The Sixth AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2018)

Winglt: Efficient Refinement
of Unclear Task Instructions

V. K. Chaithanya Manam, Alexander J. Quinn
Purdue University
West Lafayette, Indiana, USA
{vmanam, aq} @purdue.edu

Abstract

Crowdsourcing has the inherent potential to shift tedious
work from requesters with limited time (or patience) to an
on-demand workforce. However, the time saved by requesters
is offset by the time they must spend preparing instructions
and refining them to address the ambiguities that typically
arise. Hastily written instructions should be welcomed and
supported. This paper presents a set of methods that enable
workers to cope with unclear or ambiguous instructions and
produce high quality results with minimal reliance on the
requester. Workers’ intuition about the requester’s needs is
leveraged to move onus for answering questions and revis-
ing instructions to workers. Our system, Winglt, implements
these methods and demonstrates the relative tradeoffs be-
tween resolving by questions versus editing instructions di-
rectly, and between waiting for immediate response from the
requester versus allowing workers to proceed based on their
best guess of the requester’s intent.

Introduction

Crowdsourcing platforms offer busy on-demand help
with tedious work. The principal requirement—other than
payment—is a description of the problem that all workers
can understand and follow. When instructions are vague, in-
consistent, imprecise, or ambiguous, they leave room for in-
terpretation, and this ultimately results in diminished accu-
racy (Gadiraju, Yang, and Bozzon 2017). Quality manage-
ment efforts (Ipeirotis, Provost, and Wang 2010) may result
in rejection (in the case of Mechanical Turk). Clear com-
munication of requirements is essential to workers and re-
questers alike.

Designing clear instructions that reliably elicit accurate
results requires time and attention. Several iterations may
be required, especially for tasks with intricate requirements.
The aforementioned requisites offset the benefits of delegat-
ing the task in the first place.

To the requesters, the instructions may seem intuitive and
straightforward because they have a clear picture of the ex-
pected response to the tasks. They expect the workers to un-
derstand it from their point of view. However, workers may
have difficulty in understanding the task due to lack of prior

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

108

knowledge, or due to their cultural and educational back-
ground. Even though the task may not be difficult, without
sufficient information or guidance, workers may find it diffi-
cult. Another reason for improper instructions is due to situ-
ations that the requester might not be aware of. For instance,
if the requester posts a task to get the name of the chair
of the computer science department in a specific university,
what should a worker do when there is more than one chair-
person? In crowdsourcing, these situations arise frequently
when searching for information. If workers do not get an an-
swer to their question, they will either give an answer that
they feel is correct, which might not be in alignment with
what the requester needs or what other workers think is cor-
rect. To overcome such situations, we propose two methods
called Q&A and Edit which are designed to facilitate the dis-
ambiguation process with the requester. In cases where the
requester is unavailable (inactive), workers can collaborate
with each other and find the best possible solution to the
problem.

According to the reviews on TurkOpticon (Lilly C. and
M. Six 2013) and prior research (Gadiraju, Yang, and Boz-
zon 2017), there have been several instances where workers
were not able to complete a task or submitted a task with
incorrect results due to ambiguous or sloppy instructions.
This results in the squandering of workers’ time and effort.
To the best of our knowledge, we are the first to provide a re-
active approach for problems that arise due to improper task
instructions.

The key contributions of this paper are as follows:

e We present Q&A and Edit methods to resolve ambiguity
in task instructions.

e Our results show that Winglt gives better results com-
pared with Naive.

In this paper, we will first present related work on ambi-
guity, task specification, the quality of work in crowdsourc-
ing. We will then describe our system Winglt and present the
evaluation of the system. Finally, we will discuss the results
and conclude with future extensions.

Related Work

Winglt is related to prior work in ambiguity and task speci-
fication in crowdsourcing, and the quality of work in crowd-
sourcing.

Ambiguity and Task Specification in
Crowdsourcing

Philipp Gutheim et al. proposed Fantasktic (Gutheim and
Hartmann 2012), a system for novice requesters to create
a better task and receive a higher quality of response from
the crowd. Fantasktic proposed three task design techniques:
a guided task specification interface, a preview interface,
and a worker tutorial. A guided task specification interface
provides guidelines and recommendations to the requester
while creating a task. A preview interface presents the task
from the perspective of the worker to the requester. A worker
tutorial is generated automatically based on the sample an-
swers provided by the requester. The quality of responses
from workers showed significant improvement with instruc-
tions based on the guided task interface. Task previews and
worker tutorials did not have any impact on the workers’ re-
sponse. Fantasktic is a proactive task design technique that
helps novice workers to create a better task. However, Win-
glt is a reactive task design technique and can be used by
both novice and expert requesters. Winglt provides the pos-
sibility of worker-requester interactions which are not pro-
vided by Fantasktic.

Gaikwad et al. proposed Daemo (Gaikwad, Whiting, and
others 2017), a proactive mechanism to identify ambigui-
ties in the task instructions. Daemo allows requesters to post
a few instances of the task to workers, get their feedback,
and improve the task based on their feedback. Their results
show that an improved task gives a better quality of results
compared to the original task. Similar results are seen with
survey data. By improving the clarity of survey questions,
the quality of results also improved (Fowler Jr 1992). With
Daemo, workers can identify only the problems that are de-
scribed within a few instances of the task. If there are prob-
lems with the other instances of the task, Daemo may not
be able to find them. However, Winglt provides a reactive
mechanism where workers can identify and resolve the am-
biguities in the task while they are working on it.

Prior research on crowdsourcing emphasizes the impact
of task instructions and design on the quality of the re-
sult (Marshall and Shipman 2013; Berg 2016; Kittur, Chi,
and Suh 2008; Alagarai Sampath, Rajeshuni, and Indurkhya
2014). Gadiraju et al. identified the role of task instructions
in crowdsourcing and modeled the task clarity with predic-
tive features (Gadiraju, Yang, and Bozzon 2017). Meng-Han
et al. studied in detail on how the quality of instructions af-
fect the quality of crowd work (Wu and Quinn 2017). Alonso
and Baeza-Yates suggested providing clear and colloquial
instructions is an important part of task design (Alonso and
Baeza-Yates 2011). Grady and Lease identified the impor-
tance of wording and terminology in task design (Grady
and Lease 2010). Kittur et al. suggested improving task de-
sign through better communication as one of the crucial next
steps in designing the future crowdsourcing solutions (Kittur
et al. 2013). Khanna et al. showed that user interface, task in-
structions, and the workers’ cultural context are the key bar-
riers that prevent workers with scant digital literacy skills
from participating and completing tasks on AMT (Khanna
et al. 2010). Chang et al. proposed a collaborative system,

109

Revolt, to deal with incomplete or ambiguous guidelines of
image-labeling tasks (Chang, Amershi, and Kamar 2017).
Revolt allows multiple workers to label the task with the
specified instructions, and when there is a conflict, workers
relabel it based on the description provided by other work-
ers. Salehi et al. proposed a content creation workflow for
complex writing tasks (Salehi et al. 2017). The workflow
consists of the worker posting a series of questions to the re-
quester before starting the task. After writing the paragraph,
the requester rates it and communicates this to the worker.
The worker then edits their work based on the rating and the
new information from the requester.

Researchers in crowdsourcing have built innovative ap-
plications for specific uses that hide the complexity of task
specification. For instance, Adrenaline demonstrated the use
of a real-time camera to select the best photographic mo-
ment in a short movie with the help of crowdsourcing (Bern-
stein et al. 2011). Soylent, a powerful word processing tool,
edits, shortens, and proofreads documents with the help of
crowdsourcing (Bernstein et al. 2010). By adding Soylent
as a plug-in for Microsoft Word, researchers were able to
hide the complexity of task specification through a simple
interface. Turkomatic (Kulkarni, Can, and Hartmann 2012),
CrowdForge (Kittur et al. 2011), and Crowd4u (Ikeda et al.
2016) help with decomposing a complex task posted in nat-
ural language into small tasks for crowdsourcing platforms.
These applications are successful, however their approaches
are not generalizable to all the task specifications in crowd-
sourcing.

Quality of Work in Crowdsourcing

To improve the quality of work in crowdsourcing, ESP
Game (von Ahn and Dabbish 2004) proposed the idea of
multiple workers working simultaneously and then aggre-
gating their responses by voting. Le et al. used qualifying
tests called gold standards to preselect qualified users (Le et
al. 2010). Peer review workflow (Bernstein et al. 2010) al-
lows workers to rate a sample answer, and iterative work-
flow allows workers to collaborate and improve answers
from previous workers (Little et al. 2010; Kulkarni, Can,
and Hartmann 2012). Sampath et al. proposed a cognitive-
inspired task design which makes tasks efficient for workers
to provide correct responses (Alagarai Sampath, Rajeshuni,
and Indurkhya 2014). Basu and Christensen proposed meth-
ods to teach and educate the crowd (Basu and Christensen
2013). Bragg et al. showed that an adaptive teaching strat-
egy for the crowd will be more effective than fixed-length
teaching (Bragg, Mausam, and Weld 2015).

Winglt proposes another way to improve the quality of
work via interaction between worker and requester when the
requester is active. In the situation of an inactive requester,
we consider an iterative workflow, allowing workers to col-
laborate and improve answers from previous workers.

Ambiguity Classification
We present the classification of ambiguities (Table 1) in
task instructions by using the input-process-output (IPO)
model, which is widely used in system analysis and soft-
ware engineering for analyzing a process (Bushnell 1990;

Ambiguity type Example Task Problem
Entity ‘When was the Harry Potter movie released? Which one in the series?
Syntax Find the headquarters of Do you mean Amazon?
Input Amazoon.
Wrong Find the price of Samsung Chromecast. Do you mean Google Chromecast or
Samsung Chromebook?
Units Find a city in Texas that has an average temperature be- | Do you mean 20 to 30 Celsius or
tween 20 to 30 during May. Fahrenheit?
Steps Find the i10-index and h-index for Prof. Don Norman. How are i10-index and h-index found?
Words Find the weight of the any smartphone in MOTO G that | Do you mean $300.00 to $499.00?
Process can be purchased on BestBuy.com for $30000 to $49900.
Wrong Go to the Google Store (https:/store.google) and search | Do you mean store.google.com?
for the Nexus Pixel. Enter the price of the least expensive
option.
Entity Find the cost of attending this university for undergradu- | In-state or out-of-state?
Output ates.
Exception | Find an new Moto G mobile phone that costs less than | What if no phone is available for this
$100. criteria?
Units Find the maximum capacity of a portable hard disk from | In GB or TB?
Seagate.
Format Find the phone number for Internal Revenue Service. Which format? XXX-XXX-XXXX or
(XXX) XXX-XXXX ?
Precision | Find the address of a movie theatre close to the SFO air- | How close? Walking or Driving?
port.

Table 1: Classification of ambiguity in task instructions. Example tasks shown are paraphrased.

Ilgen et al. 2005). Ambiguity can occur when the requester
tries to describe a task that workers need to perform (in-
put ambiguity), how they need to perform the task (process
ambiguity), what workers need to submit back to requester
(output ambiguity). The mathematical representation of our
model which indicates the completeness of our classification
is as follows.

f (x)

process

{hiynlo iyl i y3, .}
output

input

We further classify each of these ambiguities as follows.

Input Ambiguity

Entity: Input task description may contain some entities
which have different meanings depending on the interpre-
tation.

Syntax: Words in the input task description are misspelled
to a degree that could cause a reasonable worker to doubt if
they were doing the task correctly.

Wrong: Description of the Input task is incomprehensible
but one might infer what was intended.

Units: Missing the units of the input task.

Process Ambiguity

Steps: Steps to perform a task are missing, ambiguous, or
possibly do not exist.

Words: Workers are not able to understand the process de-
scription due to vocabulary, mechanics, etc.

Wrong: Steps described to perform the task are wrong, or
lead to results that don’t make sense.

110

Output Ambiguity

Entity: By following the process with given input leading to
multiple outputs (e.g., Who was president in January 20177?)
Exception: By following the process with given inputs lead-
ing to abnormal results or no result.

Units: When the units for work that need to be submitted by
the worker are not specified. For instance, if the requester
asks a worker to find the average temperature of Chicago in
2016, should the data be entered in Celsius or in Fahrenheit?
Format: When the requester does not specify the format of
output, the format that the results should be submitted in will
be ambiguous. For instance, if the requester asks a worker to
send the address of a Walmart store near ORD airport, then
in which format should the worker send the address?
Precision: When describing a quantity, how precisely the
quantity should be described.

Winglt

Winglt is a system we developed to facilitate high quality
answers to adhoc tasks, even when the instructions are slop-
pily written and the requester’s availability to clarify them is
limited. We assume that a requester who offloads a modest
job (e.g., a few hours) to crowd workers is busy, so any time
spent perfecting the instructions or answering inquiries from
workers will offset the value. Therefore, we shift the burden
to workers (with compensation). As such, our focus is on the
worker’s experience.

For simplicity, we narrow the focus of our implementation
(and evaluation) to information retrieval tasks consisting of
a text prompt (e.g., “Find the color of the house at the fol-
lowing address.”) and a single parameter (e.g., “123 Bug St,
Pillville”).

When a worker encounters an ambiguity, they can ask for

clarification in the form of a question (“Q&A”) or a direct
revision to the instructions (“Edit”). Either way, the worker
must use their intuition to form a best guess of what they
think the requester wanted. Thus, when asking a question
(“Q&A”), they must also propose a possible answer. If the
requester agrees with the worker’s best guess (i.e., proposed
answer or edit), they can simply click to confirm it, thus min-
imizing the requester’s effort.

When a worker encounters an ambiguity while attempt-
ing to perform a task, Winglt provides one of the following
options:

1. Ask the requester a question, propose a possible answer,
and wait for confirmation from the requester before sub-
mitting. (“Synchronous Q&A”)

2. Ask the requester a question, propose a possible answer,
and proceed assuming the answer reflects the requester’s
intentions. The requester can respond at a later time.
(“Asynchronous Q&A”)

3. Edit the question, and wait for confirmation from the re-
quester before submitting. (“Synchronous Edit”)

4. Edit the question, and proceed assuming the edit reflects
the requester’s intentions. The requester can respond at a
later time. (“Asynchronous Edit”)

For the synchronous cases (“Sync __”), the worker is
promised a response within 3 minutes. The requester can
either confirm or revise the answer or edit, after which it be-
comes part of the specification for all workers.

For the asynchronous cases (“Async __"), as well as the
synchronous cases, the worker’s answer or edit becomes part
of the specification for all other workers going forward, un-
til and unless the requester reviews it and disagrees. In that
case, any results received in the meantime are discarded.
This is the risk a requester must accept in order to avoid
the interruptions entailed by the synchronous cases.

In all cases, workers are offered a bonus if their sug-
gested clarification (answer or edit) matches the requester’s
intent. On the surface, this might resemble a payment for
mind-reading. However, our past experiences with Mechan-
ical Turk (as well as homework assignment specifications)
suggest that workers (like students) can often work through
imperfect specifications by using context and common sense
assumptions about what would constitute a reasonable task.
Our experiments with Winglt (presented later in this paper)
validate this.

Synchronous Q&A

In synchronous Q&A, when workers are working on a task,
if they find ambiguities in the task or if any information to
complete the task is missing, they can ask the requester in
the form of a Question and Answer (Q&A). In our model,
we encourage workers to find ambiguities in the task in-
structions by paying a bonus. When a worker asks a Q&A,
the requester will receive the Q&A in an email stating that
a worker is working on the task and he/she has some ques-
tions related to the task along with the guessed answer. The
requester will have a choice either to approve the Q&A if
it is a valid Q&A or modify the answer to make it correct.

111

The updated Q&A will be sent back to the worker and the
worker can continue to work on the task.

Figure 1 shows an example of a task asking workers to
find the release date of a Harry Potter movie. When the
worker has a question, s/he will post the question along with
the best-guess answer and wait for a short period of time (say
3 minutes) to get reply from the requester. When a worker
submits a Q&A, the requester will receive an email saying
that worker has questions related to the task instructions and
has also provided their best guess to the question. The re-
quester will review the Q&A and either approve the Q&A
without any modifications if the worker’s guess is correct or
modify the Q&A when the worker’s guess is incorrect. All
the Q&A that are approved by the requester will be shown
in the Q&A section along with the time stamp of when it
was approved by the requester. When a new worker works
on this task, she will read the task and then go through the
Q&A section to get more details about the task before work-
ing on the task.

Synchronous Edit

In Synchronous Edit, workers will have the power to edit
the instructions when they find a problem with them. When
a worker modifies the instructions, the requester will get
an email stating the instructions have been changed by a
worker. If the modified instructions are in line with the re-
quester’s needs, the requester will approve the modifications
and a notification is sent to the worker saying that the mod-
ifications are approved. These updated instructions will be
available to all workers who work on this task in the future.
If the edited instructions are not in line with what requester
needs, then the requester will revise the instructions with
the correct information. Synchronous Edit helps improve the
quality of instructions, and when a new worker takes up the
job, it will take less time to read the instructions rather than
reading the Q&A.

Figure 2 shows an example of the task finding the release
date of a Harry Potter movie. When the worker finds ambi-
guities within the task instructions, s/he will edit the original
instructions to resolve all the ambiguities that were found
in the task instructions. Once the worker modifies these in-
structions, s/he will wait for a short period of time (3 min-
utes) to get a response from the requester. The requester will
receive an email notification with the updated instructions.
The requester will either approve or improve these modified
instructions. Worker will receive a notification saying that
the requester has approved the modifications. Other workers
of the same task will receive a notification saying that an up-
date to these instructions are suggested by the requester and
showing the difference between the current instruction and
the modified/new instruction. Workers will have a choice ei-
ther to accept or reject the modified instructions. Workers
will receive a bonus for accepting the modified instructions.

Asynchronous Q&A

This is similar to Synchronous Q&A, except that instead of
waiting for a response, workers may continue with the task,
assuming their answer is correct. This will be more useful in

When was the following movie released?:
Movie name: Harry Potter

Before you begin, please read (or skim) the Q&A. You must follow any clarifications or advice
given.

Date:

2.What is the format of the date?

3. Which one in the series?

Q&A

1.Do you want the movie release date in US or in other parts of the world?
us

Today
8:07 AM
(newest)
Today

8:06 AM
Today

8:06 AM

mm/dd/yyyy

1 think the most recent one.

%k Bonus per guesskok
$0.10

Correct guess
requester agrees
Incorrect guess
requester disagrees

Irrelevant guess|

$0.05
$0.00

Bonus: Help improve these instructions for other workers. If you find any issues in these instructions (i.e., ambiguities, typos, etc.), post a question. Then, try to guess the requester’s answer.
Even if something seems wrong or impossible, use your intuition to guess what the requester may have intended. Whether the requester agrees or not, you will get a bonus for helping to improve
the instructions. As long as you follow your own “best guess” answer, your HIT will be approved.

Answer (best guess):
This pertains to© only this HIT (ie. this movie name)

Yes, this is strange. We are testing a new way to help workers cope with poor quality instructions. We suspect that in many cases, workers will be able to correctly guess what the requester wanted.

Question:

) all HITS in this group
Send

Figure 1: The Q&A user interface

When was the following movie released recently? | & Edit these instructions

Movie name: Harry Potter | ¢ Edit these instructions |

Movie release date:

Bonus: Help improve these instructions for other workers. If you find any issues in these
instructions (i.e., ambiguities, typos, etc.), try to guess at what the requester wanted. Then, edit
the instructions directly. Even if something seems wrong or impossible, use your intuition to guess
what the requester may have intended. Don’t worry if you can’t read our mind. Even if your guess
doesn’t match what we intended, you will still get a bonus of $0.05. If you guess right, you will
get $0.10. As long as you follow your own “best guess” answer, your HIT will be approved.

Yes, this is strange. These instructions are a bit like Wikipedia, any worker can edit them. We are
testing a new way to help workers cope with poor quality instructions. We suspect that in many
cases, workers will be able to correctly guess what the requester wanted.

Figure 2: The Edit user interface

the cases where the requester cannot afford to respond to the
worker’s question within the short time frame.

The interface for Asynchronous Q&A is similar to Fig-
ure 1. When a worker finds an ambiguity within the task
instructions, s/he posts the question and the best guess that
resolves the ambiguity. In Asynchronous Q&A, workers’
questions and best guessed answers will be posted in the
Q&A section directly. Workers can assume that their guess
is correct and continue working on the task.

Asynchronous Edit

This is similar to Synchronous Edit, except that instead of
waiting for a response, workers may continue with the task
assuming their edit to the instructions is acceptable.

The interface for Asynchronous Edit is similar to Fig-
ure 2. When a worker finds an issue with the task instruc-
tions, s/he can modify the instructions. These modifications
will be notified to any other workers who are working on
the same task, similar to Synchronous Edit. Other workers

112

will have a choice either to accept or reject the modified in-
structions. Workers will be paid a bonus for accepting the
modified instructions.

The main advantage with Synchronous cases is that the
worker will get a response to their questions in real-time
and we believe that this will increase confidence levels of
workers when working on the task. The disadvantage is that
the worker needs to wait until requester replies back to the
question and this waiting would increase the cost per hit that
the requester needs to pay for the worker.

Study Design

In this section, we describe experiments we conducted to
investigate the benefit of Winglt compared to traditional
crowdsourcing. We conducted our experiments on Ama-
zon’s Mechanical Turk (AMT) platform. We describe the
task that workers were asked to perform, specific hypothe-
ses driving our study, and various analysis methods we em-
ployed.

Experiment Design

Evaluating the Winglt method required a set of tasks that
(a) contained a small number of bona fide ambiguities, (b)
spanned the full range of ambiguity types that we knew to
be applicable to web search tasks, (c) had objective ground
truth answers available, and (d) fit within a consistent over-
arching task structure (i.e., textual instruction prompt plus
a single textual parameter). We know of no such existing
dataset, nor any way to procure one through ecologically
valid means. Therefore, we produced a new set of tasks ac-
cording to those specifications. In our study, we planted a
total of 65 ambiguities in the thirty-four tasks that comprise
of all the different types of ambiguities.

There were five experimental conditions, including the
four methods described in the introduction (“Sync Q&A”,
“Async Q&A”, “Sync Edit”, “Async Edit”) and a naive
baseline, which provided no means of seeking clarification.
Workers were randomly assigned to one of these treatments
when they first viewed the task (whether previewing or ac-
cepted). To the extent possible, they were prevented from
seeing any of the other conditions. The experiments fol-
lowed a between-subject design.

Each worker is allowed to work on a maximum of one
HIT in each HIT type. In our work, we are only inter-
ested in understanding the effect of Q&A and Edit meth-
ods; hence, we do not differentiate workers based on geo-
graphic location, prior experience, and personal character-
istics. We paid $0.40 per HIT, plus a bonus of $0.10 for a
correct guess, $0.05 for an incorrect guess, and $0.00 for ir-
relevant guesses. Each worker is allowed to work on at most
one instance of the task. A total of 304 distinct workers have
participated in our study.

In Synchronous Q&A, when a worker asks a question
along with a guessed answer, the requester either approves
it with a single click when the guessed answer is correct or
corrects the answer according to the question, and then ap-
proves it. In Synchronous Edit, when a worker modifies the
task, the requester can see the modifications in the task in-
structions in the form of colored text showing the difference
between the original text and the modified text. This will
help the requester give quick feedback to the worker. When
the modification is valid, the requester approves it with a
single click or corrects the task based on workers” modifica-
tion and approves it. We (authors) acted as requesters in this
study.

Research Questions and Hypotheses
Our study addressed the following research questions:

Ql:

How does the choice of Sync vs. Async affect perfor-
mance?

Q2:
Q3:

How does Edit vs. Q&A affect performance?

Can the crowd identify and resolve ambiguity accord-
ing to the expectations of requester?

H1: Accuracy will be higher with Winglt.

We compare workers’ results with our results, and label
them as correct or incorrect accordingly. To understand

113

whether Winglt performs better in terms of accuracy com-
pared to Naive, we conducted a chi-square test for the re-
sults of the task with Winglt and Naive. Figure 3 shows
the treatments and corresponding accuracy of results. From
Figure 3, it is clear that there is a difference in the accu-
racy of results with different treatments. The order of the
results” accuracy from highest to lowest is Sync Edit, Sync
Q&A, Async Q&A, Async Edit, and Naive. To check the
significance of the difference, we conducted a chi-square
test on the accuracy of results. There was a significant as-
sociation between the Winglt and the accuracy of results,
x%(4) = 26.09, p < 0.001. For pairwise comparisons be-
tween treatments, we conducted chi-square posthoc analy-
sis with Bonferroni correction. The posthoc analysis showed
that there is no significant difference between the results of
Sync Q&A and Sync Edit, and also that there is no signif-
icant difference between the results of Naive, Async Q&A,
and Async Edit.

Accuracy of Sync Q&A and Sync Edit is higher than that
of Async Q&A and Async Edit due to the presence of the re-
quester to validate the Q&As and Edits made by the worker.
When a worker makes a correct guess in Async Q&A and
Async Edit, it helps other workers who are working on the
same task in different instances to submit quality results.
However, if they make a wrong guess, it will pollute other
workers and force them to submit wrong results. We ob-
served that the beneficial effect of correct guesses nullified
wrong guesses in Async Q&A and ASync Edit and hence its
accuracy is similar with Naive.

H2: Completion time will be higher with Winglt.

Sync Q&A and Sync Edit will have a higher completion
time compared with Async Q&A and Async Edit as work-
ers need to wait for a reply from the requester when they
submit a question or edit the instruction. Naive should have
less completion time compared to Winglt. Figure 4 shows
the workers’ completion time for different treatments. The
Kruskal-Wallis test results suggest that workers’ comple-
tion time is significantly affected by the treatment, H(4) =
16.84, p = 0.002." Comparison of mean ranks between the
treatment groups showed that workers’ completion time is
not significantly different with Async Q&A, (difference =
1.44), Async Edit, (difference = 10.66) or Sync Edit (differ-
ence = 5.42) compared to Naive. However, workers’ com-
pletion time is significantly higher with Sync Q&A than with
Naive (difference = 64.65). In all cases, the critical differ-
ence (o = 0.5 corrected for the number of tests) was 57.93.
The reason for Sync Edit having a lower completion time
than Sync Q&A might be that the time taken by the re-
quester to approve or modify the task instruction in Sync
Edit is less than that of Sync Q&A, due to the colored text
in Sync Edit. Async Q&A and Async Edit having similar
completion times to Naive may be due to the fact that the
time taken to edit the text or write Q&A is considerably less
compared to the time taken to submit the results. Naive has
a similar completion time to Async Q&A and Async Edit as

'One-way ANOVA was not used due to non-homogeneous vari-
ance

BIncorrectBCorrect

Async
Q&A

100%

75%

50%

25%

Percentage of accuracy

0%

Async Naive

Edit

Sync
Q&A

Sync
Edit

Figure 3: Accuracy vs Treatment

the workers might have taken more time to resolve ambigu-
ity in Naive compared to Async Q&A and Async Edit.

H3: Accuracy will be higher with Sync.

There was a significant association between the Sync and
Async treatments and the accuracy of results, y%(1) =
20.77,p < 0.001. This seems to represent the fact that based
on the odds ratio, Sync produced 2.5 times more accurate
results compared with Async. We observed that workers are
able to guess most of the ambiguities in the task instructions,
but they were not able to guess the correct answer from the
set of available answers. This is the reason for Sync to pro-
duce a higher accuracy in results compared with Async and
baseline.

H4: Completion time will be higher with Sync.

Workers in Sync need to wait for some time to get a reply
from the requester when they post a question or change the
task instructions. A Wilcox test showed that there is a signifi-
cant difference in the completion time with Sync and Async.
The completion time of Async (Median = 136) was sig-
nificantly less than Sync (Median = 173), W = 17630,
p < 0.05, 7 = —0.132.2

HS5: Number of edits/Q&A will be higher with
Sync.

We hypothesize that workers will tend to ask more ques-
tions when the requester is present. To verify our hypothe-
sis, we conducted a t-test on the number of edits/Q&As in
Sync vs Async. On average, the number of edits/Q&As in
Sync (Mean = 2.68, SE = 2.14) is higher than in Async
(Mean = 1.94, SE = 2.19). The difference was significant
t(133.92) = —1.98, p < 0.05, r = 0.17.

H6: Completion time will be lower with Edit.

Editing the task to fix the ambiguity would consume less
time compared to writing a question and an answer to the
question. A Wilcox test showed that there is a significant

2Student’s t-test was not used due to non-homogeneous vari-
ance

114

1200
900
600 ; : i

300 ‘

-

Sync
Q&A

Completion time (seconds)

-

Naive

o | !
Async Async
Q&A Edit

Sync
Edit

Figure 4: Workers’ completion time vs Treatment

difference in the completion time with Edit compared to
Q&A. The completion time of Edit (Median = 139.50)
was significantly less than that of Q&A (M edian = 191.5),
W = 23642, p < 0.05, r = —0.118.

H7: Number of edits will be lower than number of
Q&A.

Workers can fix multiple ambiguities in the task with a sin-
gle edit. However, they need provide a Q&A for each of
the ambiguity they identify. Hence, number of edits will be
lower than number of Q&A. However, Wilcox test showed
that there is a significant difference between the number
of edits and the number of Q&A. The number of edits
(Median = 3) was significantly higher than the num-
ber of Q&A (Median = 1), W = 1519.5, p < 0.001,
r = —0.301. When we checked our experiment data, we
found that many workers with edit method are trying to para-
phrase the given task in different possible ways which is not
possible with the Q&A method. So, the number of edits are
higher than number of Q&A.

H8: Requester will receive more Q&A than Edits.

Workers need to ask separate questions for each ambiguity
that they identify in the task, but they can fix all the ambigu-
ities with a single modification of the task. So, we hypoth-
esize that the requester will receive more Q&A than Edits.
A Wilcox test showed that there is a significant difference
in the number of edits and the number of Q&A that the re-
quester receives. The number of edits (Median = 3) was
significantly higher than the number of Q&A (Median =
2), W = 324, p < 0.01, r = —0.385. In Sync Q&A, we
observed that most of the questions are related to the ambi-
guities in the task; however, in Sync Edit, we observed that
workers tend to edit the tasks more, such as paraphrasing
the text, correcting the grammar, and changing the vocabu-
lary. Such edits are not possible with Q&A. Hence, the total
number of edits are significantly higher than Q&A.

H9: The number of questions/edits the requester
receives depends on the number of ambiguities in
the task.

To test whether there is any dependency between the num-
ber of edits/Q&A the requester receives to the total num-
ber of ambiguities in the task, we have built a linear model
with the number of ambiguities in the task as the predictor
and the number of questions/edits the requester receives as
the outcome. The number of ambiguities in the task signifi-
cantly predicted the number of Q&As (b = 0.78, 5 = 0.29,
t = 2.64, p < 0.05) and edits (b = 0.97, § = 0.62,
t = 1.56, p < 0.05) the requester received in Sync Q&A
and Sync Edit respectively. The beta value indicates that as
the number of ambiguities in the task increases, the number
of Q&As/edits the requester receives also increases. Hence,
the number of questions/edits the requester receives depends
on to the number of ambiguities in the task.

Discussion and Future Work

Our study shows that there is no significant difference be-
tween the Q&A and Edit methods in the accuracy of re-
sults. Accuracy of results can only be improved by the pres-
ence of the requester. We found that requesters who spend a
small amount of time in validating the workers’ Q&A’s/edits
would improve the quality of results significantly. Winglt
utilizes the guessing ability of workers to guess the re-
questers’ needs. The amount of effort required by the re-
quester is greatly reduced from simply approving the work-
ers’ Q&A/edits with one click or by making small changes
to the workers’ Q&A/edits. Winglt provides a way to share
the knowledge of solutions to unclear instructions with other
workers. Over time, when all the ambiguities are cleared, we
believe that Winglt can produce 100% accuracy of results.

Why are workers not able to guess all the
ambiguities in a task?

We planted a total of 65 ambiguities. Workers were able
to guess 13 of the ambiguities with Async Q&A, 10 with
Async Edit, 25 with Sync Q&A, and 24 with Sync Edit. An
examination of the responses provided by workers suggests
some possible reasons for the low accuracy of the guesses.

e Workers may use units common in their locale, if the ex-
pected units are not specified. Example: When prompted
for the price of an Apple iPhone 6S, four workers in the
US and India entered prices in USD and INR, respec-
tively.

e Workers may trust supplementary facts presented by
search engines above the results (e.g., Google Now
“cards”), without scrutinizing the relevance or timeliness
of the information. Example: When prompted for the re-
lease date of the Power Rangers movie in the USA, some
incorrectly entered March 22, 2017. At that time, we
found that a Google search results for “Power Ranger” in-
cluded a supplementary panel with that same date, which
was the correct release date for Indonesia but not (at the
time) labelled as such. We have no direct evidence of the
workers’ searches; this is one possible explanation for this
mistake.

115

We studied the significance of Winglt with information
search tasks. However, this can be extended to other kind of
tasks. We believe that the results we have obtained with in-
formation search tasks are parallel with other kinds of tasks.
In the future, we would like to build a large data set of am-
biguous tasks that other researchers can utilize to build sys-
tems like Winglt that can help workers to resolve ambigui-
ties in the task and improve their quality of work. When we
have a large data set, we can study the ability of Winglt to
identify each type of ambiguity.

Conclusion

This paper presented Winglt, a new approach for resolving
ambiguities in task instructions. Comparing Winglt to a tra-
ditional approach demonstrates that Winglt can improve the
quality of results and decrease the effort of requesters in
creating comprehensive instructions that leave no room for
subjective assessment. Our results show that there is no dif-
ference in the accuracy of results between Edit and Q&A
methods. We also found that workers are more interested in
asking questions or making edits to the tasks in the presence
of a requester. The number of questions/edits the requester
receives depends on the number of ambiguities in the task.

References

Alagarai Sampath, H.; Rajeshuni, R.; and Indurkhya, B.
2014. Cognitively inspired task design to improve user per-
formance on crowdsourcing platforms. In CHI ’14: Proceed-
ings of the 32nd Annual ACM Conference on Human Factors
in Computing Systems, 3665-3674. New York, NY, USA:
ACM.

Alonso, O., and Baeza-Yates, R. 2011. Design and imple-
mentation of relevance assessments using crowdsourcing. In
ECIR ’11: Proceedings of the 33rd European Conference on
Information Retrieval, 153—164. Dublin, Ireland: Springer.

Basu, S., and Christensen, J. 2013. Teaching classification
boundaries to humans. In AAAI *13: Proceedings of the 27th
AAAI Conference on Artificial Intelligence, 109—115. Belle-
vue, Washington, USA: AAAI Press.

Berg, J. 2016. Income security in the on-demand economy:
findings and policy lessons from a survey of crowdworkers.
Comparative Labor Law and Policy Journal 37(3).

Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.; Ack-
erman, M. S.; Karger, D. R.; Crowell, D.; and Panovich, K.
2010. Soylent: A word processor with a crowd inside. In
UIST ’10: Proceedings of the 23rd Annual ACM Symposium
on User Interface Software and Technology, 313-322. New
York, NY, USA: ACM.

Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger, D. R.
2011. Crowds in two seconds: Enabling realtime crowd-
powered interfaces. In UIST ’11: Proceedings of the 24th An-
nual ACM Symposium on User Interface Software and Tech-
nology, 33-42. New York, NY, USA: ACM.

Bragg, J.; Mausam; and Weld, D. S. 2015. Learning on the
job: Optimal instruction for crowdsourcing. In ICML ’15:

Proceedings of the ICML Workshop on Crowdsourcing and
Machine Learning, 17-21. New York, NY, USA: PMLR.

Bushnell, D. S. 1990. Input, process, output: A model
for evaluating training. Training & Development Journal
44(3):41-44.

Chang, J. C.; Amershi, S.; and Kamar, E. 2017. Revolt:
Collaborative crowdsourcing for labeling machine learning
datasets. In CHI ’17: Proceedings of the 35th Annual ACM
Conference on Human Factors in Computing Systems, 2334—
2346. New York, NY, USA: ACM.

Fowler Jr, F. J. 1992. How unclear terms affect survey data.
Public Opinion Quarterly 56(2):218-231.

Gadiraju, U.; Yang, J.; and Bozzon, A. 2017. Clarity is a
worthwhile quality: On the role of task clarity in microtask
crowdsourcing. In HT ’17: Proceedings of the 28th ACM
Conference on Hypertext and Social Media, 5—14. New York,
NY, USA: ACM.

Gaikwad, S. N. S.; Whiting, M. E.; et al. 2017. The daemo
crowdsourcing marketplace. In CSCW ’17: Proceedings of
the 20th ACM Conference on Computer Supported Cooper-
ative Work and Social Computing, CSCW 17 Companion,
1-4. New York, NY, USA: ACM.

Grady, C., and Lease, M. 2010. Crowdsourcing document
relevance assessment with mechanical turk. In CSLDAMT
’10: Proceedings of the NAACL HLT 2010 Workshop on Cre-
ating Speech and Language Data with Amazon’s Mechanical
Turk, 172—179. Stroudsburg, PA, USA: ACL.

Gutheim, P., and Hartmann, B. 2012. Fantasktic: Improving
quality of results for novice crowdsourcing users. Master’s
thesis, EECS Department, University of California, Berkeley.
[Online; accessed September 1, 2017].

Ikeda, K.; Morishima, A.; Rahman, H.; Roy, S. B.; Thiru-
muruganathan, S.; Amer-Yahia, S.; and Das, G. 2016. Col-
laborative crowdsourcing with crowd4u. Proceedings of the
VLDB Endowment 9(13):1497-1500.

Ilgen, D. R.; Hollenbeck, J. R.; Johnson, M.; and Jundt,
D. 2005. Teams in organizations: From input-process-
output models to imoi models. Annual Review of Psychology
56:517-543.

Ipeirotis, P. G.; Provost, F.; and Wang, J. 2010. Quality man-
agement on amazon mechanical turk. In HCOMP ’10: Pro-
ceedings of the ACM SIGKDD Workshop on Human Compu-
tation, 64—67. New York, NY, USA: ACM.

Khanna, S.; Ratan, A.; Davis, J.; and Thies, W. 2010. Evalu-
ating and improving the usability of mechanical turk for low-
income workers in india. In ACM DEV ’10: Proceedings
of the 1st ACM Symposium on Computing for Development,
12:1-12:10. New York, NY, USA: ACM.

Kittur, A.; Smus, B.; Khamkar, S.; and Kraut, R. E. 2011.
Crowdforge: Crowdsourcing complex work. In UIST ’11:
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, 43-52. New York, NY,
USA: ACM.

Kittur, A.; Nickerson, J. V.; Bernstein, M.; Gerber, E.; Shaw,
A.; Zimmerman, J.; Lease, M.; and Horton, J. 2013. The
future of crowd work. In CSCW ’13: Proceedings of the 16th
ACM Conference on Computer Supported Cooperative Work,
1301-1318. New York, NY, USA: ACM.

116

Kittur, A.; Chi, E. H.; and Suh, B. 2008. Crowdsourcing
user studies with mechanical turk. In CHI '08: Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, 453—456. New York, NY, USA: ACM.

Kulkarni, A.; Can, M.; and Hartmann, B. 2012. Collabora-
tively crowdsourcing workflows with turkomatic. In CSCW
"12: Proceedings of the 15th ACM Conference on Computer
Supported Cooperative Work, 1003—1012. New York, NY,
USA: ACM.

Le, J.; Edmonds, A.; Hester, V.; and Biewald, L. 2010. En-
suring quality in crowdsourced search relevance evaluation:
The effects of training question distribution. In CSE ’10:
Proceedings of the SIGIR 2010 Workshop on Crowdsourcing
for Search Evaluation, 21-26. New York, NY, USA: ACM.

Lilly C., I, and M. Six, S. 2013. Turkopticon. https:
/turkopticon.ucsd.edu/. [Online; accessed September 1,
2017].

Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010. Turkit: Human computation algorithms on mechanical
turk. In UIST ’10: Proceedings of the 23rd Annual ACM
Symposium on User Interface Software and Technology, 57—
66. New York, NY, USA: ACM.

Marshall, C. C., and Shipman, F. M. 2013. Experiences
surveying the crowd: Reflections on methods, participation,
and reliability. In WebSci ’13: Proceedings of the 5th Annual
ACM Web Science Conference, 234-243. New York, NY,
USA: ACM.

Salehi, N.; Teevan, J.; Igbal, S.; and Kamar, E. 2017. Com-
municating context to the crowd for complex writing tasks.
In CSCW ’17: Proceedings of the 20th ACM Conference on
Computer Supported Cooperative Work and Social Comput-
ing, 1890-1901. New York, NY, USA: ACM.

von Ahn, L., and Dabbish, L. 2004. Labeling images with a
computer game. In CHI ’04: Proceedings of the 22nd Annual
ACM Conference on Human Factors in Computing Systems,
319-326. New York, NY, USA: ACM.

Wu, M.-H., and Quinn, A. J. 2017. Confusing the crowd:
Task instruction quality on amazon mechanical turk. In
HCOMP ’17: Proceedings of the 5th AAAI Conference on
Human Computation and Crowdsourcing, 206-215.

