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Abstract

Rapid advancements in Artificial Intelligence have shifted
the focus from traditional human-directed robots to fully
autonomous ones that do not require explicit human con-
trol. These are commonly referred to as Human-on-the-Loop
(HotL) systems. Transparency of HotL systems necessitates
clear explanations of autonomous behavior so that humans
are aware of what is happening in the environment and can
understand why robots behave in a certain way. However, in
complex multi-robot environments, especially those in which
the robots are autonomous, mobile, and require intermit-
tent interventions, humans may struggle to maintain situa-
tional awareness. Presenting humans with rich explanations
of autonomous behavior tends to overload them with too
much information and negatively affect their understanding
of the situation. Therefore, explaining the autonomous behav-
ior or autonomy of multiple robots creates a design tension
that demands careful investigation. This paper examines the
User Interface (UI) design trade-offs associated with provid-
ing timely and detailed explanations of autonomous behavior
for swarms of small Unmanned Aerial Systems (sUAS) or
drones. We analyze the impact of UI design choices on hu-
man awareness of the situation. We conducted multiple user
studies with both inexperienced and expert sUAS operators to
present our design solution and provide initial guidelines for
designing the HotL multi-sUAS interface.

Introduction
In traditional human-in-the-loop systems, a human inter-
acts closely with the system to make plans, approve ac-
tions, and serve as the primary decision-maker, while the
system assumes responsibility for enacting those human-
initiated plans (Nunes, Silva, and Boavida 2018). In this sce-
nario, the human knows what tasks the system is perform-
ing and why it is performing them. In the rapidly emergent
arena of human-on-the-loop (HoTL) systems (Fischer et al.
2017), the system is imbued with the ability to make and en-
act its own decisions. However, in HoTL systems, humans
must still perform a supervisory role. They therefore need to
maintain Situational Awareness (SA), defined as the ability
to perceive the environment (Level-1), understand the rea-
soning behind the current state of the environment (Level-
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Figure 1: This detailed explanation of a change in the
sUAS flight pattern indicates that the sUAS encounters misty
weather conditions and adapts its flight pattern. The explana-
tion includes the sUAS response (flying lower and slower),
planned operational changes (velocity and altitude), and
cause of this change (mist identification).

2), and finally, to project how the situation could evolve in
the future (Level-3) (Endsley 1995b).

Human intervention in HoTL systems takes many forms
and requires the human operator to maintain SA so that they
are able to intervene when needed - typically through creat-
ing a new plan, overriding a decision, reverting permissions,
or assuming temporary control (Agrawal, Steghöfer, and
Cleland-Huang 2020). Therefore, the human interface of the
HoTL systems must be carefully designed to give human op-
erators time to intervene as well as mechanisms for support-
ing the intervention. Even with such affordances, HoTL sys-
tems tend to suffer from three well-known human-machine
interaction problems due to their highly autonomous nature.
These include (a) automation bias, in which a human places
excessive trust in the machine’s decision-making, (b) loss of
SA, and (c) shifting of moral responsibility to the machine
(Challen et al. 2019). Communicating the reasoning be-
hind the autonomous decisions to humans through a human-
machine interface can alleviate these problems since humans
can assess the robot’s reasoning and evaluate where it has
taken appropriate actions in a particular scenario and con-
text (Koo et al. 2015). Therefore, HotL systems rely heavily
on generating explanations of autonomous behavior so that
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humans can understand what is happening in the environ-
ment and why it is happening (Wortham, Theodorou, and
Bryson 2017). Such explanations allow human operators to
understand autonomous actions and develop a multi-faceted
conceptual model of the system’s autonomy. This concep-
tual model includes their understanding of the system’s ca-
pabilities to perform correctly under diverse conditions, its
reliability for correctly completing a task (Dixon and Wick-
ens 2006), and the degree of human trust that can be placed
in the system (Rogers et al. 2019; Schrills and Franke 2020).
All of these factors govern human intervention behavior in a
HotL system, and suggest the importance of providing rich
and timely explanations of autonomous behavior.

Humans supervising multiple small Unmanned Aerial
Systems (sUAS) in emergency response missions achieve
SA through directly observing the actions, location, and
health of each sUAS in flight and also through informa-
tion provided by the User Interface (UI). Humans also
need to understand rationales behind the sUAS’ autonomous
decision-making (Li et al. 2020) so that they can make judg-
ments about the correctness of the sUAS’ behavior. How-
ever, adding too much explanatory material with too many
details about the autonomous behavior can lead to the well-
known SA design demon of ‘information overload’ (Kling-
berg 2009). We therefore explore design solutions for ex-
plaining autonomous decisions of multiple sUAS to a hu-
man operator in order to enhance their SA while supervising
a HoTL system and intervene when needed.

In this paper, we describe a study that we conducted in the
domain of sUAS, as they represent a rapidly emergent area
of HotL systems with diverse application domains such as
medical delivery (Mesar, Lessig, and King 2019; Claesson
et al. 2017), multi-sUAS area search (Scherer et al. 2015),
ice rescue (Iob et al. 2020), and fire surveillance (Wakeham,
Griffith, and Campus 2015; Khan and Neustaedter 2019).
sUAS applications often involve multiple human operators
and multiple sUAS – collaborating together to achieve a spe-
cific task (Agrawal et al. 2020; Cleland-Huang and Agrawal
2020). Our study explored human interface design tensions
in explaining the autonomy of aerial search using multi-
ple autonomous sUAS. We focused particularly on two of
the known challenges of autonomy in human-machine in-
terfaces, namely (1) loss of SA (Endsley 2017) – with an
emphasis upon understanding sUAS autonomy, and (2) au-
tomation bias, defined as the propensity for human operators
to accept suggestions made by automated decision-makers
without question, while ignoring available contradictory ev-
idence. Our study was designed to address the following re-
search questions:

RQ1 How do simultaneous explanations of multiple
sUAS behaviors impact remote operators’ SA?

RQ2 How does the explanation of autonomous behavior
influence automation bias in a multi-sUAS environment?

RQ3 What UI design trade-offs arise from explaining au-
tonomy in a multi-sUAS environment, and how can we re-
solve these trade-offs while providing sufficient SA to re-
mote operators?

Based on the analysis of the data collected during our
study, we provide initial guidelines on trade-offs that should

be considered in the design of a multi-sUAS UI. Our ini-
tial recommendations include (1) adapting the level of detail
in the explanations (2) excluding operational details from
the explanations, (3) favoring the use of icons and anima-
tions over textual descriptions as observed by Lester et al.,
(Lester 2013), (4) providing affordances that allow users to
validate the information provided in the explanation, and (5)
prioritizing explanations of autonomous behavior that could
jeopardize the mission’s objective.We describe these recom-
mendations in detail later in the paper.

The remainder of the paper is laid out as follows. First, we
discuss strategies for explaining sUAS autonomy, designing
AI-driven user experiences, and SA design demons. Second,
we describe our DroneResponse platform on which we con-
duct our analysis. Third, we describe our initial design of ex-
planations, summarize the feedback obtained from prelimi-
nary participatory design exercises, and describe the subse-
quent improvements made to the UI. Fourth, we describe
the user study design and experiments conducted to evalu-
ate the effectiveness of different techniques for explaining
sUAS autonomy. Fifth, we report results from our user stud-
ies and propose subsequent design improvement, and then
finally, we discuss the study’s limitations and conclusions.

Background
The explainability of intelligent systems and the impact of
explanations upon the user’s mental model have been widely
studied in various contexts including machine learning clas-
sifiers & AI models (Chakraborti et al. 2017), recommenda-
tion systems (Dominguez et al. 2019), and planning & deci-
sion systems (Kasenberg, Thielstrom, and Scheutz 2020; Za-
kershahrak et al. 2020). In the context of autonomous agents,
Titarev et.al (Tintarev and Kutlak 2014) developed Scrutable
Autonomous Systems (SAsSy) to demonstrate a human-
understandable dialog explaining an autonomous agent’s be-
havior through argumentation and natural language. Garcia
et al.,(Garcia et al. 2018) designed a natural language UI
to provide explanations of autonomous behavior to remote
operators. Both systems provided explanations in the form
of dialogue upon human request. Our work closely aligns
with these approaches through explaining autonomous be-
havior. However, due to the high autonomy levels and the
time-sensitive nature of sUAS flight missions, our UI design
pushes explanations of autonomous behavior to the opera-
tors rather than requiring humans to request explanations
upon demand. Previous studies have shown that the use of
graphics such as icons and images for visual communica-
tion (Lester 2013) is fast, engaging, and attention-grabbing.
Therefore, we combined both graphical and natural lan-
guage modes of explanation to design our UI for explaining
sUAS autonomy in a time-constrained environment.

AI-Driven User Experiences
Explanations in a multi-sUAS mission domain must be for-
matted in a way that supports immediate and clear com-
prehension, as misinterpretations may have safety and legal
consequences. Since the autonomy of sUAS is dependent on
the ability of the AI models to recognize their surroundings,
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it is important to examine how wrong decisions and their ex-
planations are perceived by humans in a complex and time-
constrained environment (Kliman-Silver et al. 2020). There-
fore, in our study, we deliberately included scenarios (see
Table 1) in which one or more sUAS presented information
as if they had incorrectly perceived the environment (Sce-
narios V1, V3, and V4), and also cases in which they failed
to execute correct actions during the mission (Scenario V5).
This allowed us to evaluate the SA of users under such con-
ditions.

Gregor et al. (Gregor and Benbasat 1999) investigated
the nature and usage of explanations across diverse au-
tonomous systems. They showed that explanations should
address “Why” and “Why not” a certain decision is cho-
sen over others. For self-driving cars, Koo et al., (Koo et al.
2015) also found that explaining “Why” was essential for
maintaining good driving performance. Therefore, in this
paper, we focus on explaining why an sUAS is acting in a
certain way through our multi-sUAS interface. For exam-
ple, an sUAS starts flying lower and slower because misty
weather is detected, or an sUAS switches from searching to
tracking mode because it recognized a person on the ground.

Situational Awareness (SA)
A design tension exists between providing a detailed expla-
nation of sUAS autonomous decisions with the overall need
for the human supervisor to maintain SA of the mission.
Endsley previously identified eight common design prob-
lems impacting SA (Endsley 1995b) and referred to them
as Design Demons. Prior work has suggested that four de-
sign demons are particularly relevant to multi-sUAS sce-
narios (Agrawal et al. 2020). These include (1) Information
Overload (IO), which occurs when the human operator faces
difficulties in processing all the presented information, (2)
Errant Mental Model (EMM), in which the human forms
an incorrect mental model of the situation, (3) Misplaced
Salience (MS), characterized by inappropriate use of colors,
alarms, and warnings prohibits that make it difficult for users
to make connections between different pieces of informa-
tion, and (4) Attentional Tunneling (AT), in which the user
fixates on a single piece of information at the expense of
missing critical information.

DroneResponse: Multi-sUAS Search
We utilized the UI and executable environment of the
DroneResponse system (Agrawal et al. 2020; Cleland-
Huang et al. 2020) to experimentally evaluate the efficacy
and trade-offs of different design decisions for explain-
ing autonomy. DroneResponse uses physical sensors such
as a camera, GPS, and LiDAR to sense the environment,
and leverages onboard computer vision (CV) models (e.g.,
YOLOv3 (Redmon et al. 2016)), to analyze data and to iden-
tify specific objects. The autonomous behavior of each in-
dividual sUAS is determined by an internal state-transition
model, which tracks its current state (e.g., searching, track-
ing), and specifies the permitted state transition conditions.
Multiple sUAS communicate over secured Wi-Fi or LTE
channels with the DroneResponse internal air-traffic con-
trol (ATC) service whenever synchronization is required. A

dedicated video streaming server interfaces with each sUAS
over WiFi/LTE to stream close to real-time video from sUAS
to the UI.

sUAS Autonomy
For the study, we identified four common types of incidents
that require sUAS to adjust their flying patterns. Each inci-
dent is described below:
• Weather Recognition: The sUAS detects local and tran-

sient weather conditions including mist, snow, and rain
using a weather recognition CV model (Abraham et al.
2021). This ability is important for vision-based search,
as inclement weather impacts visibility and requires the
sUAS to adapt its flying behavior. For example, if an
sUAS detects rain while searching for a victim, it should
autonomously reduce its altitude and velocity (i.e., fly
lower and slower) to preserve image detection accuracy.

• Autonomous Tracking: During a search, the sUAS uses
onboard CV to detect a person in the video frame. Once
a person is detected with sufficient confidence, the sUAS
switches into tracking mode and navigates in 3D space
according to the movements of the person.

• Return to Launch: sUAS autopilot software, provides a
fail-safe mechanism to return the sUAS to its launch coor-
dinates (RTL) when the battery level drops below a prede-
fined threshold level or when signal is lost. The autopilot
provides the ability to override this fail-safe, so that the
sUAS identifies and lands at the closest predefined land-
ing pad.

• Dynamic Path Planning: Each sUAS needs to perform
path-finding to avoid no-fly zones and obstacles. While
DroneResponse is not yet fully implemented with dy-
namic navigation, we have created a mock-up in the UI, so
that UAVs avoid no-fly zones, such as hospitals, stadiums,
and universities. The sUAS are programmed to select the
shortest direct route, or to request human assistance for
planning if they are unable to find a viable path to their
destination.

Figure 2: DroneResponse UI showing flight paths of four
sUAS. sUAS information and their icons on the map are
color-coded.
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Prototype Design
In previous work, we conducted a participatory design ses-
sion with stakeholders to collect end-user requirements and
proposed interfaces for multi-sUAS systems (Agrawal et al.
2020). We developed a high-fidelity interactive UI of our ini-
tial design as shown in Figure 2, and then augmented the de-
sign to include explanations of autonomous sUAS behavior,
which is the focus of this study. We considered the auton-
omy scenarios described in the section “sUAS Autonomy”
to generate design ideas for explaining the sUAS autonomy.

In each scenario, we identified the necessary pieces of
information for understanding the autonomous behavior of
sUAS. These included the event that occurred (e.g., mist was
detected) causing the sUAS to respond autonomously, the
action taken by the sUAS in response to that event (e.g., fly-
ing lower and slower), and finally the reasoning behind the
decision (e.g., to increase visibility) (Mualla et al. 2020). In
addition, we considered supporting the explanation of sUAS
autonomy by describing operational level changes, such as
a change in the flight mode or flight plans, and also by pre-
senting the sUAS confidence in their AI-driven autonomous
decisions (Zhang, Liao, and Bellamy 2020). After exploring
multiple options for embedding the explanations concisely
in the UI, we decided to provide event recognition informa-
tion immediately next to the sUAS’s current location icon in
the UI, as shown in Figure 3. We reasoned that this design
would allow remote pilots to maintain awareness of events in
the environment, and understand which sUAS are respond-
ing to those events when multiple events occur simultane-
ously.

Finally, we also developed an explanation box to provide
details of sUAS autonomous behavior (see Figure 1) and
color-coded it with the sUAS icon on the map for easy com-
prehension. The explanation box included the autonomous
actions, reasoning, and operational changes in flying behav-
ior. Further, we included interactive options for remote pilots
to interact with sUAS autonomy, allowing them to configure,
suspend, and acknowledge the sUAS’ autonomous behavior.
When an event occurs in an environment, UAV explanations
appear on the UI without the user having to request them
explicitly. This design supports the human-on-the-loop in-
teraction style of the system.

Design Exercise
We conducted an initial design exercise with senior under-
graduate students who were taking a class on software de-
velopment for sUAS because they were familiar with sUAS
operations. The purpose of this exercise was to collect pre-
liminary feedback, refine our prototype, and identify chal-
lenges that remote pilots might encounter in comprehending
a situation. 26 of 30 students chose to participate in the de-
sign exercise, which involved reviewing screen recordings
of simulated multi-sUAS missions where one or more sUAS
adapts and explains their autonomous behavior. The students
individually described what they understood to be happen-
ing in each scenario and provided suggestions for improve-
ments in the design.

Within each of these scenarios, sUAS video streams were
provided by prerecorded video clips (collected partially

Figure 3: Multiple sUAS are reporting the event on the UI
as it occurs

from YouTube and partially using our own sUAS). Adobe
Premiere was used to add weather effects to the clips, and
YOLO the (Redmon et al. 2016) vision model was used
to detect people and to draw bounding boxes around them.
Finally, we simulated the sUAS in Gazebo (Koenig and
Howard 2004) and executed complete missions in DroneRe-
sponse, recorded them using screen recording tools, and pre-
sented them to students during the design exercise. It is
worth noting that the DroneResponse UI is identical regard-
less of whether simulated or physical sUAS are flown. We
included at-least one video for each of the four autonomous
events described previously. Each event was observable in
the UI via the video stream of at least one sUAS and in-
formation available on the map. We also included scenarios
where an sUAS reports an incorrect event. For example, in
one scenario, the sUAS mistakenly interpreted a ball as a
person and then started tracking it.

Design Improvements
We reviewed the feedback to identify potential opportuni-
ties for design improvement. As a result, we modified the
way in which autonomous sUAS behavior was explained on
our UI. We categorized these design changes into four de-
sign concepts: Information Clustering, Uncertainty Priori-
tization, Event-Action Pairs, and Failure Avoidance to im-
prove the SA of sUAS operators. We briefly describe some
preliminary feedback.

Information Clustering: One person reported that the
pieces of information needed to completely understand the
explanation were scattered across the screen and suggested
bringing the drone’s camera view to the user’s attention by
enlarging or highlighting it when an event occurred. This
comment matched one made in a previous study (Agrawal
et al. 2020), where firefighters stated that when they detected
a victim, they wanted to focus all of their attention on the
victim. Therefore, we redesigned our detailed explanation
by moving relevant information inside a single explanation
box. In addition to describing the operational changes in the
sUAS flying pattern, we added video frames that were rel-
evant to the AI decision-making into the explanation box.
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(a) Information Clustering (b) Uncertainty Prioritization (c) Event-Action Pairs (d) Failure Avoidance

Figure 4: Design Concepts applied to manage the information overload while providing multi-sUAS autonomy explanations
(a) Group relevant information including a description of the event and video frames providing evidence supporting the sUAS
autonomous decision. (b) Explicitly highlighting the border of the information box of the sUAS that is exhibiting autonomous
actions to draw user’s attention. (c) Presenting “Event” and “Action” together as a pair.(d) Blinking icon and text is used when
human control is required in an emergency situation. In this case, the text ”Needs Manual control” and the handheld controller
icon starts blinking to draw immediate attention.

This change allowed the users to validate the sUAS actions
without switching attention between different areas of the
screen. Figure 4a shows the screenshot of the refined proto-
type, based on the hypothesis that it would require less time
for a user to validate events, and that SA could be main-
tained more effectively, if relevant information were made
available in a single place.

Uncertainty Prioritization: Information overload was
clearly evidenced, as 83% of the students were unable to
understand or validate all the events that occurred simulta-
neously. To address this phenomenon, we modified the de-
sign to only display a detailed explanation (i.e., the larger
explanatory box as depicted in Figure 4a) when sUAS con-
fidence in the autonomous decision was below a predefined
threshold level. When an explicit explanation was omitted,
we colored the border of the sUAS information box with
its uniquely assigned color, to serve as an indicator that the
sUAS is currently executing an autonomous action. In this
way, we used visual communication to draw the participant’s
attention to the sUAS status and to its video stream in the
right-side panel of the screen. This design concept is illus-
trated in Figure 4b. Table 1 indicates the scenarios for which
explicit explanations were omitted from events due to high
sUAS confidence in their autonomous actions. These scenar-
ios were specifically crafted to evaluate whether we could
use this technique to reduce information overload while
maintaining sufficient SA of the remote operators.

Event-Action Pairs: Multiple participants mentioned is-
sues in quickly parsing all the explanatory information and
suggested that more concise event pop-ups might be help-
ful. In order to provide information concisely and to address
the Errant Mental Model design demon, we moved the tex-
tual explanation of the event and sUAS(s) adaptations in re-
sponse to that event from the explanation box to the pop-up
which is adjacent to each sUAS’ location as shown in Fig-
ure 4c. Placing a brief description of the sUAS’ autonomous
behavior next to the sUAS reduces the likelihood that users
will confuse one sUAS’ autonomous actions with another’s.

Failure Avoidance: Efficient Human-Drone partnerships
require humans to intervene in the sUAS autonomy when the

sUAS makes incorrect decisions or when the sUAS proac-
tively seeks human assistance. In one of our scenarios, the
sUAS explicitly requested help from the human. The fol-
lowing message was displayed immediately below the au-
tonomy explanation: “RTL command failed, need human
control to prevent crash”. To raise human awareness that
manual take-over was required, we replaced the sUAS Ac-
tive status with Needs Human Control as displayed in the
right side panel of the screen. Furthermore, we included a
blinking handheld controller icon to reinforce the message.
Figure 4d shows the prototype after making these changes.

Experimental Design
After prototype refinement, we conducted user studies that
included both inexperienced sUAS operators and experts to
capture their SA under different situations. The goal of the
user study was to better understand how our design deci-
sions influenced the SA of remote pilots and other observers
under different real-time situations. Overall, we sought to
understand the strengths and limitations of each design con-
cept, and which ones were better suited for different mission
contexts.

Each recorded mission scenario (referred to as a ‘mission
video’ from now on) used in our study, was around 90 sec-
onds, and included one or more sUAS modifying their flying
behavior in response to various environmental events. Sce-
nario characteristics are provided in Table 1. In mission V1,
an sUAS incorrectly believes an object on the ground to be a
person and starts tracking it, while in V2, an sUAS correctly
recognizes the misty weather conditions and adapts its flying
patterns. The mission videos V3, V4, and V5 include simul-
taneous explanations from two sUAS. In V3 and V4, one
sUAS out of two fails to recognize an event correctly, while
in V5, one sUAS executes the actions properly but requests
human assistance. Irrespective of the number of sUAS act-
ing autonomously, the UI always provided an explanation
reflecting the sUAS’ belief as illustrated in Figure 4.

User Engagement
We recruited MTurk workers, without sUAS expertise (non
experts), to watch the videos and then answer a set of ques-
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tions about their observations and perspectives. In addi-
tion, we engaged seven people with experience flying au-
tonomous aerial vehicles including certified FAA pilots,
sUAS hobbyists, and researchers working on sUAS devel-
opment, in order to potentially obtain richer feedback and to
determine whether the perception of sUAS autonomy differs
between non experts and domain experts. In both studies, we
elicited feedback from the participants using mission videos
based on the modified prototype produced as a result of the
preliminary participatory design process.

Study Format
Each participant watched at least one mission videos, and
after each video was asked to respond to a questionnaire to
document their awareness of the situation. Following the Sit-
uational Awareness Global Awareness Technique (SAGAT)
(Endsley 2000, 1995a), when participants were observing
the mission, we froze the video after an sUAS explained
its behavior. Participants were encouraged to describe their
overall impression of the UI, autonomy, and any challenges
in understanding what was going on in each mission. We
then performed a quantitative and qualitative analysis of the
collected responses in order to answer our primary research
questions with a focus on the following three factors.

• sUAS Autonomy Awareness: Each participant was asked
to describe their understanding of the mission in writ-
ing. We analyzed each textual response to identify 1) their
awareness of the sUAS’ autonomous actions, 2) their per-
ception of the environment, 3) how they dealt with at-
tentional challenges whilst monitoring multi-sUAS’ au-
tonomous activities in the time-constraint environment,
and finally 4) how each of the individual design decisions
helped them to perceive the mission.

• Human Automation Bias: Given the well-known
human-machine problem of automation bias, we sought
to understand how an operator perceives the situation
when a sUAS provides incorrect information. In scenar-
ios in which the sUAS provided incorrect information,
or adjusted their behavior based on events that they had
misinterpreted (e.g., claimed to have detected mist, even
though no mist existed), we evaluated whether users re-
alized that the sUAS had misinterpreted its environment
or not. Based on this analysis, we identified the user’s
propensity for accepting sUAS explanations, which in
turn allowed us to evaluate the impact of automation bias
and answer our third RQ.

• Human-Agent Partnerships : When humans work in
multi-sUAS environments, they need to monitor the be-
havior of all participating sUAS, and develop an accurate
mental model of the mission status. Humans can better
collaborate with sUAS and assist them when necessary if
they are fully aware of the environmental conditions in
which each sUAS is operating. In our mission videos, the
sUAS’ environment is portrayed through its status (e.g,
battery, location) and its video stream. Therefore, we ob-
served the way users inspected, and responded to, the
sUAS aerial video streams and the information displayed

on the map, in order to analyze their ability to supervise
the sUAS.

Results and Analysis
Procedure
Participants were first asked for their informed consent. Sec-
ond, they performed a screening test to evaluate their abil-
ity to observe details and to correctly answer two questions
about an image. Participants who failed the screening were
eliminated from the study in order to improve data qual-
ity. Third, we provided participants with an overview of the
project and familiarized them with the UI of the DroneRe-
sponse application by presenting and explaining several
screenshots. We also explained the format of the survey, the
estimated completion time, average length of each mission
video, and the number of videos they would watch. In each
case, we asked participants to assume the role of an emer-
gency responder (e.g., a fire-fighter) responsible for moni-
toring the aerial search. Participants recruited from MTurk
were randomly assigned one video clip each (V1, V2, V3,
V4, V5) to keep the duration of the study shorter. However,
domain experts watched all five videos, presented in random
order. Finally, a post-task survey was administered follow-
ing the SAGAT principles to assess participants’ SA and to
investigate if there were any indications of human-agent col-
laboration or automation bias.

Participants
We recruited crowd workers without sUAS operational ex-
perience through MTurk. Each worker had prior task ap-
proval ratings of at least 99 percent and a minimum of 50
tasks completed. We collected data from 109 crowd workers
who passed our pre-qualification test. To ensure data quality,
we discarded two responses because the respondents did not
watch the complete video during the study, 31 for providing
vague or irrelevant responses, and one for being incomplete.
Finally, we analyzed data from 78 participants (25 Females,
53 Males). Participants completed the entire study within an
average of 13.29 minutes and were paid $2 for completing
the task (equivalent to an hourly wage of $9.02).

In addition to the MTurk workers, we also recruited do-
main experts by sending emails to people in our personal
networks whom we knew to be knowledgeable about sUAS.
These experts included FAA remote pilots, sUAS develop-
ers, and people working on sUAS projects, as shown in Table
2. We analyzed a total of 113 scenario responses, including
78 from MTurk workers and 35 (5X7) from experts.

Qualitative Analysis
We focused our qualitative analysis on understanding the re-
mote operator’s perception of the multi-sUAS mission, in-
cluding challenges they faced whilst observing the mission,
and their awareness of the sUAS autonomy and the envi-
ronment. Two authors of this paper systematically applied
inductive coding (Thomas 2006) to identify primary chal-
lenges that participants’ face while observing and under-
standing the information provided in the multi-sUAS mis-
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Misty Weather Person Detected Mechanical Failure Path Re-planning
ID Count Real sUAS Minimal Real sUAS Minimal Real sUAS Minimal Real sUAS Minimal

Event Action Explain Event Action Explain Event Action Explain Event Action Explain
V1 Single A2 3

V2 Single A1 3

V3 Multiple A1 3 A2 3

V4 Multiple A1 A2
V5 Multiple A6 A4

Table 1: A: Action; A1: Fly Lower and Slower, A2: Track, A3: Return to Home, A4: Path Re-plan, A5: Do Nothing, A6:
Request Control. Event occurred. sUAS reported event, but it didn’t actually occur. 3Detailed explanation was not
provided due to high confidence in sUAS decision. The videos are available on YouTube 1.

Ps sUAS Exp. Area of Expertise
P1 5 years Professional sUAS developer
P2 4 years Experienced sUAS pilot
P3 1 year Researcher on sUAS vision.
P4 1 year Researching CV with sUAS.
P5 2 year Researching CV with sUAS.
P6 2 years Professional sUAS developer
P7 3 years Pilot and owner of sUAS startup

Table 2: Details of Domain Experts participate in our study

sion. We identified comments in the textual response indi-
cating an issue, and repetitious comments about the same
issue from a single participant were only counted once. In
total, we observed 13 unique challenges, which we grouped
into six primary themes as described in Table 3.

The most frequent comment focused on “things happen-
ing too fast” which made it difficult for users to fully under-
stand the state of the mission. One MTurk participant men-
tioned that “I just saw that the drones were all doing sep-
arate things and too quickly for me to understand”, while
another reported “There was so much going on at once that
it was very stressful and difficult to watch all four drones at
once”. Domain experts also experienced time pressure as
indicated by P4’s comment that “I only had time to read
the event details for the purple drone at the bottom of the
screen”, and P2 who mentioned that “Too many events hap-
pening at the same time, shortly after each other - hard to
read and comprehend everything that happened.” Partici-
pants clearly suffered from Information Overload that ham-
pered their decision-making. They offered comments such
as “there seemed to be too much information going on in
the screen at the same time for me to evaluate and make any
decisions”. We observed similar comments from domain ex-
perts, as P5 specifically mentioned “Since there are a lot of
things happening on screen it can be hard at first to know
what to focus on”, and P7 also mentioned that “when the
alerts popped up, the information was slightly overwhelm-
ing to process quickly”.

Another critical challenge was to associate the sUAS ac-
tivity on the map with its corresponding information on the
side panel based on colors and confidently confirm or re-
ject the sUAS perception of the environment in a limited
time. For instance, one MTurk participant reported “I feel

like I missed things as I moved from left [Map View] to
right [Video Stream View]”. Additionally, we saw that par-
ticipants prioritized their visual attention on the events that
mattered most to them. For instance, one MTurk participant
focused on the map to make sure two nearby sUAS did not
collide while failing to validate an event reported by one of
the sUAS. They stated that “ One drone gave a notice that
there was mist in the area... I checked the drones’ positions
to make sure that when they were in the flight path of another
drone that their altitudes were different”. Domain expert P1
intrinsically focused their attention on maps to better under-
stand the situation and mentioned “my eyes were drawn to
the map to see where the drones were moving and I didn’t see
...” Furthermore, to alleviate the issue of Information Over-
load, domain expert P4 suggested focusing the explanation
on critical events and mentioned “The weather condition de-
tection doesn’t seem to play a very important role here (in
the display) and can be confusing as an alert”. These com-
ments are indicative of a complex and rapidly changing en-
vironment.

sUAS Autonomy Awareness
When only one event occurred in the environment (V2), and
the sUAS correctly responded to it, we found that everyone
was aware of the sUAS’ autonomous action and the rationale
for taking that action. Furthermore, in scenario V1, 87.5%
of crowd workers demonstrated awareness of the sUAS au-
tonomous action when it responded incorrectly to an event
that never actually occurred in the environment. However,
both domain experts and crowd workers experienced greater
difficulty in perceiving the environment and the sUAS’ au-
tonomous actions when two events occurred simultaneously.

First, by comparing data collected from MTurk for scenar-
ios V3 and V4, which both included simultaneous events, we
observed that 64% of participants were aware of both events
and understood the corresponding sUAS actions when a
minimal explanation was provided in V3, but only 48%
achieved this when the detailed explanation was provided
in V4. In other words, providing a minimal explanation re-
sulted in approximately 16% improvement in comprehen-
sion.

Second, we observed that participants noticed at least one
of the events, with 88% of participants in V3 demonstrat-

1https://tinyurl.com/UAV-Autonomy-Study
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Themes Total Mission Scenarios
V1 V2 V3 V4 V5

1. Things happening too fast 22 1 2 5 7 7
2. Difficulty in recognizing objects in video stream 15 10 1 1 3 0
3. Need to prioritize visual attention 14 1 5 0 7 1
4. Too much simultaneous information 8 0 0 2 2 4
5. Difficulty switching between map view & information panel 4 0 0 2 1 1
6. Feeling stressed 2 0 0 2 0 0

Table 3: Autonomy awareness themes that emerged from the qualitative analysis of MTurk participants’ feedback

ing complete awareness of the“Person Detection” event, and
87% of participants showing awareness of the “Mist De-
tection” event in V4. while domain experts also prioritized
their attention on a single event when two events occured
in V3, P1 demonstrated complete awareness of both the au-
tonomous action and its detailed explanation. Domain ex-
perts were more informed in scenario V3 where six out of
seven of them showed awareness of both autonomous ac-
tions that had occurred – even though they did not know
the operational details. In this regard, minimal explanations
helped both experts and inexperienced operators to gain a
better understanding of sUAS autonomy. When the events
and actions were displayed as a pair adjacent to the sUAS’s
location on the map, the lower cognitive load helped peo-
ple to comprehend both events in the environment. Also, the
absence of additional operational details reduced the number
of potential distractions and allowed the participants to focus
on the actual mission. Finally, we observed that the detailed
information in V4 was not as helpful since only 25% rec-
ognized the shift from “Search” to “Track” after the sUAS
detected the person. Therefore, we concluded that removing
operational details from the explanations enabled humans to
better focus on multiple events and to make sense of the situ-
ation at hand. On the other hand, when sUAS performed cor-
rect autonomous actions without making any mistakes (V5),
70% of the participants demonstrate awareness of both au-
tonomous actions suggesting that the automation bias, dis-
cussed next, was a contributing factor.

Hence, in response to RQ1, we found that providing de-
tailed explanations of the autonomous behavior of multiple
sUAS actually reduced the ability of users to maintain ade-
quate SA in our studied time-critical environment. Further-
more, our results suggest that explanations in the UI should
provide minimal information needed by the remote pilot to
make an immediate decision rather than providing detailed
reasoning for the autonomous decision of sUAS.

Human Automation Bias Analysis
In our post-task questionnaire 2, we asked MTurk partici-
pants a series of multiple-choice questions regarding their
understanding of the situation. To gauge whether partici-
pants were aware of the autonomous actions of sUAS, we
counted the correct number of responses provided with re-
spect to their observations about environmental conditions
that triggered autonomous decisions, changes in sUAS ve-

2https://tinyurl.com/UAV-Autonomy-Artifacts

locity and altitude, and fairness of sUAS autonomous ac-
tions to assess diverse states of the mission. On average,
MTurk participants only perceived 23% of the actual mis-
sion status correctly when sUAS made an incorrect decision
(V1) as compared to 62.5% when the sUAS acted correctly
(V2). This suggests that participants demonstrate the ten-
dency to agree with the explanations and believed that the
sUAS acted correctly. Similarly, when multiple events oc-
curred, the participants were able to perceive 49% of the
mission status when both sUAS notified the occurrence of
the event correctly (V5) as compared to 39.5% (V3) and
32% (V4) when only one sUAS reported a correct event. We
found that domain experts also suffered from Automation
Bias, evidenced by the fact that in scenario V1, five experts
incorrectly accepted the sUAS autonomous action and be-
lieved that there was a person present in the scene.

Hence, In response to RQ2, we found that explanations
exacerbated the issue of automation bias. This observation
confirms prior research results that show that explanations
tend to increase the human’s trust in the AI system, whether
it is correct or not,(Lee and See 2004), making them more
likely to follow the AI recommendation. While these find-
ings are consistent with the psychological literature (Koehler
1991), we believe that other factors, such as time constraints
in multi-sUAS environments exacerbate the situation, fur-
ther hampering human ability to perceive and evaluate in-
formation correctly.

Human-Agent Partnership Analysis
We analyzed user behavior towards inspecting video streams
or available environmental information on the map to con-
firm or refute the validity of explanations presented to them.
We found that most MTurk participants did examine the
video stream or mentioned wanting to look at the video
stream to validate events when only a single event took place
(81% and 83% for V1 and V2 respectively). In contrast,
when multiple events occurred in V3 and V4, we found that
most of the MTurk participants reported watching the video
stream of at least one of the sUAS that reported an event,
while only about 20% reported viewing video streams from
both sUAS. We observed a similar pattern in the study with
domain experts because all (7/7) experts were able to vali-
date the presence of a person in the video and two experts
also detected the wrong autonomous action of the sUAS for
Scenario V3. In case of V4, five of the seven domain experts
managed to find the presence of the person in the video but
were not sure about the details of other event. This also sug-
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gests that domain experts were more interested in ”Person
Detection” event than the ”Mist” event.

A notable issue experienced primarily by MTurk partici-
pants was switching attention between the map view and the
sUAS information panel. One participant stated that “I was
watching the map and trying to figure out which color was
which drone compared from the right window to the left win-
dow”. A few MTurk participants from V4 also mentioned
looking at the pictures in the explanation box (Information
Clustering) instead of the raw video stream, observing that
“there were pictures showing the person that had been de-
tected”. Notably, in scenario V5, where we used visual com-
munication to draw users’ attention towards UAVs’ request
(see Fig 4d) for a safe landing, all domain experts except
one showed awareness of the mechanical failure and said
that they would have taken manual control of the sUAS as
requested.

Perceived Workload
Monitoring multi-UAV missions requires human operators
to analyze, comprehend and make decisions based on rapid
information coming from multiple UAVs. Interpreting ex-
planations can further increase the cognitive load of hu-
mans. Therefore, we utilized the Raw NASA-TLX (NASA-
RTLX) to measure the perceived workload (Hart 2006) of
MTurk participants. The NASA-RTLX measures percep-
tions of workload for physical, mental, and temporal de-
mands as well as performance, effort, and frustration. As our
task did not involve any physical activity, we did not ask our
participants to report their perception of the physical load.

Figure 5 shows the categorical NASA-RTLX scores
across all scenarios. Unsurprisingly, irrespective of the de-
sign of explanations, the mental demand, temporal demand,
and effort were found to be higher when multiple events
occurred at the same time and where at least one of the
sUAS failed to respond correctly (V3 and V4). Ruff et al.,
(Ruff et al. 2004) found that the perceived workload of op-
erators increases under autonomous operation compared to
manual. Our results indicate that the workload further in-
creases as the number of autonomous actions and associated
explanations increase. The median workload for scenarios
in V1 (66.0) and V2 (72.50) was comparatively lower than
when multiple events occurred in V3 (86.0) and V4 (84.5)
as can be observed from Figure 6. On the other hand, when
the monitoring task did not require the participants to shift
their focus from the map view to the video stream view in
the right-hand side panel to perceive the environment, the
median workload for simultaneous events in V5 (74.0) was
found to be lower as compared to that of V3 and V4. This
also suggests that the design of explanations must minimize
the need to switch attention in order for users to understand
autonomous actions.

In conclusion, both MTurk participants and domain ex-
perts demonstrated similar behavior regarding the percep-
tion of sUAS autonomy, automation bias, and partnership
with sUAS. Further, In response to RQ3, we found that De-
sign Concepts such as Event-Action pairing, graphical an-
imations, and information clustering improved SA whilst
keeping the information and cognitive load low. Event-

Figure 5: NASA-RTLX Score distribution of MTurk partic-
ipants

Figure 6: Overall Workload distribution of MTurk partici-
pants across all scenarios

Action Pairing helped in conveying the explanation(s) in a
concise format, reduced information overload, and helped
our participants maintain a clear separation between the dis-
tinct autonomous actions of multiple sUAS resulting in bet-
ter awareness of the situation. Graphical animations were
useful for immediately drawing a user’s attention in emer-
gency cases such as mechanical failure in a sUAS. Infor-
mation clustering allowed participants to evaluate the sUAS
autonomy from the images in the explanation boxes, whilst
minimizing the need to switch attention between views.

Multi-sUAS UI Design Implications
Adaptive Levels of Details
Our sUAS autonomy awareness analysis suggests that de-
tailed explanations should be omitted when multiple sUAS
encounter simultaneous events, meaning that the details to
include in the explanations need to be adapted to support
easy comprehension. In the context of process monitoring,
Matkovic et al., (Matkovic et al. 2002) adapted the level
of detail for effectively visualizing the reading from multi-
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instruments. Similarly, the level of detail in the sUAS expla-
nations could be adapted based on multiple factors such as
confidence of sUAS in performing the action autonomously,
information already present in the UI, and the potential im-
pact on the mission if the autonomous actions are unwar-
ranted. For example, if one sUAS adapts its flight pattern in
response to adverse environmental conditions, while another
transitions to tracking mode in response to sighting a poten-
tial victim, it would make sense to provide more details in
the explanation of the critical tracking decision than others
in order to reduce the risk of information overload.

Information Count
In our automation-bias analysis, we found that on average
participants were able to correctly report four different de-
tails about the autonomy of sUAS and the surrounding envi-
ronment, regardless of the number of events or the correct-
ness of sUAS autonomous actions. Participants also paid at-
tention to sUAS colors, and the direction in which some or
all sUAS were moving. While the psychology literature re-
ports that short-term memory of a human can hold between
five and nine pieces of information (Miller 1994), we ob-
served that this number was limited to four pieces of infor-
mation associated with autonomy explanations, most likely
due to the additional stress of a rapidly evolving environ-
ment, and the need to recall additional information related
to recent events or the general context of the mission. This
suggests that the UI should limit autonomy explanations to
four critical pieces of information.

Prioritize Explanations
When simultaneous events occur in the environment, the ex-
planations should be prioritized according to the degree of
uncertainty in the sUAS action and the consequence of those
actions. The explanations of autonomous sUAS actions that
could jeopardize the mission should receive the highest pri-
ority. Prioritizing the explanations may cause remote opera-
tors to remain unaware of some sUAS autonomous actions.
However, such trade-offs seem necessary for the overall pur-
pose of the mission. Therefore, the system designers need
to carefully investigate the possible occurrence of events in
various mission contexts to prioritize explanations.

Event Validation
Finally, we observed that the participant’s ability to main-
tain sufficient SA depends on their ability to discern whether
the autonomous action of sUAS was justified in response
to the current event, or even whether the event reported by
the sUAS actually occurred. In our experiments, the problem
of automation bias was repeatedly observed as users failed
to notice errors made by sUAS. Therefore, when an sUAS
has seemingly low confidence in its decision but its auton-
omy model supports execution of the action, the explana-
tions should focus on providing information to help users to
discern what actually happened and whether the autonomous
action was justified. For instance, if an sUAS starts tracking
a person with seemingly low confidence in the image detec-
tion, the explanation of such an autonomous action should

encourage the user to inspect the video and confirm or refute
the decision. We hypothesize that empowering the user to
evaluate decisions leads to more correct outcomes than sim-
ply showing confidence scores. This strategy would increase
the human cognitive load to interpret the correctness of the
autonomous decision at the expense of protecting them from
confirmation bias and a possible hazardous outcome. The UI
designers should carefully consider such trade-offs when de-
signing a multi-sUAS interface.

Limitations and Future Work
We utilized simulated sUAS in our user studies to collect
feedback from participants. While a controlled experiment
in a real-world setting with several physical sUAS will be
important for learning more about UI design trade-offs; our
design setup allowed us to control the scenarios precisely, to
engage a larger set of participants, and to explore many dif-
ferent design decisions. However, our study had certain lim-
itations. Study participants were not able to interact directly
with the prototype because we used prerecorded simulated
videos. We plan to conduct an interactive study with addi-
tional expert users in the future to further validate our pro-
posed design guidelines. Second, we only studied the impact
of two simultaneous events and considered only four pri-
mary autonomous features. Further work is needed to design
solutions that would be resilient to even more simultaneous
events; however, the approaches we have identified through
our study can be applied and evaluated in future real-world
studies with physical sUAS.

Conclusion
Since explanations from multiple sUAS are sometimes nec-
essary, we emphasize the problem of information overload
and its impact on human operators’ situational awareness.
We followed an iterative approach to design, evaluated an
explainable UI for autonomous multi-sUAS human-on-the-
loop systems, and collected feedback from inexperienced
crowd workers and experienced sUAS operators. In partic-
ular, we focused on exploring the design trade-offs implicit
to handling simultaneous autonomy explanations in a multi-
sUAS environment. We explored several design choices for
explaining the autonomous behavior of multiple sUAS and
documented their impact on remote operators’ situational
awareness. Several design choices such as the Event-Action
pairs, information clustering, and use of graphical anima-
tions over natural language in specific mission context were
found to be effective for explaining autonomous actions. We
have provided actionable guidelines for effectively explain-
ing the autonomous behavior of multiple sUAS. We antic-
ipate the findings may apply to other fleet monitoring ap-
plications, such as monitoring multiple robot taxis for safe
operations.
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