancer 
(Esteva et al. 2017; McKinney et al. 2020). But if deployed 
in real-world clinical settings, poorly-performing or poorly-
generalizing models may lead to patient harm (Zou and 
Schiebinger 2018; Challen et al. 2019).  
 Moreover, medical-imaging models often require labels 
from experts. This can be costly, due to the limited pool and 
availability of workers with sufficient medical training. 
Training a model based on a large data set before assessing 
label quality is thus particularly risky in this domain. 
 As a result, there is strong motivation to establish 
practices to ensure label quality for medical imaging. What 
quality-related practices do teams developing medical 
imaging AI employ? What are the unique challenges and 
opportunities of expert labeling as they relate to label 
quality? 
 This paper addresses these questions by reporting on 
interviews with teams under real-world constraints of 
developing AI for clinical deployment. We observe the 
practical application of principles described in the 
commodity crowdsourcing literature, and illustrate a novel 
set of challenges relating to experts’ prior heuristics. In 
contrast to commodity crowdsourcing, workers on medical 
labeling tasks bring considerable prior experience, much of 
which reflects Gestalt rather than explicit knowledge. This 
may result in a mismatch between clinical practice and the 
needs of labels for AI development. 
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Figure 1: Quality-control mechanisms used by teams developing medical imaging AI. Upstream efforts involved co-designing 
and iterating labeling tasks and instructions with experts. Downstream efforts included automated label-quality monitoring.

 We describe a process designed specifically to address 
this mismatch, in which AI practitioners partner with 
experts to 1) co-design labeling tasks and detailed 
instructional guidelines, 2) iterate the tasks and guidelines 
via small-scale pilots, and 3) onboard workers via tests that 
train and ensure guideline compliance. See Figure 1 for an 
overview of these processes. 
 A key insight from our interviews is that these practices 
focus primarily on partnering with and instructing expert 
workers, rather than filtering out low-performing workers. 
Iterative guideline development identifies points of 
misalignment between clinicians’ approach to a task and the 
requirements for labels to train AI systems. Onboarding 
tests train experts to use explicit guidelines rather than rely 
solely on their own pre-existing clinical heuristics.  

Related Work 

Extensive prior literature documents label-quality 
considerations, much of it focused on commodity 
crowdsourcing platforms. Daniel et al. (2018) provide an 
extensive survey and synthesis of prior commodity 
crowdsourcing literature. They derive a quality model, 
which formally specifies the entities, dimensions, and 
attributes relevant to label quality. They review a range of 
interventions and methods to ensure quality. They further 
assess how 14 crowdsourcing platforms support different 
assessment methods for workers. Platforms provide some 
support for identifying workers with particular skill sets 
(such as qualification tests for particular tasks), but these 

tend to focus on relatively simple tasks. For example, Heer 
and Bostock (2010) show that a qualification task for 
graphical perception tasks on simple visualizations may be 
effective. 
 A common quality-control pattern in commodity tasks is 
to monitor performance by assigning questions with known 
ground truth, referred to as “gold standard” data sets (Le et 
al. 2010). Other approaches focus on measuring consistency 
among workers, sometimes using algorithms to estimate 
overall accuracy per worker and item, such as expectation-
maximization approaches (Ipeirotis et al. 2010; Huang and 
Fu 2013). While measures of worker agreement may reflect 
quality, some conceptual frameworks indicate that 
agreement only reflects common knowledge of workers. 
Such common knowledge may not always converge on 
correct answers (Waggoner and Chen 2014). Yet other 
approaches involve identifying low-performing workers 
with adversarial intent, such as workers who are paid per 
task and are motivated to complete tasks quickly to 
maximize income, without regard for quality (Checco et al. 
2020). 
 By contrast, other research has focused on improving 
worker performance by improving the labeling experience 
itself. Gaikwad et al. (2017) criticize the assumption that 
“low-quality work is the fault of workers.” They propose 
“prototype tasks,” a process in which requesters launch 
tasks to a small number of workers, solicit feedback, and 
iterate on the tasks based on the feedback. Similarly, Bragg 
et al. (2018) describe a system in which workers surface 
points of confusion and suggest alternative task phrasing or 
structure. Manam et al. (2019) show that quality issues may 
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reflect shortcomings in the design of the labeling task 
questions and/or instructions given to workers, rather than 
shortcomings in worker skill or conscientiousness. 
 Relatively few studies have focused on tasks requiring 
workers with domain expertise. Barrett and Sherman (2019) 
examine quality assessment of labels from expert workers in 
a legal task (tagging legal rulings text). They show that inter-
worker agreement metrics on sequential batches of tasks can 
reflect data quality. 
 Within the medical domain, Ørting et al. (2020) review 
57 papers that discuss the use of non-expert crowdsourced 
workers to label medical images. They identify a range of 
image domains (including brain, eye, lung, breast, and 
heart), a range of tasks (most commonly image 
classification and/or segmentation), and a range of image-
based comparisons. Many of the cited papers focus on the 
use of non-expert crowd workers to label examples to train 
an expert task, although the authors note that several tasks 
may not be well-suited to crowd workers. Another analysis 
of medical image labeling indicates that worker time on task 
can be a useful signal of low quality, but that time alone is 
not sufficiently robust to be clearly diagnostic (Hutson et al. 
2019). 
 Outside of the crowdsourcing domain, teams working in 
medical imaging have developed approaches to involving 
clinical experts in AI efforts to design effective product 
onboarding (Cai et al. 2019) and increase the accuracy of 
medical generalists (Schaekermann, Cai, et al. 2020). 
 While interest in large-scale label collection for medical 
imaging has increased, there remains a gap in understanding 
how the above approaches may or may not apply to this 
expert domain. The focus of the present research was to 
understand what practices teams partnering with medical 
experts to collect medical imaging labels have developed to 
ensure data quality. 

Methods 

We conducted 12 1-hour interviews with members of teams 
developing medical imaging AI in 4 subdomains: 
ophthalmology, radiology, pathology, and dermatology. A 
summary of participants is provided in Table 1. 
 To understand overall labeling processes, we interviewed 
six program managers (who managed labeling operations, 
resource allocation, and performance monitoring). To 
understand the perspectives of other functions involved in 
labeling, we interviewed four clinical specialists (medical 
domain experts who apply clinical expertise to labeling 
efforts), one engineer with AI specialization, and one user 
experience researcher who consulted on task and guideline 
design. The 12 participants were all the team members from 
the organization who were available for us to interview.  
 
 
 

Participant Domain Role 

P1 Ophthalmology Program manager 

P2 Radiology Program manager 

P3 Pathology Program manager 

P4 Pathology Program manager 

P5 Dermatology Program manager 

P6 Dermatology Program manager 

P7 Ophthalmology Clinical specialist 

P8 Ophthalmology Clinical specialist 

P9 Radiology Clinical specialist  

P10 Pathology Clinical specialist 

P11 Ophthalmology Software engineer 

P12 Radiology User experience 
researcher 

Table 1: Summary of interview participants. 
 
 Workers for each project included clinicians with training 
relevant to the given medical imaging domain. Workers’ 
degree of prior experience varied depending on the project. 
Some projects included trainees, while others  
required doctors who had completed their training; still 
others required board certification for a specific 
specialization (such as board-certified radiologists or 
ophthalmologists who had completed retina or glaucoma 
fellowships). Worker managers, regardless of job title, were 
responsible for assigning tasks to workers, communicating 
the task and guidelines to them, and monitoring progress on 
tasks. Program managers more specifically were responsible 
for assigning workers to projects, and investigating and 
resolving worker performance issues, if needed. 
 Participants worked on a range of AI projects within the 
medical imaging domain. Typically, each project involved 
developing supervised learning models on one or more more 
images in a given domain, such as ophthalmology or digital 
slide pathology. Tasks primarily focused around 
classification tasks, such as determining disease severity of 
a case, or whether a case does or does not contain a specific 
pathology. Some teams worked on localization tasks in 
which models are trained to specify a region of interest, such 
as a suspicious area in an image or volume. One team also 
developed models that classified disease severity across a 
large digital slide. During interviews, we asked about label 
quality within the context of the specific tasks for that 
domain. 
 Data labeling generally occurred using image viewers 
operating within an internal, HIPAA-compliant platform for 
medical image labeling, using image viewers that were 
customized for different imaging modalities. Labeling 
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occurred with strict data-protection policies, such that only 
workers and team members with explicit permission were 
able to access images. 
 Due to the open-ended nature of the research question of 
how teams ensure quality, we used a semi-structured 
interview protocol. The focus was on collecting specific 
stories of quality-related incidents, and understanding the 
implications of these incidents. The core prompt for each 
interview was: “Describe a time when you had concerns 
about a worker’s label quality.” We considered asking 
specifically about “the last time” but decided to allow 
interviewees to start with the most salient incident, and then 
probe on more recent incidents. If an experienced team had 
developed effective practices for ensuring quality, we 
wanted to learn about their formative experiences and how 
they influenced subsequent practices. We probed on several 
key aspects of each label-quality incident: 

• “How did it come to your attention?” We sought to 
understand what signals (quantitative or qualitative) 
could surface potential issues, especially prior to the 
conclusion of data collection. 
• “What did you do?” Follow-up questions probed what 
interventions were used to diagnose and rectify quality 
issues at various points in the process. 
• “How have your processes changed over time?” We 
sought to understand what practices the teams instituted 
as a result of these incidents, in order to curtail future 
issues. 
  

Each interview was conducted by the first author and 
observed by at least one fellow author. All interviews were 
video recorded. Using a Reflexive Thematic Analysis 
approach (Braun and Clarke 2006, 2019), we transcribed the 
interviews, created initial codes via an inductive (bottom-
up) approach, and generated initial themes. Authors 
participated in multiple rounds of discussion to reflect on 
interviewee stories, identify commonalities across teams 
and projects, and iterate on the themes presented below. 

Results 

Inter-Worker Variability Was a Key Challenge in 
Medical Image Labeling 
All teams interviewed described challenges with label 
variability across workers. An example is illustrated in 
Figure 2. These data were shared by a team developing a 
model to assess glaucoma risk from retina images using a 
four-point risk scale. The team found that many cases, when 
labeled by multiple workers, had high variability across 
labels from different workers. Other teams also reported 
variability as a key challenge to be managed. 
 

 

Figure 2: Labeling variability across expert workers. 
Highlighted rows indicate (from top to bottom): a case that 
all workers agreed is non-glaucomatous, a case that elicited 
all 4 possible risk levels, and a case that all workers agreed 

is at high risk for glaucoma. 

 In the medical domain, several factors were identified as 
contributing to variability across workers, including: 
 

• Differences in training or experience: Experts may 
come from different training backgrounds. As P7 stated, 
“You end up doing what you learned during training.”. 
Those with more experience may benefit from being able 
to draw from a wider range of real-life data points. 
• Differences in individual tendencies: Teams have 
observed differences in labeling approaches based on 
different inclinations: “(Workers) have a tendency to fall 
across the spectrum regarding specificity versus 
sensitivity, which will be more likely to surface if explicit 
instructions are not provided as to where on the 
sensitivity/specificity side we prefer them to be” (P9). 
• Differences in understanding of worker guidelines: 
Teams realized that workers sometimes approached the 
same task inconsistently due to different guideline 
interpretations: “After looking at the data, it turned out 
that half of the (workers) interpreted a question one way, 
and half of them another way. At least half of our data set 
was useless. We learned that we needed to test run the 
guidelines before opening up the entire job for labeling” 
(P3). 
 

These factors can impact consistency and quality of labels 
and resulting AI models.  

Task Design Mapped from Clinical to AI Needs 
A key mitigation to address differences across workers was 
careful design of the labeling task and guidelines. Task 
design refers to the detailed structure of questions asked 
around a set of medical images. “Guidelines” refers to 
documents outside the task that orient workers on how to 
answer questions. 
 The guidelines served several purposes. First, guidelines 
instructed workers on how to apply pre-existing clinical 
workflows and heuristics. For instance, a team developing 
models for glaucoma risk detection based initial guidelines 
off recommendations from the American Academy of 
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Ophthalmology’s Primary Open-Angle Glaucoma Suspect 
Preferred Practice Patterns (Prum et al. 2016). 

Second, guidelines oriented workers from a clinical 
setting to an AI setting, taking them from familiar tasks to 
tasks suited for AI labels. For instance, workers in the 
glaucoma risk project had to assess risk based on only an 
image of a patient’s retina. By contrast, the clinical risk 
assessment for which workers were trained involved many 
inputs in addition to the retinal image, including patient 
metadata (e.g. age and family history), data from prior visits, 
other measurements (e.g. intraocular pressure and visual 
field testing), and potentially images from a different 
modality (such as optical coherence tomography). Because 
workers weren’t trained in assessing images alone, 
guidelines needed to be more explicit about the definition of 
visual features workers were expected to identify. 

Third, guidelines reduced ambiguity by including 
examples of cases representing different answer choices. 
For instance, during glaucoma risk assessment, guidelines 
showed examples of retina images with and without specific 
risk indicators. The practice of including examples, 
especially ambiguous examples, has been shown to improve 
labeling accuracy (Pradhan and Lease 2018). 

Fourth, guidelines primed workers for the task at hand. 
Interviewed teams described the importance of setting 
context for workers, especially when the labeling project 
used enriched data sets (in order to obtain more positive 
examples of rare conditions). For example, one radiology 
guideline document stated, “Imagine these images are from 
patients at a [condition] screening clinic in a region of 
[location] where [condition] is relatively common.” Without 
sufficient context about the data, workers might have biased 
their answers (consciously or not) with their underlying 
assumptions about disease prevalence. For example, if 
during a labeling task, a worker felt they had identified 
pathologies at a higher rate than they would expect in a 
clinic, they might have tended to under-diagnose that 
pathology in the remaining portion of the labeling task. 

Given the many functions of task and guideline design, 
the design process tended to involve several steps, which we 
describe below. 

AI Teams and Clinical Experts Partnered in an 
Iterative Process Prior to the Launch of High-
Volume Data Collection 
Team members described an iterative process to identify and 
address issues related to task design, guideline design, and 
worker training. These issues were typically identified well 
before the tasks were launched to all workers for high-
volume data collection.  
 The pre-launch process included the following stages: 

 
1 A phrase used during the 1964 U.S. Supreme Court case 
Jacobellis v. Ohio to describe the act of defining obscenity  

• Initial task and guideline design: Initial adaptation of 
a clinical task to a labeling task 
• Task and guideline iteration: A multi-step process to 
surface and address ambiguities in the tasks and 
instructions, using a small group of trusted workers 
• Worker onboarding: Training a larger pool of workers 
on the updated guidelines, and validating that they are 
able to perform the task well 

 
 In contrast to these pre-launch practices, post-launch 
quality-related checks were more variable. One of the four 
teams adopted automated monitoring of performance during 
the task, comparable to practices in commodity 
crowdsourcing (Le et al. 2010; Checco et al. 2020). The 
other teams relied on spot checks to examine answers to 
individual tasks. 
Initial Task and Guideline Design 
Medical domain experts and AI practitioners co-led the 
designing of labeling tasks and instructional guidelines. This 
process typically involved an engineer and a clinical 
specialist. The specialist usually had a background similar 
to those who would be involved in the labeling, while the 
engineer understood the requirements of the labels for AI 
development. 
 This approach was developed to address two key 
challenges in creating labeling tasks for medical experts: 

• The gap between clinical and labeling contexts: In a 
clinical setting, an expert can directly examine the patient, 
as well as access their full medical record. When labeling, 
a worker may have access to only a single photo or scan. 
It would be “clinically unacceptable” (P7) to make a 
diagnosis based on such limited data, although doing so 
may be valuable for other contexts, such as screening. 
• The gap between experts’ intuition and the 
structured data required for AI development: Clinical 
specialists described how experts can develop an initial 
“gut feeling” from years of experience. According to P7, 
one expert described diagnosing glaucoma as “I know it 
when I see it.”1  
 

Clinical specialists helped translate clinical practices into 
labeling tasks by participating in the drafting of tasks and 
instructional guidelines. 

To bridge the gap between clinical and labeling contexts, 
teams noted the importance of carefully wording task 
prompts. As one clinical specialist (P9) described, “The 
question can predispose your worker to be highly sensitive 
or highly specific. Asking, ‘How confident are you that 
[condition] may be present?’ could add to unpredictable 
noise in the data. Rephrasing it to, ‘Can [condition] be ruled 
out?’ would be a more optimal way to phrase it (if 
optimizing for sensitivity).” 
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Figure 3: Visual callouts in a guideline document for 
glaucoma-risk labeling. (Retina image provided via 

RetinaGallery: Mayo Clinic Jacksonville. Some 
modifications made for illustrative purposes.) 

 
Teams also described using a combination of “global” 

and “local” questions in order to bridge the gap between 
experts’ intuition and the need for structured data in AI 
efforts. In a clinical setting, clinicians do not necessarily 
perform a detailed assessment of items in a checklist of 
individual (“local”) features. Rather, they often form a 
clinical assessment based on the overall Gestalt (“global”) 
picture. However, in model development, a checklist is 
important to ensure consistency among workers and provide 
data that can be used to explain model output.  

For example, a task asked questions about 11 separate 
“local” optic nerve head features prior to asking the “global” 
question of overall glaucoma risk. This ensured that workers 
would methodically examine and consider specific features 
rather than rely on their initial impression in their 
assessment. It also allowed the AI team to analyze which 
features (or combination thereof) correlated with higher 
glaucoma risk. As P7 described, “The algorithm is doing 
more than merely approximating physician skills, but 
finding novel relationships not readily apparent to human 
beings.” 

In addition to designing the labeling tasks, clinical 
specialists also drafted guideline documents for labeling 
tasks. In commodity crowdsourcing, tasks and instructions 
are typically simple enough to be presented together in the 
crowdsourcing platform interface. The medical labeling 
tasks managed by the interviewed teams, on the other hand, 
were too complex to fully explain within the labeling 
interface. Therefore, each team created a guidelines 
document to accompany each labeling project. 

The guidelines created by interviewed teams ranged from 
two to 87 pages, depending on the number and complexity 
of subtasks. Figure 3 shows a portion of a glaucoma risk 
guidelines document. 
Task and Guideline Iteration  
Teams noted that they could not anticipate all possible ways 
in which tasks and guidelines could be interpreted before 
workers started hands-on labeling. Therefore, teams 
developed a process of testing and revising tasks and 
guidelines prior to high-volume data collection. This 
process involved a small set of workers who collaborated 
closely with the AI and clinical domain specialists who 
developed the initial tasks and guidelines. 

 Teams used a variety of mechanisms to gather feedback 
on tasks and guidelines. One practice was to use clinical 
experts to review the tasks and guidelines, similar to a 
heuristic evaluation: “We have three (expert) pathologists 
who take the guidelines, do some sample tasks, and provide 
feedback. This is in order to find glaringly obvious mistakes 
before we start a full production run of label collection” 
(P3). A second practice was to gather initial feedback on the 
tasks and guidelines from representative workers, prior to 
labeling: “We had focus groups to solicit information, 
asking them what they thought about the prompts, and if 
there was anything they wished we could change. When you 
have thousands of cases, you want to make the experience 
better (for workers)” (P6). A third practice was to pilot the 
labeling task. Workers labeled a set of sample data, and then 
shared feedback: “We find holes and gaps in the guidelines. 
Some (workers) give suggestions on wording and options. 
They’re exercising the whole thing and giving feedback 
right away” (P1). 
 This collaborative and iterative feedback process enabled 
teams to improve the clarity of task instructions. For 
example, teams described how workers not involved in 
drafting the guidelines pointed out ambiguous or edge cases 
not accounted for in the initial draft. As a result, teams 
documented these ambiguous and edge cases in the 
guidelines, and clarified how workers should handle them. 
 Teams also used feedback to improve task prompts. For 
example, workers sometimes pointed out when answer 
options were incomplete. For one team, the initial options 
for a question about the presence of a pathology were 
“[condition] present” and “[condition] absent.” P7 observed 
that workers struggled with the binary nature of the options: 
“Sometimes it’s impossible to make a yes/no call for any 
disease, especially based on a single image, and forcing 
(workers) to do that made them very uncomfortable.” As a 
result, the options were changed from a boolean Yes/No to 
more nuanced options (e.g. “none,” “low,” “high,” and 
“likely”).  
  In addition to gathering qualitative feedback from 
workers, teams also used quantitative analyses to identify 
potential issues. In particular, several teams analyzed inter-
rater agreement (the degree of answer consistency among 
workers) to assess the effectiveness of guideline iterations. 
P6 described tracking an inter-rater agreement metric 
(Krippendorff’s alpha) during guideline iteration: “Version 
1 of the guidelines goes out with a small pilot number of 
questions. Then we run an inter-rater agreement analysis. 
We try to hit a (certain) K-alpha score. If we don’t hit it, then 
we look at the cases that have very high disagreement. We 
talk to the workers and try to figure out, Where did they 
misinterpret things? We modify the guidelines, and then we 
deploy Round 2. Same number of questions, slightly 
different guidelines. We measure the agreement again. We 
repeat as needed until we hit that threshold. Once we do, the 
guidelines are finalized.”  
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 Whereas inter-rater agreement is often used in other 
crowdsourcing contexts to reflect worker quality (Daniel et 
al. 2018) or adversarial behavior (Jagabathula et al. 2014), 
it was used by interviewed teams to implicitly measure 
guideline clarity and completeness. Notably, the 
interventions used by teams that observed low initial 
agreement scores were guideline-centric rather than worker-
centric. Teams 1) asked workers how they interpreted the 
questions, and then 2) updated the guidelines accordingly to 
reduce ambiguity. 
Worker Onboarding 
After task and guideline iteration, teams conducted 
onboarding exercises to train a wider set of workers on the 
task. Training processes consistently involved having 
workers demonstrate a certain level of proficiency with a 
pilot task prior to working on high-volume labeling tasks. 
 Teams used two distinct types of onboarding exercises: 

• Guideline comprehension tests: Tests administered to 
assess worker attentiveness and understanding of the task 
instructions. 
• Guideline application tests: Tests administered to 
assess worker accuracy during labeling tasks. 

 
Some teams reported using guideline comprehension tests 
outside the context of the labeling platform (e.g. in a Google 
Form quiz). The intent was to verify that workers had read 
and understood the task instructions. Teams noted that while 
attention to detail is necessary to ensure consistency among 
workers, clinical expertise did not guarantee attentiveness. 
As P7 stated, “Some highly-trained specialists might think, 
‘Oh, I know what this is; I don’t need to read the guidelines.’ 
Our best-performing (worker) wasn’t a glaucoma specialist, 
but an optometrist. When you are not an expert in the field, 
you tend to stick to the (provided) guidelines. When you are 
the expert, you rely on your gut and tend to disregard them.” 
For that reason, the team used guideline comprehension 
tests to specifically assess attentiveness. 
 All teams used guideline application tests to onboard 
workers. Each worker labeled a small “gold” data set, with 
correct answers determined by established clinical 
processes. Their answers were evaluated against an answer 
key. The size and selection of the onboarding tests varied, 
with the primary consideration being the availability and 
size of gold data. Workers who didn’t achieve the 
predefined accuracy level for that test often received 
additional training, and were re-tested on a different data set 
before being allowed to label larger data sets. Workers who 
were repeatedly unable to reach the required performance 
threshold were generally not used in high-volume labeling 
tasks. 
 In contrast to screening tests often used in commodity 
labeling as a filtering tool to remove low-performing 

potential workers, the tests were used as training tools for 
teams to help medical experts successfully apply their 
expertise in a labeling context. Upon submitting their 
answers, workers were immediately shown their incorrect 
answers, the correct answers, and explanations. Teams had 
workers retake tests until they scored 100%. As P1 
described, “The [initial guideline test] is just a warmup.” In 
this way, workers had the chance to improve their 
understanding of how to apply their clinical expertise to 
labeling tasks. 

Automated Quality Monitoring Can Surface 
Distinct Issues during High-Volume Data 
Collection 
In addition to upstream efforts to detect and address quality 
issues, one interviewed team described a downstream 
mechanism for assessing the quality of labels after the 
launch of high-volume data collection. The team achieved 
this by interspersing a gold data set with known ground truth 
among other data to be labeled. The task appeared the same 
to workers regardless of whether they were labeling a case 
from the gold set or not. However, unlike the onboarding 
tasks, workers were not aware that their labeling 
performance was being assessed. 
 This case of live monitoring identified one worker whose 
performance was notably faster than that of others (Figure 
4a). This worker’s overall accuracy on the gold set was not 
dramatically lower than that of other workers (Figure 4b). 
However, an analysis of sensitivity and specificity (accuracy 
among actually-positive and actually-negative cases, 
respectively) revealed dramatically low sensitivity, almost 
at zero -- effectively identifying no cases of disease (Figure 
4c).  
 Subsequent investigation indicated that this worker was 
almost always indicating cases as having no pathology. 
Because positive cases were relatively infrequent in the test 
set (which is common for medical image sets), this strategy 
resulted in high specificity (high accuracy among no-
pathology cases). This offset the low sensitivity when 
measured throughout the data set. Detailed investigation 
indicated this worker was likely not attending to the task, 
attempting to maximize the number of cases completed in a 
short time. The worker was removed from the task, and the 
labels produced by the worker were removed. 
 This team observed that the types of quality-related issues 
they could identify before the launch of high-volume data 
collection were different from those they could identify after 
the launch. Before launch, their piloting process with small 
data sets helped surface issues stemming from unclear or 
incomplete tasks or guidelines. It was not until after launch, 
however, that they had the opportunity to employ large data 
sets to measure worker speed and sensitivity. 
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  (a) Log time on task       (b) Accuracy    (c) Performance 

Figure 4: Automated quality-control monitoring in a medical imaging task. (a) Plot of log10 time spent in a labeling task. Worker 
1 (in red) had a dramatically lower median task time, and a very tight distribution, indicating uniformly fast labeling times. (b) 
Mean accuracy on a gold data set. The accuracy of Worker 1 (in red) was not dramatically lower than that of other workers. 
Error bars indicate 95% binomial confidence intervals. (c) Performance for each worker plotted as sensitivity over false positive 
rate (1 - specificity). This display mirrors that used for receiver operating curves used to evaluate categorization performance. 
The red data point near (0, 0) represents Worker 1.

Discussion 

Our study examined how teams developing AI models for 
medical images ensure high label quality. These interviews 
indicated that quality-control efforts benefit from a 
collaborative, iterative process with experts that starts long 
before the launch of high-volume data collection. Indeed, 
they represent “methodologies for collecting data from 
experts” that are missing from many high-stakes AI efforts 
(Sambasivan et al. 2021). Many quality-control steps occur 
early in the process, to mitigate the risks and costs of 
identifying quality issues late in the process. As P3 stated, 
“Once we get bad data into our system, it’s really hard to 
find it and excise it.” 

Expert Medical Labeling Faces Challenges 
Distinct from Other Crowdsourcing Efforts 
Our work revealed that teams developing medical imaging 
AI used a range of practices that, in many respects, mirror 
iterative practices documented for non-expert crowd work 
(Le et al. 2010; Gaikwad et al. 2017; Bragg et al. 2018; 
Manam et al. 2019). However, this work also highlights key 
themes that, to our knowledge, are not documented in 
existing literature. In particular, expert labeling practices 
must manage two key tradeoffs: 1) “Gestalt” expert abilities 
vs. the need for systematic labeling, and 2) Clinical 
workflows vs. AI label requirements. 
 Expert labeling tasks differ from commodity crowd tasks 
in their reliance on domain expertise. Prior expertise poses 
a source of variability that must be actively managed in task 
design. Workers may 1) have strong expectations for how to 

approach a task that conflicts with the goals of the AI 
project, 2) be calibrated to different thresholds for detecting 
signs of disease, or 3) rely on heuristics that are not open to 
introspection. Our interviews showed that the iterative 
practices used here explicitly focused on making workers 
aware of these differences.  
 Within the domain of medical imaging, AI applications 
often focus on providing benefit to patients by augmenting 
or improving existing clinical workflows (Gulshan et al. 
2019; Wang et al. 2019; McKinney et al. 2020). As 
described above, the pre-existing workflows may be 
ambiguous with respect to how an AI model should handle 
certain cases, or may specify different diagnostic policies 
(e.g. favor sensitivity over specificity for screening tasks). 
Therefore, task design in this expert domain requires 
explicit reference to existing clinical practice, and extra 
steps to orient workers to AI-specific labeling requirements. 
These considerations do not apply when labels are used to 
train models with new capabilities, without respect to 
existing workflows. 
 In addition to highlighting these themes, our study also 
revealed an emphasis on task and guideline design and 
worker training over worker monitoring as means to ensure 
label quality. While both approaches are deployed in 
commodity crowdsourcing (see Daniel et al. (2018) for an 
overview, (Gaikwad et al. 2017; Bragg et al. 2018; Manam 
et al. 2019) for task design, and (Le et al. 2010; Checco et 
al. 2020) for monitoring), our work suggests further 
development of task-design methods will have outsized 
impact on label quality for expert tasks. 
 Below, we further elaborate on these themes, and 
consider implications for other expert labeling applications. 
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Misalignment to Guidelines Is a Primary Error 
Mode 
Many practices in the commodity crowdsourcing literature 
focus on identifying workers with low ability to perform a 
task, low conscientiousness, or misaligned incentives (Li 
2015; Jagabathula et al. 2014; Checco et al. 2020). However, 
the most common type of quality issue described in our 
study was due to guideline misalignment. Interviewed teams 
developed practices to prevent or correct this misalignment, 
such as 1) administering tests that enforced careful reading 
of the guidelines themselves, 2) providing detailed, 
example-oriented guidelines that clarified how to handle 
difficult corner cases, and 3) using onboarding exercises that 
trained workers rather than provide a single pass/fail 
attempt. These practices both emphasized the importance of 
the guidelines, and also provided multiple education points 
for workers (Chi 2006). 
 Labels used to train medical imaging models must be 
produced by expert workers with prior experience in a 
clinical domain. However, variability in clinical labels is 
well documented (Kalpathy-Cramer et al. 2016; Krause et 
al. 2018; Schaekermann, Cai, et al. 2020). Therefore, 
iterative task development must also work to understand and 
manage variability in workers’ experiences and approaches 
to tasks. For example, clinicians may favor different cutoffs 
between severity levels in multi-class clinical scales 
(Chiang 2007; Kalpathy-Cramer et al. 2016; Schaekermann, 
Cai, et al. 2020). A key role of task guidelines in our study 
was to provide explicit descriptions to workers of the 
recommended cutoff points in classification tasks, in order 
to ensure a consistent approach among workers. 
 One challenge faced by the clinical specialists we 
interviewed was contending with ingrained habits of highly 
experienced and trained clinicians. Specialist clinicians, 
with many years of experience assessing medical images, 
may often perform very well at overall diagnosis, but rely 
on Gestalt mental processes that are not open to 
introspection (“I know it when I see it”). In order to align 
workers’ labeling approaches, guidelines tended to be 
explicit, requiring a more deliberative approach (Chi 2006; 
Kahneman 2011). 

Guideline Iteration Aligns Clinical Workflows and 
AI Labeling Needs 
Clinical and AI guidelines may differ in a range of ways. 
For instance, AI models developed by the teams in our study 
often assess risks directly from a medical image, whereas 
related clinical practice may involve other inputs, such as 
patient metadata or other modalities. As a result, guidelines 
for the labeling task must be explicitly centered on 
interpreting the image itself, whereas other clinical 
guidelines may recommend cross-referencing with other 
measurements. Further, labels used to train AI models often 
need comprehensive evaluation of all features in an image. 
In this way, the model learns to identify all potentially 

relevant pathologies. In contrast, when there were multiple 
pathologies, some workers tended to focus on only the most 
salient pathology. This reflects considerations for in-person 
clinical practice, where not all pathology is salient to 
treatment decisions. (A patient presenting with one minor 
pathology requiring monitoring and one severe pathology 
requiring immediate treatment would mostly receive 
recommendations based on the severe pathology.) When 
models are trained on cases labeled in this way, they may 
have lower power at detecting mild pathology. This in turn 
reduces effectiveness in contexts such as screening. Thus, 
guidelines needed to be refined to explicitly prompt workers 
to assess lower-severity pathology consistently in all cases. 
 Another important difference between guidelines for 
clinical tasks versus labeling tasks for AI development is the 
need for AI training labels to reflect consistent assessments 
of the degree of suspicion in images. Doctors vary in their 
tendency to diagnose cases, particularly in cases with 
borderline evidence for a condition (Kalpathy-Cramer et al. 
2016; Krause et al. 2018). This variation may be valuable in 
different clinical contexts. For instance, clinicians assessing 
disease for screening may be more likely to err on the side 
of identifying disease (high sensitivity), to avoid missing 
disease that might otherwise go untreated. By contrast, 
specialists who treat advanced disease may tend to avoid 
false positives (high specificity), to avoid unnecessary 
interventions. For training AI models, however, such 
variability tends to reduce label quality (Guan et al. 2018; 
Krause et al. 2018). 
 Iterative guideline development addresses this variability 
by 1) identifying conditions under which clinicians might 
give different assessments, 2) clarifying reasons for 
disagreement, and 3) providing explicit guidance to workers 
as to how they should reorient themselves for these 
conditions. The use of explicit callouts of specific image 
features, as illustrated in Figure 3, is a result of this iterative 
back-and-forth with workers in understanding sources of 
disagreement. The partnership between medical experts and 
AI practitioners in this context is a form of participatory co-
design of the labeling experience.  

Implications for Expert Labeling Best Practices 
The quality-control practices described here may apply 
broadly to expert labeling domains in general. In particular, 
two themes stand out: 1) co-designing and refining tasks and 
guidelines with experts, and 2) training experts to adapt their 
expertise to labeling. These approaches may ensure labels 
from highly-trained workers result in high-performing AI 
models. This may also protect against underutilizing costly 
and otherwise-capable experts due to miscalibration to 
guidelines. 
 Given that worker variability appears to be a prominent 
source of label variability, methods explicitly focused on 
calibrating workers against one another may be valuable 
tools for label quality. Work by Schaekermann, Beaton, et 
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al. (2020) and Schaekermann, Cai, et al. (2020) indicate that 
feedback from specialists on sources of disagreement can 
help improve performance of non-specialist workers on 
medical imaging tasks. This suggests that as more effective 
training materials are developed, some projects may be able 
to use slightly lower-expertise workers. Other methods of 
task structure, such as comparison-based methods 
(Kalpathy-Cramer et al. 2016) may further work to calibrate 
expert workers against each other.  
 The co-design approach to labeling tasks we describe here 
addresses the instructional needs of experts who are 
contributors to AI efforts. The approach has some 
commonality with the development of onboarding materials 
to address the information needs of clinicians who are 
consumers of an AI-based assistant (Cai et al. 2019). These 
two studies highlight the importance of close collaboration 
with experts in a wide range of medical imaging AI efforts. 
 Our findings also suggest that the commonly-used 
practice of monitoring quality with the use of “gold” or 
“silver” datasets may be less central to ensuring quality in 
many medical imaging tasks. Only one interviewed team 
reported using this practice, though they did benefit from 
identifying and removing a low-performing worker from the 
task. The primary reasons cited by other teams for not 
engaging in this practice were the difficulty and cost of 
obtaining a suitable gold set. Since the one team engaging 
in this practice found a low-performing worker, it is possible 
these other teams may have had the issue, but not detected 
it. 
 Considerations for the effective monitoring of high-volume 
labeling tasks in medical imaging include the relatively high 
cost of suitable ground truth for some data sets, and the 
lower frequency of pathology in many data sets. The low-
performing worker described here had very low sensitivity, 
marking most cases as being without pathology even when 
pathology was present. In data sets where pathology is rare, 
this strategy may give the false appearance of relatively high 
performance. Explicitly measuring sensitivity and 
specificity (and possibly the related measure of precision) in 
these gold sets may be needed to quickly identify issues with 
worker performance. 

Implications for Mitigating Label Bias 
AI systems in medicine may be subject to many potential 
forms of bias (Rajkomar et al. 2018), including bias that 
originates from labels used to train supervised models. As 
such, practices to alleviate label bias in workers are of high 
importance. 
 The iterative processes described here are a natural point 
for teams to consider potential forms of label bias. They 
involve domain experts and careful consideration of the AI 
task in the context of clinical workflows. They surface 
specific details of the clinical task and can highlight issues 
such as variability in presentation across patient 
populations. Iterative guideline development requires 

measuring variability in grading across workers. Worker 
variability may be analyzed from the context of different 
worker cutoffs (discussed above), as well as different 
clinical approaches. Guidelines that require workers to 
carefully refer to explicit rules over previously-learned 
heuristics may mitigate pre-existing worker bias.  
 With respect to label bias, one drawback to the emphasis 
on early, iterative processes is that the samples used for 
guideline development were reported to be small, often on 
the scale of dozens of examples. Real-world model 
performance is often expected to show generalization across 
many different dimensions, such as different patient 
populations (D’Amour et al. 2020). These small samples are 
not likely to reflect wider patient populations. Future work 
should build on these practices through the lens of surfacing 
different forms of worker bias, and measuring label quality 
across different dimensions. 

Conclusion 

In this study, we explored how teams developing AI in 
medical domains discovered, diagnosed, and learned from 
apparent data-quality issues throughout the labeling process. 
We highlighted the unique challenges of bridging the gap 
between clinical expertise and AI labeling needs. We also 
articulated a process for bridging this gap via task and 
guideline design and iteration, as well as worker 
onboarding. This process emphasizes leveraging experts as 
not just participants, but also co-creators of the labeling 
experience.  
 Quality monitoring during high-volume data collection 
can surface performance issues that may not arise during 
onboarding. However, the practices described here occur 
upstream of high-volume data collection and involve a 
smaller number of people making low-cost modifications. 
As such, these practices may deliver an outsized impact on 
data quality relative to their cost. Further research to 
quantify label quality may help assess the relative impacts 
of both iterative guideline development and monitoring on 
the quality of the resulting labeled data.  
 Our hope is that AI practitioners working with experts in 
a range of domains will apply and build on these strategies, 
to ensure a proactive approach to data quality in a variety of 
consequential domains. 
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