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Abstract

We take inspiration from the study of human explanation to
inform the design and evaluation of interpretability methods
in machine learning. First, we survey the literature on human
explanation in philosophy, cognitive science, and the social
sciences, and propose a list of design principles for machine-
generated explanations that are meaningful to humans. Using
the concept of weight of evidence from information theory,
we develop a method for generating explanations that adhere
to these principles. We show that this method can be adapted
to handle high-dimensional, multi-class settings, yielding a
flexible framework for generating explanations. We demon-
strate that these explanations can be estimated accurately
from finite samples and are robust to small perturbations of
the inputs. We also evaluate our method through a qualita-
tive user study with machine learning practitioners, where
we observe that the resulting explanations are usable de-
spite some participants struggling with background concepts
like prior class probabilities. Finally, we conclude by surfac-
ing design implications for interpretability tools in general.

Introduction
Interpretability has long been a desirable property of ma-
chine learning (ML) models. With the success of complex
models like neural networks, and their expanding reach into
high-stakes and decision-critical applications, explaining
ML models’ predictions has become even more important.
Interpretability can enable model debugging and lead to
more robust ML systems, support knowledge discovery,
and boost trust (Hong, Hullman, and Bertini 2020). It can
also help to mitigate unfairness by surfacing undesirable
model behavior (Tan et al. 2018; Dodge et al. 2019), lead
to increased accountability by enabling auditing (Selbst and
Barocas 2018), and enable ML practitioners to better com-
municate model behavior to stakeholders (Veale, Van Kleek,
and Binns 2018; Hong, Hullman, and Bertini 2020).

There are two primary techniques for achieving inter-
pretability of ML models. The first is to train transparent,
or glass-box, models that are intended to be inherently
interpretable, such as decision trees (Quinlan 1986) and
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sets (Lakkaraju, Bach, and Jure 2016), simple point sys-
tems (Zeng, Ustun, and Rudin 2017; Jung et al. 2020),
and generalized additive models (Hastie and Tibshirani
1990; Caruana et al. 2015). Although some researchers
have argued that glass-box models should always be used
in high-stakes scenarios (Rudin 2019), complex black-box
models, such as neural networks, random forests, and
ensemble methods, are very widely used in practice. As
a result, other ML researchers have gravitated towards
interpretability methods that generate post-hoc local ex-
planations for individual predictions produced by such
models (e.g., Simonyan, Vedaldi, and Zisserman 2013;
Selvaraju et al. 2017; Ribeiro, Singh, and Guestrin 2016;
Lundberg and Lee 2017; Alvarez-Melis and Jaakkola 2017).

Local explanations aim to answer the question of why
a model M predicted a particular output y for some input
x. There are many ways of operationalizing this abstract
question, but most methods do so by addressing the proxy
question of how much the value of each input feature xi con-
tributed to the prediction y. Thus, in practice, the explana-
tions generated by many such methods consist of importance
scores indicating the positive or negative relevance of each
input feature xi. Although the way these scores are com-
puted varies from method to method, most start from an ax-
iomatic or algorithmic derivation of some notion of feature
importance, and only later investigate whether the resulting
explanations are useful to humans. Some methods forgo this
last step altogether, relying exclusively on intrinsic evalu-
ation of mathematical properties of explanations, such as
robustness or faithfulness to the underlying model (Alvarez-
Melis and Jaakkola 2018a,b; Jacovi and Goldberg 2020).

Interpretability, however, is fundamentally a human-
centered concept. In light of this, we put human needs at the
center of both the design and evaluation of interpretability
methods. Our work builds upon and weaves together two
literatures that study the relationship between humans and
explanations. First, researchers in philosophy, cognitive
science, and the social sciences have long studied what
it means to explain, and how humans do it (e.g., Pitt
1988; Miller 2019b, and references therein). Second, a
recent line of work within the human–computer interaction
community has focused on how humans understand and
utilize interpretability tools (i.e., software implementa-
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tions of interpretability methods) (Lim and Dey 2011;
Bunt, Lount, and Lauzon 2012; Bussone, Stumpf, and
O’Sullivan 2015; Hohman et al. 2019; Lage et al. 2019;
Abdul et al. 2020; Poursabzi-Sangdeh et al. 2021), where
a common finding is that practitioners misunderstand,
over-trust, and misuse these tools (e.g., Kaur et al. 2020).

Inspired by Miller (2019b), we start by surveying the liter-
ature on the nature of explanation, revealing recurring char-
acteristics of human explanation that are often missing from
interpretability methods. We distill these characteristics into
design principles that we argue human-centered machine-
generated explanations should satisfy. We then realize our
design principles using the concept of weight of evidence
(WoE) from information theory (Good 1985), which has
recently been advocated for by Spiegelhalter (2018), but, to
the best of our knowledge, has yet to be investigated in the
context of interpretability. We demonstrate that WoE can
be adapted to handle high-dimensional, multi-class settings,
yielding a suitable theoretical foundation for interpretabil-
ity. We provide a general, customizable meta-algorithm
to generate explanations for black-box models. We also
show experimentally that WoE can be estimated from finite
samples and is robust to small perturbations of the inputs.

Evaluation of interpretability methods is notoriously
difficult (Doshi-Velez and Kim 2017; Kaur et al. 2020).
Although recent work has focused on abstract, intrinsic
metrics such as robustness or faithfulness to the underlying
model (Alvarez-Melis and Jaakkola 2018a), considerably
less attention has been given to understanding how the
resulting explanations are used in practice. This discrepancy
between the intended use of the explanations — by a human,
for a specific goal such as auditing, debugging, or building
trust in a model — and their experimental evaluation —
typically performed using abstract, intrinsic metrics, in
generic settings — hampers understanding of the bene-
fits and failure points of different interpretability methods.

We build on a recent thread of work (e.g., Lage et al.
2019; Nourani et al. 2019; Li et al. 2020; Kaur et al. 2020;
Vaughan and Wallach 2021; Poursabzi-Sangdeh et al.
2021) — including several recent papers from the human
computation community — that argues that evaluations
should be grounded in concrete use cases and should put
humans at the center, taking into account not only how
they use interpretability tools, but how well they understand
the principles behind them. We carry out an artifact-based
interview study with ten ML practitioners to investigate
their use of a tool implementing our meta-algorithm in the
context of a practical task. Qualitative themes from this
study suggest that most participants successfully used the
tool to answer questions, despite struggling with back-
ground concepts like prior class probabilities. Although the
study was designed to identify preferences for different tool
modalities, participants often used all of them and requested
the option to switch between them interactively. Our
results additionally highlight the importance of providing
well-designed tutorials for interpretability tools — even for
experienced ML practitioners — which are often overlooked
in the literature on interpretability methods, and which we
argue should be an integral part of any interpretability tool.

Human-Centered Design Principles
What it means to explain and how humans do it have long
been studied in philosophy, cognitive science, and the so-
cial sciences. We draw on this literature to propose human-
centered design principles for interpretability methods.

Hempel and Oppenheim (1948) and van Fraassen (1988)
define an explanation as consisting of two main pieces: the
explanandum, a description of the phenomenon to be ex-
plained, and the explanans, the facts or propositions that
explain the phenomenon, which may rely on relevant as-
pects of context. As is often done colloquially, we will refer
to the explanans as the explanation. Different ways of for-
malizing the explanation have given rise to various theories,
ranging from logical deterministic propositions (Hempel
and Oppenheim 1948) to probabilistic ones (Salmon 1971;
van Fraassen 1988). An excellent historical overview can
be found in the surveys by Pitt (1988) and Miller (2019b).

In the context of local explanations for predictions made
by ML models, the phenomenon to be explained is why a
modelM predicted output y for input x. This why-question
can be operationalized in different ways. The facts used to
explain this phenomenon may include information about the
input features, the model parameters, the data used to train
the model, or the manner in which the model was trained.

Although the nature of explanation is far from settled, re-
curring themes emerge across disciplines. At the core of the
theories by van Fraassen (1988) and Lipton (1990) is the
hypothesis that humans tend to explain in contrastive terms
(e.g., “a fever is more consistent with the flu than with a
cold”), with explanations that are both factual and counter-
factual (e.g., “had the patient had chest pressure too, the di-
agnosis would instead have been bronchitis”). Yet, the expla-
nations produced by most current interpretability methods
refer only to why the input x points to a single hypothesis
(i.e., the prediction y) rather than ruling out all alternatives.1
In light of this, we propose our first two design principles:
1. Explanations should be contrastive, i.e., explicate why

the model predicted y instead of alternative y′.
2. Explanations should be exhaustive, i.e., provide a jus-

tification for why every alternative y′ was not predicted.
Another theme, featured prominently by Hempel (1962),

is that human explanations decompose into simple compo-
nents. In other words, humans usually explain using multiple
simple accumulative statements, each addressing a few as-
pects of the evidence (e.g., “a fever rules out a cold in favor
of bronchitis or pneumonia; among these, chills suggest
the latter”). Each component is intended to be understood
without further decomposition. Again, this contrasts with
current interpretability methods that explain in one shot, for
example, by providing importance scores for all features si-
multaneously. Our next two design principles are therefore:
3. Explanations should be modular and compositional,

breaking up predictions into simple components.

1Exceptions include recent work advocating for contrastive
or counterfactual explanations (Wachter, Mittelstadt, and Russell
2017; Miller 2019a; van der Waa et al. 2018), partly inspired by
contrast sets (Azevedo 2010; Bay and Pazzani 1999; Webb, Butler,
and Newlands 2003; Novak, Lavrač, and Webb 2009).
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4. Explanations should rely on easily-understandable
quantities, so that each component is understandable.

Another recurring theme is minimality. In a survey of over
250 papers, Miller (2019b) argued that it is important, but
underappreciated in ML, that only the most relevant facts
be included in explanations. Thus, our final principle is:
5. Explanations should be parsimonious, i.e., only the

most relevant facts should be provided as components.
These design principles are not exhaustive; each could be

refined or generalized, and other principles could be derived
from the same literature. However, we posit that these prin-
ciples provide a reasonable starting point because they cap-
ture some of the most apparent discrepancies between hu-
man and machine-generated explanations. More generally,
these principles point to a broader theme of human explana-
tions as a process rather than (only) a product (Miller 2019b;
Lombrozo 2012). Therefore, these principles work to shift
interpretability methods from the latter towards the former.

Explaining with the Weight of Evidence
The set of design principles proposed in the previous section
outlines a framework for human-centered interpretability
in ML. In this section, we show how this framework can
be operationalized by means of the weight of evidence, a
simple but powerful concept from information theory. We
operationalize the question of why modelM predicted out-
put y for input x in terms of how much evidence each input
feature xi (or feature group) provides in favor of y relative to
alternatives. An explanation based on this question adheres
to our design principles because it is based on a familiar
concept (evidence) that is grounded in common language,
it naturally evokes a contrastive statement (evidence for
or against something), and, as we explain below, it can be
formalized using simple quantities that admit modularity.

Weight of Evidence: Foundations
The weight of evidence (WoE) is a well-studied probabilis-
tic approach for analyzing variable importance that traces its
origins back to Peirce (1878), but was popularized by Good
(1950, 1968, 1985), whose definition and notation we fol-
low here. Given a hypothesis and some evidence, the WoE
seeks to answer the following question: ”How much does
the evidence speak in favor of or against the hypothesis?”

The WoE is usually defined for some evidence e, a
hypothesis h, and its logical complement h. For example,
in a simple binary classification setting, e = (X1, . . . , Xn),
h : Y = 1, and h : Y = 0. The WoE of e in favor of h is the
log-odds ratio between h conditioned on e and hmarginally:

woe(h : e) , log
O(h | e)
O(h)

, (1)

where O(·) denotes the odds of a hypothesis, i.e.,

O(h) ,
P (h)

P (h)
and O(h | e) , P (h | e)

P (h | e)
. (2)

Using Bayes’ rule, woe(h : e) can also be defined as

woe(h : e) , log
P (e | h)

P (e | h)
. (3)

These two equivalent definitions provide comple-
mentary views of the WoE: the hypothesis-odds and
evidence-likelihood interpretations. Using Equation (1),
woe(h : e) > 0 indicates that the odds of h are higher
under e than marginally. Equivalently, using Equation (3),
it indicates that the likelihood of e is larger when condi-
tioning on h than on its complement. In other words, the
evidence speaks in favor of hypothesis h. Analogously, if
woe(h : e) < 0 we would say that the evidence speaks
against h. The quantities in Equations (1) and (3) are con-
trastive (cf. Principle 1) — that is, defined in terms of ratios.

As a concrete example, suppose that a doctor wants to
know whether a patient’s symptoms indicate the presence
of a certain disease, say, the flu. Denote e = “the patient
has a fever,” h = “the patient has the flu,” and h̄ = “the
patient doesn’t have the flu.” The doctor might know that
for a patient, the odds of having the flu roughly double
once the patient’s fever is taken into account (i.e., the
hypothesis-odds interpretation), which corresponds to
woe(h : e) ≈ log 2. Alternatively, using the evidence-
likelihood interpretation, the doctor could conclude that
a patient is twice as likely to have a fever if they have
the flu compared to when they do not. Note that neither
interpretation tells us anything about the base rate of the flu.

The WoE generalizes beyond these simple scenarios. For
example, it can be conditioned on additional information c:

woe(h : e | c) , log
P (e | h, c)
P (e | h, c)

.

It can also contrast h to an arbitrary alternative hypothesis
h′ instead of h̄ (e.g., evidence in favor of the flu and against
a cold): woe(h/h′ : e) , woe(h : e | h∨ h′). Thus, we can,
in general, talk about the strength of evidence in favor of h
and against h′ provided by e (perhaps conditioned on c).

When the evidence is decomposable into multiple parts —
that is, when e =

⋃n
i=1 ei — the WoE is also decomposable:

woe(h/h′ : e) =
n∑

i=1

log
P (ei | ei−1, . . . , e1, h)

P (ei | ei−1, . . . , e1, h′)
. (4)

This is crucial to defining an extension of the WoE to high-
dimensional inputs that adheres to Principle 3 (modularity).

A further appealing aspect of the WoE is its immediate
connection to Bayes’ rule through the following identity:

log
P (h | e)
P (h′ | e)︸ ︷︷ ︸

Posterior log odds

= log
P (h)

P (h′)︸ ︷︷ ︸
Prior log odds

+ log
P (e | h)

P (e | h′)︸ ︷︷ ︸
Weight of evidence

. (5)

In other words, the WoE can be understood as an adjustment
to the prior log odds caused by observing the evidence.
In a simple binary classification setting, this amounts to

log
P (Y =1 |X)

P (Y =0 |X)
= log

P (Y =1)

P (Y =0)
+ woe(Y = 1 : X),

which shows that a positive (respectively, negative) WoE im-
plies that the posterior log odds of Y = 1 versus Y = 0 are
higher (lower) than the prior log odds, indicating that the ev-
idence makes Y = 1 more (less) likely than it was a priori.
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Equation (5) shows that the WoE is modular (cf. Principle
3) in another important way: it disentangles prior class prob-
abilities and input likelihoods. This is important because
of the base rate fallacy studied in the behavioral science
literature (Tversky and Kahneman 1974; Bar-Hillel 1980;
Eddy 1982; Koehler 1996). This cognitive bias, prevalent
even among domain experts, is characterized by a frequent
misinterpretation of posterior probabilities, primarily caused
by a neglect of base rates (i.e., prior probabilities). Despite
this, many interpretability methods do not explicitly display
prior probabilities, and even when they do, they focus on
explaining posterior probabilities, which invariably entan-
gle information about priors and the input being explained.

Additionally, the units in which the WoE is expressed
(log-odds ratios) are arguably easily understandable
(cf. Principle 4). There is evidence from the cognitive-
neuroscience literature that log odds are a natural unit
in human cognition. For example, degrees of confidence
expressed by humans are proportional to log odds (Peirce
and Jastrow 1885), people are less biased when responding
in log odds that in linear scales (Phillips and Edwards 1966),
and there exist plausible neurological hypotheses for encod-
ing of log odds in the human brain (Gold and Shadlen 2001,
2002). We refer the reader to Zhang and Maloney (2012)
for a meta-analysis of these various studies of log odds.

We provide additional properties of the WoE, along with
an axiomatic derivation, in the appendix, which can be
found in the longer version of this paper, available online.2

Composite Hypotheses and Evidence
Traditionally, the WoE has been mostly used in simple
settings, such as a single binary output and only a few input
features. Its use in the more complex settings typically
considered in modern ML therefore poses new challenges.

The first such challenge is that in multi-class settings,
there is flexibility in choosing the hypotheses h and h′ to
contrast. The obvious choice of letting h correspond to the
predicted class y∗ and h′ its complement is unlikely to yield
useful explanations when the number of classes is large (e.g.,
explaining the evidence in favor of one disease against one
hundred thousand others). Following Principle 3 (modular-
ity), and taking inspiration from Hempel’s model (1962) and
the view of explanation as a process (Lombrozo 2012; Miller
2019b), we address this by casting explanation as a sequen-
tial procedure, whereby a subset of the possible classes is
ruled out at each step. For example, in medical diagnosis,
we might first explain why bacterial diseases were ruled out
in favor of viral ones, and then explain why a specific viral
disease was predicted instead of the others. In general, for a
classification problem over labels Y = {1, . . . , k}, we will
consider a (given or constructed) nested partitioning of Y
into a sequence of T -many subsets Ui of classes such that
{y∗} , UT ⊂ UT−1 ⊂ · · · ⊂ U0 , Y. As we show in
Figure 4 in the appendix, this partition implies a sequence
of pairs of hypotheses (ht, h

′
t) = (y∈Ut, y∈Ut−1\Ut).

A second challenge arises when the the number of input
features is large. For very high-dimensional inputs (such as

2https://arxiv.org/abs/2104.13299

Algorithm 1 WoE meta-algorithm for complex models

1: Input: Instance X ∈ Rn, prediction y∗ ∈ {1, . . . , k}
2: Parameters: Features A = {{1}, . . . , {n}} or feature

groups A = {S1, . . . , Sm}
3: Initialize U0 ← {1, . . . , k}
4: t← 0
5: while |Ut| > 1 do
6: t← t+ 1
7: Ut ← SELECTHYPOTHESIS(Ut−1, y

∗)
8: Ut ← Ut−1 \ Ut {relative complement}
9: π(Ut)← log P (y∈Ut)

P (y∈Ut)
{prior log odds}

10: for i = 1, . . . , |A| do
11: ωt

i←woe(y∈Ut/y∈Ut :XAi
|XAi−1

,. . . ,XA1
)

12: end for
13: Ωt ←

∑|A|
i=1 ω

t
i

14: DISPLAYEXPLANATION(Ut,Ut,A, π(Ut), {ωt
i}i,Ωt)

15: end while

images or detailed health records), providing a WoE value
for each feature will rarely be informative. Again, imagine
our hypothetical doctor having to simultaneously analyze
the relevance of thousands of symptoms. For such cases, we
propose aggregating the input features into feature groups
(e.g., super-pixels for images or groups of related symptoms
for medical diagnosis). Formally, for an input X of dimen-
sion n, we partition the feature indices into m disjoint sub-
sets, with S1 ∪ · · · ∪ Sm = {1, . . . , n}. Equation (4) (or,
equivalently, the chain rule of probability) allows for arbi-
trary groupings, so for any such partition we can compute

woe(h/h′ :X) =

m∑
i=1

log
P (XSi

|XSi−1
, . . ., XS1

, h)

P (XSi
|XSi−1

, . . ., XS1
, h′)︸ ︷︷ ︸

=woe(h/h′:XSi
|XSi−1

,...,XS1
)

(6)

where XSi
= {Xj}j∈Si

is the ith feature group, or “atom.”

A Meta-Algorithm for WoE Explanations
Using these extensions of the WoE, we propose a meta-
algorithm for generating explanations for complex classi-
fiers (Algorithm 1). Given a model, an input, and a predic-
tion, the algorithm generates an explanation for the predic-
tion sequentially by producing WoE values for progressively
smaller nested hypotheses. Specifically, at every step t, a
subset of classes Ut ⊂ Ut−1 is selected and the remaining
classes Ut = Ut−1 \ Ut are ruled out. The user is shown
a comparison of hypotheses ht : y ∈ Ut and h′t : y ∈ Ut

consisting of both their prior log odds π(Ut) (line 9) and
the WoE in favor of ht and against h′t. WoE values are com-
puted sequentially with each atom Ai (either an individual
input feature or a group of features) as the evidence (line 11)
and these values are summed to obtain the total WoE using
the additive property (line 13). These values are presented
to the user, and the process continues until all classes except
the prediction y∗ have been ruled out (cf. Principles 2–3).

Left unspecified in this meta-algorithm are four key
choices that are application-dependent and require fur-
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Figure 1: Example two-step explanation produced by our method for a model that predicted the flu for some input. The first
step explains, using the weight of evidence, why the model favors viral diseases (instead of bacterial ones) for this input. Then,
the second step explains why the model predicted the flu instead of the remaining possible classes (i.e., other viral diseases).

ther discussion. First is the question of how to define the
SELECTHYPOTHESIS method to progressively partition the
classes (line 7). If there is an inherent natural partitioning
(e.g., “viral” versus “bacterial,” as in the example discussed
previously), then SELECTHYPOTHESIS simply amounts to
retrieving the largest subset in the partition containing the
prediction y∗. For the general case, we propose select-
ing the hypothesis that maximizes a WoE-based objective:

Ut← argmax
U⊂Ut−1;y∗∈U

woe(y ∈ U / (y ∈ Ut−1\U) : X)−R(U),

where R is a cardinality-based regularizer. R should be
chosen to penalize sets that are too small (which would yield
granular explanations with many steps, in opposition to
Principle 5) or too large (which would yield coarse explana-
tions, to the detriment of Principle 3). Although the choice
of R should ideally be informed by the application and the
user, a sensible generic choice is R(U) ∝

∣∣|U| − 1
2 |Ut−1|

∣∣p,
normalized so that R(U) ∈ [0, 1]. Using this regularizer,
Algorithm 1 approximately splits the remaining classes in
half at every step, yielding roughly O(log k) steps in total.

Second, it should be noted that lines 10–12 in Algorithm 1
implicitly assume an ordering of the atoms, and that this
ordering might affect the WoE values. In some applications,
there might be a conditional independence structure known
a priori that could inform the choice of atoms and their
ordering (e.g., those simplifying the conditioning in line 11
the most). If not, the ordering can again be chosen randomly
or based on the sorted per-atom conditional WoE values.

Third, computing the per-atom WoE (line 11) requires
the conditional likelihoods P (XAi

|XAi−1
, . . . , XA1

, Y ).
Ideally, the model would compute these likelihoods

internally. If, instead, it computes only marginal fea-
ture likelihoods P (XAi

|Y ), we can use a naı̈ve Bayes
(NB) approximation — that is, use these in place of the
conditional likelihoods in Equation (6). If the model is
a black box or does not compute conditional likelihoods
internally, then these must be estimated as we explain below.

Finally, there is the question of how to implement
DISPLAYEXPLANATION. When the number of atoms is
large, the WoE values for only the most salient atoms can be
displayed (cf. Principle 5) — e.g., those with absolute WoE
larger than a given threshold τ ; Good (1985) suggests τ = 2
as a rule of thumb. Otherwise, all per-atom WoE values can
be displayed along with the total WoE and prior log odds.

An example two-step explanation produced by our
method (on fabricated data from our user study tutorial) is
shown in Figure 1. The sorting and color coding of the fea-
tures by their WoE values makes it apparent which of these
contribute the most evidence in favor or against the selected
class (or set of classes), and the labeling along the x-axis
provides guidelines for context. The visualization suggests
the additive nature of these values (i.e., that stacking blue
bars and subtracting red ones yields the total WoE). The
bottom panel, a graphical representation of Equation (5),
disentangles the model’s estimated prior class odds (which
a priori weakly favor the flu and other viral diseases), from
its total WoE (very strong when contrasting viral and bacte-
rial diseases, less so for the flu versus other viral diseases).

WoE Estimation for Black-box Models
As we noted above, computing the per-atom WoE (line 11 in
Algorithm 1) requires evaluating the conditional likelihoods
P (XAi

|XAi−1
, . . . , XA1

, Y ). In many practical settings,
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including those in which the model is a black box, these
conditional likelihoods are not computed internally, so they
must be estimated. In such settings, we propose fitting a con-
ditional likelihood estimation model using the model’s pre-
dictions ŷ = M(x) (not the true labels y) as a preliminary
step. This conditional likelihood estimation model can then
be called on demand when computing the per-atom WoE.

In some settings, it may be possible to fit a full (i.e.,
conditioned on both the class Y and all previous atoms
Ai−1, . . . , A1) conditional likelihood estimation model, for
example, via kernel or spectral density estimation methods
when working with low-dimensional data, or via autoregres-
sive or recurrent neural networks when working with text
or time-series data. For more complex types of data, such
as images, methods based on normalizing flows and neural
autoregressive models (e.g., Rezende and Mohamed 2015;
Papamakarios, Pavlakou, and Murray 2017) are likely to be
more appropriate. In settings where fitting a full conditional
likelihood estimation model is infeasible, an NB approxi-
mation can be used to estimate class- (but not atom-) condi-
tional likelihoods, for example, via a Gaussian NB classifier.

We emphasize that fitting a conditional likelihood es-
timation model — the main computational bottleneck of
our method — must be done only once, potentially offline.
This is in contrast to perturbation-based interpretability
methods like LIME that fit a new model for every prediction.

We assess the quality of finite-sample WoE estimation
experimentally in the “Quantitative Experiments” section.

Relation to LIME and SHAP
When viewed from a probabilistic perspective, most post-
hoc interpretability methods revolve around a model’s
predictive posterior — that is, they seek explanations that
deconstruct P (Y = y∗ | X) in various ways. For ex-
ample, LIME (Ribeiro, Singh, and Guestrin 2016) seeks
to approximate f(x) = P (Y | X = x) in the vicinity
of x0 through a simpler, interpretable surrogate model
f̃(x). Similarly, SHAP (Lundberg and Lee 2017) quantifies
variable importance by analyzing the effect on the posterior
of “dropping” variables Xi from the input X . In contrast,
the WoE focuses — directly, in the case of the evidence-
likelihood interpretation and indirectly in the case of the
hypothesis-odds interpretation — on the conditional likeli-
hood P (X = x | Y ). In other words, for a given input x, a
WoE explanation is based on the probability assigned by the
model to x (or a subset of its features) given, e.g., Y = y∗.

When viewed in this way, the relationship between WoE
explanations and other post-hoc interpretability methods
like LIME and SHAP is akin to the relationship between
generative and discriminative models. Indeed, as is the case
for some pairs of generative and discriminative models
(e.g., naı̈ve Bayes and logistic regression), these different
interpretability methods also turn out to be equivalent — two
sides of the same coin — for some simple classifiers, as we
show in the appendix for logistic regression. However, this
is not generally the case. Moreover, even when the explana-
tions generated by different interpretability methods qualita-
tively agree (i.e., the same features are highlighted as being
important), the specific interpretations of the explanations

Figure 2: Quality of WoE estimation. Top: MSE. Bottom:
NDCG, ranging from 0 (worst) to 1 (perfect) ranking quality.

will differ. Indeed, the WoE uses a different operationaliza-
tion of the notion of feature importance, in turn entailing
different units of explanation: log likelihoods and log-odds
ratios in the case of the WoE and linear attribution scores
for posterior probabilities in the case of LIME and SHAP.

Quantitative Experiments
Here, we assess the quality of finite-sample WoE estimation
and the robustness of the WoE to perturbations of the inputs.

Quality of Finite-Sample WoE Estimation
Our first experiment evaluates the quality of WoE estimates
from finite samples. As we explained above, such estimates
are needed if the model is a black box or does not compute
likelihoods internally. For evaluation purposes, we consider
a model that, by construction, computes all the quantities
required for exact WoE computation, but treat it as black
box — that is, its internal WoE computation will be used
only for evaluation, and is not available to our method.
Instead, we separately fit a conditional likelihood estimation
model by querying the model for a small number of inputs,
and use this estimation model to compute WoE values at
explanation time. We control for model misspecification
by having both the model and our conditional likelihood
estimation model use the NB assumption. Specifically,
we use a smoothed Gaussian NB (GNB) classifier. This
allows us to focus on the quality of WoE estimation from
finite samples, but does not address model misspecification.

First, we generate a dataset of a given dimension. We train
a model on a subset of this dataset of size Ntrain = 1000 and
fit the conditional likelihood estimation model on a separate
subset of size Nfit, which we vary. For every test input xi
(Ntest = 10), we compute true WoE values for each input
feature using the model’s prior and posterior probabilities,
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Figure 3: Explanation robustness across benchmark datasets. Extreme values away from L = 1 (dashed line) are undesirable.

and then compute estimated WoE values according to the
estimation model in the appendix. We compare these using
two metrics: mean squared error and normalized discounted
cumulative gain (NDCG), a measure of ranking quality that
might be relevant to practitioners, applied to the relative
ranking of input features by their (true or estimated) WoE.3

Figure 2 shows these metrics as a function of input dimen-
sion and sample size Nfit. As expected, estimation quality
improves with the number of samples used for fitting,
and degrades gracefully as the input dimension increases.
These results suggest that the WoE can be accurately
estimated — even in relatively high dimensions — from
finite samples, although we caution that these results may
look different for other models, and we do not measure
model misspecification error due to the NB approximation.

Robustness of WoE
Previous work has argued that interpretability methods
should be robust in the sense that the explanations they pro-
vide should not vary dramatically when the input whose pre-
diction is being explained changes by a small amount. To
investigate the robustness of our method, we follow the set-
up of Alvarez-Melis and Jaakkola (2018a). Letting E(·) be
a function that maps feature vectors x ∈ Rn to explanation
vectors (e.g., importance scores) e ∈ Rn, we quantify its
robustness around x0 through its local Lipschitz constant:

L(x0) = max
xj∈Bε(x0)

‖E(xj)− E(x0)‖
‖xj − x0‖

, (7)

where Bε(x0) = {x | ‖x − x0‖ ≤ ε}. Intuitively, L(x0)
quantifies the largest relative change in importance scores
in a small neighborhood around x0. Extreme values are
usually undesirable, as they indicate explanations that are
either too sensitive (large L) or not responsive enough (very
small L) to changes in the input features. In most settings,
values below 1 but bounded away from 0 are preferable.

Concretely, we first train a GNB classifier. Then, for any
input x we use the classifier to generate a prediction y, and
input both of these to our method to generate E(x), a vector
of WoE values for each feature xi. Since computing the
robustness metric (7) involves maximization, we estimate
this quantity from finite samples using Bayesian optimiza-
tion, making repeated calls to E(·). We focus on standard
benchmark classification datasets from the UCI repository

3The NDCG is only defined for positive values, so we compute
it separately for positive and negative values and average them.

(Dua and Graff 2017), and compare our method to LIME
(Ribeiro, Singh, and Guestrin 2016) and SHAP (Lundberg
and Lee 2017). Figure 3 shows the results for ten repetitions
with different random seeds for each dataset and inter-
pretability method pair. The red dashed line indicates the
bound L(x) = 1. For all but one dataset, WoE explanations
are, on average, as close or closer to the ideal Lipschitz
robustness as explanations generated by LIME and SHAP.

User Study
Throughout this paper, we have argued that interpretability
is fundamentally a human-centered concept and that the
evaluation of interpretability methods should therefore
focus on the needs of humans, exploring how they use
interpretability tools, as well as their understanding of the
concepts that underlie them. In this section, we present a
user study that we carried out to assess the usefulness of our
method in the types of scenarios in which it would be used in
practice. Such studies are commonly used in the HCI com-
munity to distinguish between designers’ intended use of a
tool and users’ mental models (Gibson 1977; Norman 2013).

Study Design
We conducted an artifact-based interview study with 10
ML practitioners to evaluate the use of our interpretability
method, implemented in a simple tool (the artifact), in a
controlled setting. In such qualitative studies, the goal is to
ensure sufficient interaction time and nuanced data collec-
tion for each participant, which is typically only feasible for
relatively small sample sizes (Hudson and Mankoff 2014;
Olsen Jr 2007; Turner, Lewis, and Nielsen 2006). Our study
followed a think-aloud protocol, in which participants were
asked to verbalize their thought processes as they used the
tool to perform specific tasks, in order to help us identify
specific concepts and functionalities that might be confus-
ing. We placed participants in a controlled setting (rather
than observe them using the tool on their own models)
because of challenges including data access, inconsistencies
in the types of data analyzed by the participants, and the
potential difficulty of establishing patterns across settings.

Our study consisted of two main parts: a tutorial intended
to introduce the concepts and functionalities needed to use
our tool, followed by the main study in which participants
answered questions about a pre-trained ML model using the
tool. We also conducted pre-study interviews to establish
participants’ backgrounds in ML and post-study interviews

41



in which participants reflected on their experiences with the
tool and how they might use it in their ML pipelines. The
study design was approved by our internal institutional re-
view board. Excerpts (screenshots) from the Jupyter note-
books that we used in the tutorial and in the main study are in
the appendix; the complete notebooks are available online.4

Tutorial Kaur et al. (2020) found that practitioners often
use interpretability tools without fully understanding them,
highlighting the importance of providing well-designed
tutorials and other accompanying documentation. For
our user study, we designed a tutorial to introduce the
concepts and functionalities needed to use our tool, to
evaluate participants’ understanding of these concepts, and
to check whether their responses in the main study were
likely based on a sound understanding — without being too
time-consuming or tedious. After several iterations and pilot
studies, we converged on an approximately 40-minute-long
tutorial based on a Jupyter notebook containing equations,
text, and images. This tutorial covered log-odds ratios,
weight of evidence, feature group for high-dimensional
inputs, and sequential explanations for multi-class settings.

Main Study The goal of the main study was to assess par-
ticipants’ understanding of the WoE and to investigate their
use of our interpretability tool in the context of a realistic
ML task. Participants were given a Jupyter notebook that in-
cluded a dataset, an ML model trained using the dataset, and
our tool. They were then asked to answer several questions
with the help of outputs (i.e., visualizations) from our tool.

The ML model was a random forest classifier trained us-
ing the Online News popularity dataset (Fernandes, Vina-
gre, and Cortez 2015), which consists of 39,797 news arti-
cles. Each article is represented using 59 features that cap-
ture metadata about the article, such as its length, any links,
and its sentiment polarity. We trained the model to pre-
dict the category that the article was published under (e.g.,
“Lifestyle” or “Business”), creating a six-class classification
task. We chose this dataset and this task because the domain
is understandable without expert knowledge or prior experi-
ence, the number of classes is large enough to permit mean-
ingful sequential explanations, and there are enough features
to make explanations based on feature groups sufficiently
different from explanations based on individual features.

The main study was itself divided into two parts, which
were designed to let us observe the use of the two extensions
of the WoE described in the “Composite Hypotheses and
Evidence” section: feature groups and sequential explana-
tions. In the first part, participants were given the option to
view explanations based on feature groups or explanations
based on individual features, and were asked questions that
could be answered using either type of explanation (e.g.,
“What aspects of the news article contributed the most
to this prediction?”). This part of the study was intended
to surface participants’ preferences. In the second part,
participants were given the option to generate one-shot or
sequential explanations, and were asked questions that could
only be precisely answered using sequential explanations

4http://github.com/dmelis/interpretwoe

(e.g., “Why didn’t the model predict [subset of classes]?”).
This part of the study was intended to assess whether
participants could successfully use sequential explanations.

Participants Potential participants were recruited via
email. To be considered for the study, they were asked to
complete a survey about their ML background and their
experience with interpretability tools. Of 41 survey respon-
dents, we randomly selected 10 to participate in the study.
All participants were ML practitioners (e.g., data scientists)
with 1–20 years of experience. On average, participants
rated the role of ML in their jobs as 6.7 and their experience
with interpretability tools as 3.2, both on a scale of 0 (“not
at all”) to 7 (“extremely”). Participants also rated their
familiarity with concepts from probability relevant to the
WoE on a scale of 0 to 7. Their average ratings were 2.7
for posterior class probabilities, 3.3 for log likelihoods,
3.2 for log-odds ratios, and 0.9 for the WoE. On average,
participants took 1.7 hours to complete the study. Each
participant was compensated with a $40 Amazon gift card.

Methods Participants’ open-ended answers were scored
by comparing them to an answer key prepared in advance
by two of the authors. Answers that correctly identified key
aspects (e.g., a feature with a large positive WoE value,
pushing the model toward a particular prediction) were
treated as correct even if the participants’ specific language
did not exactly match the language in the answer key.
To examine patterns of tool use, the usability of our tool,
participants’ interpretability needs, and participants’ general
impressions, we analyzed automatically generated audio
transcripts for high-level themes using inductive thematic
analysis (Braun and Clarke 2012) and affinity diagramming.

Results
The results from our user study divide naturally into three
categories: participants’ understanding of relevant concepts,
tool usability and participants’ preferences, and general
needs for interpretability tools. First, the pre-study inter-
views and answers to the checkpoint questions in the tutorial
provided insight into participants’ understanding of con-
cepts relevant to the WoE. Second, participants’ approaches
to the questions in the main study and their patterns of tool
use enabled us to examine the usability of our tool. Finally,
via the main study and the post-study interviews, we were
able to uncover participants’ general interpretability needs
and additional criteria (beyond our design principles) to con-
sider when designing and evaluating interpretability tools.

Understanding of Relevant Concepts Our analysis
showed that most participants (7/10) struggled to understand
and use prior class probabilities in the tutorial. The section
on this topic was time-consuming: on average, participants
spent a third of their tutorial time on this section. Eventually,
most participants either ignored the prior class probabilities
or used them incorrectly, supporting the base rate fallacy.
Nonetheless, participants were able to use the WoE to
correctly answer questions in the main study for which prior
class probabilities were relevant. This raises the possibility
that although they struggled with the abstract concept,
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they were able to use the information indirectly (e.g., via
displayed class probabilities). This finding is consistent with
those of Kaur et al. (2020), who showed that data scientists
struggle to explain the concepts underlying the explanations
produced by generalized additive models (Hastie and
Tibshirani 1990; Caruana et al. 2015) and SHAP (Lundberg
and Lee 2017), even though they still find these tools useful.

Although participants generally understood the concept
of WoE, some confused negative WoE values with negative
values for input features, thus finding it challenging to make
sense of the explanations. As a result, two participants pro-
vided incorrect answers for the questions in the main study.

Tool Usability and Participants’ Preferences Partici-
pants had no overwhelming preference between explana-
tions based on feature groups and explanations based on
individual features. Indeed, they noted that the two levels
of granularity provide complementary information, and
switching between the two options was a clear pattern across
all participants. Although feature groups provide a high-
level overview, making it “easier to manage [reading the
plot]...[and the] direction of analysis is a lot clearer” (P8),
explanations based on individual features help participants
in “looking into more details in general...to know exactly
which feature it was [that was responsible for a prediction]”
(P10). We observed some differences in behavior based on
participants’ roles and expertise, though of course these are
inconclusive with our small sample size. Participants with
more ML experience tended to rely on feature-level plots,
while those with customer-facing jobs more often provided
high-level answers based on feature groups, noting that fea-
ture groups “provide customer-friendly explanations” (P8).

Participants found sequential explanations to be a helpful
breakdown of a larger explanation into parts. P3 noted
these were like a “story of how the prediction was made.”
Sequential explanations prompted more detailed answers
to our questions and most participants (7/10) accurately
answered questions in the second part of the main study
using sequential explanations. They explained that the type
of questions — which required understanding how each of
the classes were ruled out — could not be answered via
one-shot explanations. P8 commented, “I find this to be
quite helpful... I guess without this breaking it down to this
point I wouldn’t have thought twice really about this [input
feature group] being a [differentiating] factor between the
two [output classes]...I think that this would be a nice like
final understanding [of the predicted class], this goes a lot
deeper than I probably could have gone just looking at that
without the tool. So I think it was very helpful in that case.”

Although most participants were happy with the level of
detail presented, some participants with more ML experi-
ence expressed a desire for deeper understanding of how
the explanations were generated. They understood the un-
derlying concepts, but were wary of anything that appeared
automated, including the breakdown of class comparisons
in sequential explanations (which was automated) and the
feature groups (which were actually manually generated).

Even though participants said that the tool helped
them understand the model’s predictions, not all of them

envisioned the tool being added to their ML pipelines.
Participants with significant prior ML experience already
had established ways of ensuring that model predictions are
reasonable, but recognized other exciting use cases for the
tool, such as communicating complex predictions to less
experienced end users. Particularly for high-risk domains,
visualizations from the tool could help users probe odd pre-
dictions. P7 noted, “With my focus on medical data, I do see
the need in working with a customer...there this [tool] would
be a must-have. My team, we are engaged with customers
and we have to educate them fast... So for me model inter-
pretability there comes very close side by side with fairness.”

General Needs for Interpretability Tools Most inter-
pretability tools, including ours, rely on tutorials and other
accompanying documentation to provide an introduction
to the tool’s concepts and functionalities. All participants
appreciated the information presented in our tutorial: “I
can’t imagine doing this [study] without the tutorial. I
generally know a lot more about these concepts now” (P5).
The tutorial seemed to impact participants’ overall accuracy
in answering the questions in the main study — those who
spent longer on the tutorial tended to provide more accurate
and more thoughtful answers. This manifested as longer
time spent on exploring the tool in the tutorial and ensuring
that their answers to the checkpoint questions were accurate
and thorough. Even participants with less ML experience
provided accurate answers when they devoted time to
the tutorial. Participants appreciated the example in the
tutorial and were able to generalize from this example to
the questions the main study: “The tutorial...helps you start
in the right place. I went back to the example in the tutorial
to [determine how to] answer questions in the study” (P6).

Finally, participants expressed a desire to be able to more
easily switch between different options (e.g., input features
versus feature groups) rather than re-running code. Interac-
tivity was consequently the most commonly requested func-
tionality in the post-study interview. This is in line with prior
work on human-centered design principles for ML (Amershi
et al. 2019; Hohman et al. 2019; Weld and Bansal 2019).

Limitations
All interpretability methods, including ours, involve various
design choices and assumptions (both implicit and explicit),
many of which give rise to potential limitations. First, the
concept of interpretability is notoriously ambiguous, and un-
like supervised ML tasks, there is no ground truth to use
for evaluation, even for proxy concepts like feature impor-
tance. As a result, different interpretability methods assume
different notions of interpretability, propose different quan-
tities to operationalize them, and (when needed) rely on dif-
ferent techniques to estimate them. In turn, these choices
mean that no interpretability method will ever be univer-
sally ideal. Moreover, summarizing the behavior of complex
models comes at a price (Rudin 2019) — that is, the explana-
tions are partial, only hold in a small neighborhood (Ribeiro,
Singh, and Guestrin 2016), or make strong assumptions
about the data (Lundberg and Lee 2017). As a result, ex-
planations generated by one interpretability method seldom
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strictly dominate explanations generated by another. Fur-
thermore, different explanations might reveal information
about different aspects of the underlying model’s behavior.

Under this perspective, the design choices and assump-
tions involved in our interpretability method necessarily
limit its scope and applicability. Starting from our deci-
sion to distill characteristics of human explanation into
human-centered design principles, our method assumes that
human characteristics are desirable for machine-generated
explanations. And, although the specific characteristics that
we focus on yield a coherent set of design principles, these
principles are not exhaustive or universal. Some may not
be necessary in all settings, and all are open to refinement.

By relying on the concept of weight of evidence (WoE)
from information theory, our method inherits many of its
strengths and limitations. Concretely, there are three main
settings in which there is a clear case for using explanations
based on the WoE: 1) when the underlying model is genera-
tive, 2) when the underlying model is log linear, and 3) when
the underlying model is a multi-class classifier. We provide
a detailed discussion of these three settings in the appendix.
In terms of limitations, the WoE requires access to the con-
ditional likelihoods P (XAi

|XAi−1
, . . . , XA1

, Y ), which
limits its use to settings in which these are accessible or
can be accurately estimated from finite samples. Estimating
densities for more complex types of data, such as images, is
an active area of research, and although it may be possible
to integrate new advances into our method, its applicability
to such types of data is currently limited. Other important
design choices involved in our method include the technique
for partitioning the classes in multi-class settings to yield
sequential explanations and the technique for partitioning
input features into feature groups. Although we chose
generic solutions to these challenges, there are other tech-
niques, which may be more appropriate in some settings,
which will invariably lead to different explanations. We de-
fer a thorough investigation of these choices for future work.

The main limitations of our user study are the number of
participants, the type of participants, and the extent to which
the study conditions mimic a realistic setting. We chose to
conduct an artifact-based interview study to ensure suffi-
cient interaction time and nuanced data collection for each
participant, but this limited the number of participants that
we could consider, thereby precluding statistical analyses.
Our participants were also limited to ML practitioners.
Following previous work (e.g., Kaur et al. 2020), we chose
to focus on ML practitioners because they are frequent users
of interpretability tools in the wild. Finally, although we
tried to design the study so as to mimic a realistic setting,
we cannot be sure that this experience was representative
of participants’ day-to-day experiences (e.g., working
with their own datasets). Ideally, we would have run a
longitudinal field study with multiple types of participants
to enable us to observe participants’ tool use over time as
they gain expertise in using it. However, this would have
required additional resources (e.g., to support multiple types
of data) and was therefore infeasible. Instead, our user study
serves as an initial evaluation of our interpetability method.

Discussion
In this paper, we take inspiration from the study of human
explanation, drawing on the literature on human explana-
tion in philosophy, cognitive science, and the social sciences
to propose a list of design principles for machine-generated
explanations that are meaningful to humans. We develop a
method for generating explanations that adhere to these prin-
ciples using the concept of weight of evidence from informa-
tion theory. We show that this method can be adapted to meet
the needs of modern ML — that is, high-dimensional, multi-
class settings — and that the explanations can be estimated
accurately from finite samples, are robust to small perturba-
tions of the inputs, and are usable by ML practitioners.

This paper opens several avenues for future work.
Adapting modern density estimation methods for complex
types of data, such as images, might hold the key to wider
applicability of our method. Regarding evaluation, an
immediate next step would be to carry out a follow-up user
study to investigate various design choices, such as the
technique for partitioning the classes in multi-class settings.
Ideally, future user studies should involve participants’ own
models and should rely on questions that attempt to uncover
insights that are relevant to their day-to-day experiences.

The findings from our user study offer important lessons
that we believe are generally applicable to other inter-
pretability tools. Chief among these is the importance of
user-friendly and engaging tutorials that provide users with
the necessary understanding of the tool and its intended
usage, and users’ desire for flexibility in tools. These results
underscore the importance of putting human needs at the
center of the design and evaluation of interpretability meth-
ods. The human computation community is uniquely situ-
ated to drive this work as it requires interdisciplinary exper-
tise in both ML and HCI, fields that are central to HCOMP.

In the spirit of developing AI responsibly, we believe
that papers proposing new interpretability methods should
also provide a discussion, as we have done in the previous
section, of not only those settings for which the proposed
method is suitable, but also those settings that fall outside
its scope. In addition, we recommend that authors should
explicitly describe the notion of interpretability (or expla-
nation) that they aim to operationalize, allowing readers to
situate the contributions in relation to other interpretabil-
ity methods and to understand their scope and applicability.
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