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Abstract

While peer-agreement and gold checks are well-established
methods for ensuring quality in crowdsourced data collection,
we explore a relatively new direction for quality control: esti-
mating work quality directly from workers’ behavioral traces
collected during annotation. We propose three behavior-based
models to predict label correctness and worker accuracy, then
further apply model predictions to label aggregation and op-
timization of label collection. As part of this work, we collect
and share a new Mechanical Turk dataset of behavioral sig-
nals judging the relevance of search results. Results show that
behavioral data can be effectively used to predict work qual-
ity, which could be especially useful with single labeling or in
a cold start scenario in which individuals’ prior work history
is unavailable. We further show improvement in label aggre-
gation and reducing labeling cost while ensuring data quality.

1 Introduction

Crowdsourcing marketplaces, e.g., Amazon Mechanical
Turk (MTurk), enable requesters to post open calls for work-
ers to perform a wide range of tasks, such as image labeling,
audio transcription, and language translation. While workers
freely choose which tasks to work on, ensuring the quality
of the submitted work can be challenging for the requesters.
Traditional quality control algorithms rely on either “gold”
expert labels (Snow et al. 2008) or peer-agreement (Dawid
and Skene 1979) to estimate or improve the quality of col-
lected data. However, experts may be expensive or unavail-
able, work history for new workers may be unavailable, and
methods relying on consensus amongst multiple workers ne-
cessitate redundant work performed in parallel.

In this work, we explore an alternative to these traditional
quality control mechanisms: leveraging worker behavioral
data (Rzeszotarski and Kittur 2011; Kazai and Zitouni 2016)
to estimate labeling quality and accuracy of workers. This
capability offers a wide range of potential applications, such
as worker selection, weighted voting, and dynamically ad-
justing the number of labels collected per example (Dai
et al. 2013). While many weighted aggregation algorithms
already exist (Sheshadri and Lease 2013), we present the
first work using behavioral data for label aggregation, which
could also be used in conjunction with traditional gold and
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peer-based methods. Estimating label quality from behav-
ioral data also opens an opportunity to reduce the need for
redundant work, in part or entirely, depending on the level of
data quality required. We explore a variety of such directions
and investigate the following research questions:

RQ1 How can worker behavioral data be effectively mod-
eled to estimate label quality in a crowdsourcing task?
We demonstrate the feasibility of using behavioral signals
to predict label correctness and worker accuracy in a rel-
evance judging task. Our approach achieves 70.3% accu-
racy and 0.0463 MSE for the two tasks, respectively.

RQ2 How can we best leverage label or worker quality es-
timates to better devise crowdsourcing tasks?
We propose a behavior-based label aggregation method
which uses quality estimates for weighted voting and la-
bel filtering. Results show an increase in label accuracy by
using the proposed approach compared to majority voting
and EM (Dawid and Skene 1979) baselines. We also pro-
pose a dynamic labeling algorithm which automatically
determines the number of labels to collect for each ex-
ample based on estimated quality of the existing labels.
Results show that we can decrease the annotation cost by
9% without decreasing the label quality.

Contributions. Contributions of our work are as follows.

• We collect and share1 a new dataset of crowd workers’ be-
havioral traces during relevance judging of search results,
covering 106 unique workers and 3,984 HITs in total.

• We propose three prediction models based on only be-
havioral signal data, as well as a hybrid model which
also uses non-behavioral data. While the hybrid model
achieves slightly higher prediction accuracy, the models
based on only behavioral data can be used when no prior
work history about the crowd workers is available.

• We present the first use of behavioral modeling for label
aggregation, with improvement over standard baselines.

• We propose a behavior-driven, dynamic labeling algo-
rithm to detect the number of annotations needed for each
document-topic pair to maximize the quality of the aggre-
gated labels with the given fixed annotation budget.
1http://ir.ischool.utexas.edu/webcrowd25k/
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2 Related Work

2.1 Behavioral Data: Collection and Modeling

Rzeszotarski and Kittur (2011) propose task fingerprinting
in which crowd worker interactions with a task interface
(e.g., clicks, scrolls, key-presses, etc.) are logged and then
correlated with worker accuracy. Each worker is assigned a
binary “pass/fail” grade based on their overall accuracy, and
a decision tree classifier is then used to predict this binary
grade based on behavioral data. The authors demonstrate the
feasibility of such prediction across three different tasks.

Kazai and Zitouni (2016) collect behavioral data from
both crowd workers and experts as they perform search rel-
evance judging. They then train a classifier to detect poor
quality work on the basis of behavioral data. Note that
whereas Rzeszotarski and Kittur (2011) utilize only expert
gold labels, Kazai and Zitouni (2016) require expert behav-
ioral data, which may be more difficult to obtain in practice.
In regard to feature representations, we integrate ideas from
both of these works to generate our set of features.

Because neither Rzeszotarski and Kittur (2011) nor Kazai
and Zitouni (2016) shared their source code or collected
data, reproducibility (Paritosh 2012) or follow-on studies
have been limited. Recently, we released an open-source
package for collecting such behavioral data (Dang, Hutson,
and Lease 2016). We adopt this package in our work and
further share our collected behavioral data.

Internet searching and browsing behaviors are known to
signal user intent, user engagement, and search result rel-
evance (Joachims 2002). Banerjee and Ghosh (2001) out-
line an algorithm that computes path similarity between two
“clickstream” sequences (i.e., the sequence of pages a user
visits on a website), also taking temporal similarities into
account. In bioinformatics literature, a significant amount of
work in analyzing sequences of genes, clustering gene se-
quences, and classification of gene sequences, e.g., (Wang
and Zaı̈ane 2002; Cardona-Escobar et al. 2015) uses ideas
similar to clickstream data analysis. We similarly experi-
ment with two models that leverage the clickstream event
sequences to predict label accuracy.

2.2 Optimizing Label Collection

Sheng, Provost, and Ipeirotis (2008) investigate the relative
benefit of collecting more labels for the same example. They
show that the expected gain of additional labels is condi-
tional on the quality of the labelers, with greater potential
benefit from higher redundancy with less accurate workers.

Dai et al. (2013) propose a model that dynamically de-
cides whether to ask for additional labels for a given data
point, or infer the final label from the already collected
data points. The authors model this problem as a partially-
observable markov decision process (POMDP). They adopt
Whitehill et al. (2009)’s method to estimate the difficulty
and true labels for current annotations, using the MDP to
decide on the next optimal action (e.g., whether or not to
ask for more labels). Dai, Weld, and others (2011) later
demonstrate the feasibility of this approach on a real world
dataset. Ipeirotis and Gabrilovich (2014) also model the dy-
namic task design problem as a MDP. While these works es-

timate labeler accuracy via expectation-maximization (EM)
(Dawid and Skene 1979) or worker history, we introduce use
of worker behavioral data as the basis for prediction.

3 Dataset
We recently reported creation of a new WEBCROWD25K
dataset of 25,099 search result relevance judgments col-
lected on MTurk (Kutlu et al. 2018). Not mentioned in that
work, let alone analyzed, was that for a subset of the judg-
ments, we also collected behavioral data of the crowd work-
ers. In this work, we introduce and analyze this crowd be-
havior dataset for the first time, and we share this data to sup-
port reproducibility (Paritosh 2012) and/or follow-on stud-
ies.

Crowd relevance judgments were collected for the 2014
NIST TREC Web Track (Collins-Thompson et al. 2015).
This test collection consists of: 1) collection of documents
(specifically, web pages); 2) a set of 50 pre-defined search
topics, comprised of a title and a one-sentence description of
the searcher’s information need; and 3) gold-standard “ex-
pert” relevance judgments, where each judgment assesses
the relevance of one document to one search topic. These
gold judgments were collected on a six-point relevance scale
(Collins-Thompson et al. 2015). For the purpose of our anal-
ysis, we collapse these judgments to a simple binary rele-
vance scale; see Kutlu et al. (2018) for additional details.

In our WEBCROWD25K dataset, for each of the 50 Web-
Track’14 search topics, we selected 100 documents to re-
judge (without reference to the original gold judgment) by 5
MTurk workers each (50 topics x 100 documents x 5 work-
ers = 25K crowd judgments). We collect relevance judg-
ments on a 4-point graded scale: {Definitely Not Relevant,
Probably Not Relevant, Probably Relevant, Definitely Rel-
evant}, and then collapse these judgments to simple binary
relevant vs. non-relevant for comparison to TREC gold.

To collect behavioral data, we use the open-source
MmmTurkey library (Dang, Hutson, and Lease 2016),
which can capture a variety of worker interaction behaviors
while completing MTurk Human Intelligence Tasks (HITs).
Specifically, we record: clicks, scrolls, mouse movements,
key presses, copy or paste actions, and change in window
focus. The raw data from the framework contains the time
stamp for each event (relative to the beginning of the task)
and event specific characteristics of the action itself. For in-
stance, for a scroll event, the log contains information of the
total number of pixels scrolled. Similarly, for a mouse move-
ment event, information about the movement in the horizon-
tal and vertical directions is recorded. Focus change records
the time and duration the worker was inactive on the HIT
window. Finally, some overall HIT information is also cap-
tured, such as total task time, browser specifications, etc.

Higher-level events can be induced from combinations of
raw events (e.g., dwell time can be induced to capture the
time between successive events). We further discuss such
higher-level events when defining the features we use with
our predictive models (Section 4.2).

As noted above, behavioral data was only collected for
a subset of the WEBCROWD25K dataset, excluding work-
ers completing fewer than five HITs. The resultant behav-
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ioral data covers 3,984 unique HITs spanning 2,294 unique
document-topic pairs, with 1 to 5 labels per document com-
ing from 106 unique workers. In terms of labels (associated
with behavioral data) per document-topic pair, 1,170 have 1
label, 656 have 2 labels, 374 have 3 labels, 90 have 4 labels,
and 4 have 5 labels. Mean worker accuracy is 65.8%.

4 Predicting Label and Worker Accuracy

In this section, we describe our use of behavioral data
for two tasks (Section 4.1): 1) predicting whether a given
worker’s label is correct or not (i.e., classification); and 2)
predicting a given worker’s accuracy (i.e., regression). Crit-
ically, note that these tasks do not involve label aggrega-
tion; neither task assumes nor requires that training or test-
ing examples have been annotated by multiple workers. Sec-
tion 4.2 presents three behavioral models for performing
classification and regression tasks. We describe our exper-
imental setup in Section 4.3, and our results in Section 4.4.

4.1 Task Definitions

Classification. In training data, we record whether each
worker label is correct or not (i.e., does it match the expert
gold label?). At testing time, the task is to predict whether a
given worker labeled a given HIT correctly, on the basis of
that worker’s behavioral data in completing the HIT.

As an illustrative example, consider a toy nearest-
neighbor (NN) classifier. Given a test example (represented
by behavioral features) for which to predict whether or not
a given worker label is correct, the NN classifier would find
the training instance with the most similar behavioral fea-
tures and simply output its correctness label.

Regression. For this task, we aim to predict work-
ers’ time-varying task accuracy (Jung and Lease 2015).
As ground truth, we estimate latent worker accuracy by
a sliding-window over consecutive HITs. Specifically, for
each HIT, we record the worker’s accuracy at the time of that
HIT as the percentage of correct labels in the worker’s last t
annotations (including the current HIT), where t = 5 in all
our experiments. In addition to accounting for temporal vari-
ability, this sliding-window estimate mitigates against work-
ers’ chance agreement with binary relevance judgments. At
testing time, the task requires predicting the worker’s latent
accuracy at the time of completing a given test HIT.

Extending our illustrative example above to regression,
a toy NN model would similarly look up the most similar
training point to a given test instance (i.e., the worker’s be-
havioral features on a given test HIT) and simply output the
worker’s accuracy associated with that training point.

4.2 Predictive Models

We now describe three purely behavioral approaches (mod-
els and features) we pursue for predicting label correct-
ness and worker accuracy. Since we report on fairly tra-
ditional learning models using hand-crafted features, one
might wonder how a modern neural approach might com-
pare. We investigated this, e.g., using a neural LSTM for se-
quence modeling (Hochreiter and Schmidhuber 1997), but
did not observe competitive performance on the two tasks,

likely due to data scale. Consequently, we do not further re-
port our neural modeling results. We anticipate future work
(especially from industry) could usefully exploit larger be-
havioral traces effectively with neural models.

4.2.0.0.1 Prediction with Aggregate Features (RF-AF)
The first behavioral approach we describe uses aggregate
features (AF) from behavioral data within each HIT to in-
duce higher-level features characterizing worker behavior
on the overall HIT. We apply a random forest (RF) model
(Breiman 2001) to both classification and regression tasks,
though other models could also be used.

Aggregate features used are derived from those suggested
in prior work. While Rzeszotarski and Kittur (2011) use
only simple features derived from overall task statistics,
such as task time, on focus time, and counts of individual
events, Kazai and Zitouni (2016) include additional sophis-
ticated features that capture the timing between successive
events within a HIT. Our feature set combines both.

Table 1 describes the aggregate features we used, which
are categorized into two classes: 1) action-based features
that record information about individual types of actions;
and 2) time-based features that capture temporal aspects of
the data. Action-based features are derived from raw data by
simple counting. The time-based features, largely derived
from Kazai and Zitouni (2016), exploit time stamps in the
raw data to capture temporal and sequential behaviors.

4.2.0.0.2 Prediction with Sequence Features (RF-SF)
Prediction using only aggregate features (Section 4.2.0.0.1)
does not capture ordering effects between events within a
given HIT. For example, consider a simple HIT log listing
three clicks over a 15 second period: [(t = 0, click), (t =
10, scroll), (t = 15, click)]. While aggregate features cap-
ture overall HIT properties of the events (e.g., total count,
average dwell time, etc.), they do not capture the sequence
between events: i.e., a click followed by a scroll, etc. Since
each worker completes the same HIT (having the same set
of instructions), workers are expected to perform actions in
a similar order.

In this approach, we exploit such sequence features (SF)
and only these features; we do not use the aforementioned
aggregate features capturing total or average task statistics
(future work might investigate combining both approaches).
As with aggregate features, we adopt a RF model for predic-
tion, although other models could also be used.

Similar to gene sequence classification (Cardona-Escobar
et al. 2015), we extract sequence features from the event se-
quences in the behavior data. Given predetermined param-
eters k and m, we extract all possible event sequences of
length 2k + m which is composed of two fixed event se-
quences of length k separated by m random events. As an
example, for k = 2, m = 1, possible features include
{Click, Click, <event>, Click, Scroll}, {Keypress, Click,
<event>, Click, Keypress}, etc., where <event> corre-
sponds to any possible event. We thus instantiate a set of fea-
ture templates covering all possible sequences of such events
under the specified parameters. Then, given a worker event
sequence for a HIT, we count how many times each feature
is matched by the observed sequence (the two k length sub-
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Table 1: Aggregate features for each HIT used with our RF-AF predictive model (Section 4.2.0.0.1).

Type Name Description

Action-Based
total [X] events The number of logged events of type X where X ∈ {clicks, mouse

movements, scrolls, pastes, focus changes, key presses}
mouse movement x/y Total pixel movement in horizontal/vertical direction
scroll y Total pixel scroll in vertical direction

Time-Based
total time Total time completing the HIT
recorded time disparity Difference between the total time and the time spent outside the HIT
on focus time Fraction of the total time that was spent completing the HIT
dwell time [X] Mean time between two successive logged events of type X, where X ∈

{clicks, mouse movements, scrolls, pastes, focus changes, key presses}
event change time [X] Average time between event X and any other event

sequence must match exactly, with m wildcard events in be-
tween), with this count defining the feature’s value. Our ex-
periments take the union of all sequence features constructed
by the cross-product of k = {1, 2, 3} × m = {0, 1}. We also
include single event features (i.e., sequences of length 1).

4.2.0.0.3 Prediction with Sequence Clusters (kmeans-
SC) Predicting with sequence features (Section 4.2.0.0.2)
captures sequencing between events in a HIT but ignores the
timing between those events. For example, one might expect
more accurate workers proceed more slowly and carefully,
while less attentive workers may rush through their work.
To capture such distinctions, it is important to incorporate
dwell-time features into the model. As an illustrative ex-
ample, consider the following two event sequences: [(t = 0,
click), (t = 2, scroll), (t = 5, click)] and [(t = 0, click), (t = 20,
scroll), (t = 30, click)]. It would appear that the worker per-
forming the first HIT rushed through the task, whereas the
second worker took more time. The previous model (Sec-
tion 4.2.0.0.2) would fail to differentiate between such be-
haviors, generating similar feature representations for both
workers. Similarly, predicting with aggregate features (Sec-
tion 4.2.0.0.1) would capture average and total dwell time
between events in the HIT, but not the order of events.

To model such behaviors, we adapt the time-
weighted path similarity model outlined by Banerjee
and Ghosh (2001). The algorithm computes a similarity
metric between two sequences, by looking at their longest
common subsequence (LCS) and the time overlap between
the corresponding pairs of events in the two sequences. The
similarity calculation is dependent on two factors:

1. Time Similarity Component: This similarity is computed
between two sequences s1 and s2 in their overlap region
(i.e., LCS). Consider a consecutive event pair (ei, ei+1)
in the LCS (the starting index i may be different for each
sequence). Let tjΔi = tji+1 − tji denote the time differ-
ence between the two events for each sequence sj . Let
mi,i+1 =

minj(tΔi)
maxj(tΔi)

, and let C ′12 = avgi(mi,i+1), ∀i ∈
{1, ...|LCS|}.

2. Importance Component: For each sequence, we calculate:
1) the fraction of the time spent in the overlap (LCS)
tjoverlap compared to the total task time tjtotal. Given two
sequences s1 and s2, we calculate the importance compo-

nent C ′′12 =
∏

j

tjoverlap

tjtotal
.

We use the final similarity metric C ′′′ = C ′ · C ′′ to clus-
ter event sequences (training and test) via k-means cluster-
ing (Hartigan 1975). Then, to predict label correctness for
a given test instance, we find the cluster it belongs to and
output the majority label over all training instances of the
cluster. Similarly, to predict worker accuracy, we average the
worker accuracies over all training instances in the cluster.

While this aggregation across cluster instances may seem
to resemble traditional label aggregation, there are several
key differences. Firstly, whereas label aggregation methods
aggregate multiple worker labels for the same HIT, here we
aggregate over multiple labels in the same cluster, which
could potentially all come from the same worker over time.
This means the approach could be used even when only a
single label is collected for each example. Secondly, note
that we are aggregating over training instances, rather than
over multiple worker labels for the test instance.

4.3 Experimental Setup

Metrics. To evaluate classification and regression tasks, we
report accuracy in predicting label correctness, and mean-
squared error (MSE) in predicting worker accuracy.

Baselines. To evaluate our models, we compare their perfor-
mance against the following baselines:
• Constant Baseline (Constant BL): This baseline always

predicts the majority class (in case of label correctness
classification), or the (oracle) mean worker accuracy (for
worker accuracy regression). Behavioral data is not used.

• Supervised Naive Bayes (SNB) (Snow et al. 2008): We
estimate worker confusion matrices and class priors from
the training data. During testing, these worker confusion
matrices are used to obtain the final label or worker ac-
curacy value. For any test worker not previously observed
in training data, we backoff from using an individual con-
fusion matrix to a simple average matrix over all workers
(Liu and Wang 2012). Behavioral data is not used. This
model is the same as in Dawid and Skene (1979) but dif-
fers in how we estimate the confusion matrices.

• Decision Tree with Aggregate Features (DT-AF): We
compare our models’ performance against a Decision
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Table 2: Results for Classification and Regression Tasks (Section 4.4). Best result per column is bold-faced.

Model Type Model Name
Classification (Accuracy) Regression (MSE*100)

Partition by HIT Partition by Worker Partition by HIT Partition by Worker

Non-Behavioral Constant BL 65.6 65.6 5.34 5.62
SNB 69.6 N/A 4.69 N/A

Behavioral

DT-AF 61.5 60.4 6.99 6.71
RF-AF 67.4 67.9 4.71 4.73
RF-SF 68.4 68.8 4.63 4.82
kmeans-SC 67.9 68.1 4.97 5.01

Hybrid RF-SF+SNB 70.3 N/A 4.64 N/A

Tree model built using the same aggregate features in Ta-
ble 1 used by our RF model (a RF is in fact a collection of
DTs, and thus a generalization of the DT which has been
generally found to yield better accuracy). This DT base-
line is comparable to what was reported by Rzeszotarski
and Kittur (2011), albeit with a few extra features.

Hybrid Model. We also propose a hybrid model combin-
ing the RF-SF behavioral model and SNB non-behavioral
baseline (RF-SF + SNB). The SNB algorithm is used to ob-
tain predicted labels (or worker accuracy scores) for the test
data. These predicted accuracy values for the test data are in-
cluded as pseudo-gold labels, and utilized in training the be-
havioral model. Thus, the behavioral model is trained using
the gold labels for the training set, as well as the pseudo gold
labels for the test set. We use appropriate sample weight-
ing to avoid biasing the model towards the pseudo gold val-
ues. This model is a much simplified version of co-training
(Blum and Mitchell 1998) in which two independent mod-
els, with different views of the data, label unlabeled exam-
ples for one another to generate psuedo-gold labels to sup-
plement a small set of actual gold labels.

Parameters and Software. For RF models, we use an en-
semble of 50 trees. Nodes are split based on information gain
with a minimum requirement of 10 data points for splitting.
We use scikit-learn (http://scikit-learn.org) throughout.

Division of Data. We use 10-fold cross validation, con-
sidering two alternative ways of partitioning the data: 1) by
HIT, i.e., by unique document-topic pairs; or 2) by workers.

Partitioning by HIT (PbH) ensures that no topic-
document pair in training data also appears in testing. How-
ever, this allows the same workers to appear in both training
and testing data if they worked on multiple HITs. This is po-
tentially problematic in that the MTurk workforce is quite
transitory in practice, and requesters typically face a cold
start problem in which they have no prior work history for
the bulk of workers completing a given task.

In contrast, partitioning by workers (PbW) ensures that
no worker seen in the training data also appears in testing.
As such, this represents a potentially more realistic scenario,
as well as a potentially harder prediction task which neces-
sitates generalization across workers. Note that supervised
approaches that rely on training data to estimate worker reli-
ability by past performance are thus inapplicable because we
observe different workers in testing phase. In contrast, our
behavioral models do not depend on worker-specific history

and hence do not suffer from the same restriction.
In comparison to prior work, Rzeszotarski and Kit-

tur (2011) report results for the easier PbH scenario. Kazai
and Zitouni (2016) consider a different task (predicting
whether a worker is expert or not, based on the worker’s full
history), so their task formulation is not comparable.

While we do not down-sample data to simulate a strict sin-
gle labeling scenario (i.e., where each example is annotated
only once), note that baselines and proposed methods evalu-
ated here can be used in a single labeling scenario in which
classic label aggregation methods (Dawid and Skene 1979;
Snow et al. 2008) could not.

4.4 Results

Table 2 presents classification and regression results. When
we partition by HIT (PbH), the hybrid model achieves
best classification accuracy (70.3%), followed by the non-
behavioral SNB (69.6%) and behavioral RF-SF model
(68.4%). Interestingly, the DT-AF baseline adapted from
Rzeszotarski and Kittur (2011) performs worse than all other
methods, including the constant baseline. When we partition
by worker (PbW), the true strength of behavioral approach
shines: even without any prior history for the workers in the
test data, the behavioral approaches perform comparably to
PbH partitioning, while the SNB baseline and hybrid RF-
SF+SNB model can no longer be applied due to the afore-
mentioned cold-start problem. With regard to the three pro-
posed models, the sequential features model (RF-SF) per-
forms best under both PbH and PbW settings.

For the regression task (i.e., predicting worker accuracy)
with PbH partitioning, the best models perform roughly
comparably: the SNB baseline, proposed RF-AF and RF-
SF models, and the RF-SF+SNB hybrid. As with classifica-
tion, we see behavioral models achieve roughly comparable
performance in both PbW and PbH settings, while the su-
pervised models requiring worker history cannot be applied.
The DT-AF baseline continues to perform worst. Unlike
classification, we see the RF-AF aggregate feature model
slightly outperforms the RF-SF sequence feature model.

Overall, the RF-SF is typically the best performing be-
havioral model, while the kmeans-SC sequence clustering
approach is always outperformed by the RF models.
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Figure 1: Label aggregation results for weighted voted via behavioral model confidence vs. classic MV/EM baselines.
Left: accuracy achieved by the various algorithms at different threshold values. Right: coverage of the different algorithms.

5 Label Aggregation

In the previous section, we showed that behavioral data can
be used to predict label correctness and worker accuracy,
and that these models could be applied even in a single la-
beling scenario in which classic label aggregation methods
(e.g., majority voting (MV), EM (Dawid and Skene 1979), or
naive bayes (Snow et al. 2008)) could not. In this section, we
now investigate use of these models for downstream tasks,
such as label aggregation and label filtering.

While MV is the simplest strategy, since label qual-
ity often varies across workers and examples, it is pru-
dent to weight votes by estimating each label’s correctness.
Whereas Dawid and Skene (1979) and Snow et al. (2008)
estimate a confusion matrix for each worker, Demartini, Di-
fallah, and Cudré-Mauroux (2012) instead use EM to esti-
mate a single reliability parameter. Similarly, Whitehill et
al. (2009) estimate a difficulty parameter for each example.

In this work, we propose to estimate parameters for
weighted voting based on label correctness and worker qual-
ity predictions from behavioral models, instead of previous
approaches based on peer-agreement or gold-agreement. We
leave hybrid label aggregation using behavioral and non-
behavioral evidence for future work.

Specifically, we pursue the following strategy. First, we
use the behavioral models to predict: 1) the confidence of
each label being correct; and 2) the accuracy of each worker
(which can also be treated here as the confidence of the
worker being correct). Secondly, we explore using each of
these probabilities for weighted voting, weighting labels for
a given example by the confidence that: 1) the label is cor-
rect; or 2) the worker providing the label is reliable. Thirdly,
we measure a varying threshold for excluding low confident
labels from voting. We begin by including all labels, then
perform progressively stricter screening to exclude less con-
fident labels. Whenever filtering becomes too strict for an
example (such that all of its labels would be excluded), we
fall back to the single label with highest confidence. This
ensures full coverage for aggregation over all test examples.

5.1 Results

Section 4.4 findings showed that RF-SF was the most effec-
tive (pure) behavioral model, so we report its results (un-
reported RF-AF results were comparable). We compare to
non-behavioral baselines: MV and EM (Dawid and Skene
1979)2. We use 5-fold cross validation for our experiments,
partitioning by unique document-topic pairs. We build the
behavioral models using the HITs for the document-topic
pairs in the training data, and report label aggregation results
on the document-topic pairs in the test set.

Figure 1 shows results. The left sub-figure reports the ac-
curacy achieved by each approach across different threshold
filtering levels. We see that weighted voting via behavioral
models outperforms both MV and EM baselines. The label
accuracy model achieves a maximum accuracy of 72.0% by
filtering at a threshold of 10%, a comfortable gain over the
MV (64.9%) and EM (66.7%) baselines. In regard to com-
paring the two behavioral models, the label accuracy model
consistently performs best across filtering thresholds.

The right sub-figure shows the model-specific coverage
of the behavioral models. For each filtering threshold, we
see the fraction of topic-document examples for which la-
bels can be aggregated without having to back-off to the sin-
gle highest quality label. As expected, as the quality thresh-
old becomes increasingly more demanding, fewer labels are
predicted to meet the requirement. Coverage thus diminishes
and back-off becomes increasingly needed.

One might expect that with higher thresholds, higher ac-
curacy would result (since aggregation is performed using
higher quality labels). It is somewhat surprising, therefore,
that accuracy of the behavior models are seen to decrease
with increasing quality threshold. This appears to be due to
the aforementioned coverage issue, i.e., as the label is in-
creasingly determined based on back-off to the single high-
est quality label, accuracy diminishes vs. weighted voting
over all labels using behavioral weights.

2https://github.com/dallascard/dawid skene
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6 Optimizing Label Collection

Prior work has investigated the relative benefit of collecting
more labels for the same example and strategies for optimiz-
ing cost vs. aggregate label quality, e.g., for training a ma-
chine learning model (Sheng, Provost, and Ipeirotis 2008;
Dai, Weld, and others 2011; Dai et al. 2013; Ipeirotis and
Gabrilovich 2014). Similar to prior work, we model this data
collection as a markov decision process (MDP), which de-
termines how many labels to collect per example based on
the quality and confidence of existing labels. Critically, the
novelty of our MDP formulation lies in our use worker be-
havioral data to predict label accuracy, whereas prior work
estimated this via expectation-maximization (EM) (Dawid
and Skene 1979) or observed worker history.

Suppose a requester wishes to collect labels for a given
example such that the probability that the crowd label agrees
with the gold label is greater than k (i.e. the target label
quality). We formulate this as follows.

1. State Space: S = {q |q ∈ [0, 1]}, where q is the inte-
grated or the overall quality of the aggregated label, i.e.,
the probability that the current aggregated label is equal
to the gold label. For a single worker annotation, the in-
tegrated quality is the quality of that worker’s annotation,
obtained from the label quality prediction using behav-
ioral traces, as outlined in Section 4. For more than one
annotation, we use Dai et al. (2013)’s formulation:

q = Pr(ŷ = y) =

N∑
i=0

(
2N + 1

i

)
.p2N+1−i.(1− p)i

where i is the number of incorrect annotations. Here, the
integrated crowd label (ŷ) corresponds to the majority la-
bel. Dai et al. (2013) proposed this for the scenario where
all labelers have equal worker quality p. However, it is
straightforward to extend the above formulation to cases
where the worker accuracy scores differ, and we do so.

2. Decision/Action Space: At every stage, the model
has to choose from amongst two decisions A =
{get-new-label, decide-true-label}. The decision get-
new-label signifies that the current quality of the inte-
grated label is unsatisfactory and an additional label needs
to be collected. In contrast, decide-true-labels means that
the current label quality is satisfactory and the final label
should be decided based on existing labels.

3. Transition Matrix: T : S×A×S → [0, 1], which defines
the probability of going from state s to state s′ after taking
a particular action a. Note that the label quality remains
the same if the action decide-true-label is chosen. Hence,
the corresponding transition matrix is diagonal. Transition
values for the get-new-label action are conditioned on the
quality of the labeler who performs the next annotation.
This transition matrix is computed empirically from the
data, sampling random decision sequences for all docu-
ments and filling the transition matrix by observing the
change in integrated quality after adding each extra label.

4. Reward Matrix: R : S×A → R defines the reward func-
tion for each action in a given state. For the get-new-label

Table 3: Accuracy vs. cost achieved by MDP dynamic label
collection vs. MV aggregation over fixed labeling.

Accuracy # Labels
Majority Voting 0.662 3984

Markov Decision Process 0.674 3626

action, the reward function is calculated as the summation
of the expected increase in integrated quality and the cost
c incurred due to additional labeling (c is set to −0.05, de-
termined empirically). These values are determined using
the transition matrix from the prior step.

R(q, get new label) = E(q′ − q)− cost labeling

=
∑
q

(q′ − q).Ptran(q, q
′)− c

For the decide-true-label, the reward is the difference be-
tween the current integrated quality and target quality
(pre-specified parameter k). If the current quality is more
than desired, the reward is set arbitrarily high.

Solving the above MDP provides us with an optimal action
a for each state q in the state space. Thereafter, the MDP can
be used to dynamically design a task in the following way:
for each document-topic pair, we start by collecting a single
label. We use the behavior models to compute its label qual-
ity estimate and use the above MDP formulation to decide
on an action. We repeat this process iteratively until the algo-
rithm outputs the decide-true-label action, or the number of
collected labels for the given document-topic pair exhausts
the number of available labels. At that point, we compute
the aggregated label using majority vote (or return the high-
est quality annotation in case of a tie). We follow this process
until we obtain the aggregated labels for all examples.

6.1 Results

We perform 10-fold cross validation on the behavioral data
to obtain label quality estimates for all HITs. To test the
proposed MDP formulation, we adopt the following ap-
proach. For each document-topic pair, we simulate a se-
quence of label annotations, obtained by randomly sampling
from permutations of available crowd labels for that specific
document-topic pair. Given such a sequence, we start with
the initial label in the sequence and iteratively incorporate
additional labels into the list of current labels until the MDP
outputs the decide-true-label action (or the available labels
are exhausted). We repeat this for all document-topic pairs
and report the average agreement across 20 runs.

We use the MDP toolbox3 to solve the MDP with the
following parameters: target accuracy: 0.7, cost of labeling:
0.05, discount factor: 0.1.

Table 3 reports the accuracy vs. the cost (i.e., the number
of collected labels) of the MDP approach vs. a baseline ma-
jority voting (MV) approach. The MDP achieves accuracy
comparable to the MV baseline using 9% fewer labels.

3http://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html
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Table 4: Accuracy vs. labeling cost of MDP label collection
vs. baseline MV fixed labeling for different label pluralities.

Accuracy Δ # Labels Δ
L MV MDP MV MDP
2 0.665 0.702 5.56% 2248 2189 -2.62%
3 0.701 0.709 1.12% 1404 1156 -17.66%
4 0.680 0.645 -5.15% 376 298 -20.74%
5 0.750 0.840 12.00% 20 12 -40.00%

Figure 2: Aggregated label accuracy vs. the number of labels
when intelligently selecting which example to label next via
MDP (orange) vs. a simple round-robin visit order (blue).

Next, we further analyze the accuracy vs. labeling cost as
a function of the number of available labels. For each value
of label plurality l ∈ [2:5], we identify all document-topic
pairs that have at least l labels, randomly down-sampling to l
for those having more labels. We then run the MDP with the
same parameters on this down-sampled dataset and compare
the accuracy vs. cost of MV over all down-sampled labels.
We repeat this experiment 20 times and report the average
results in Table 4. The MDP always collects fewer labels
and almost always achieves greater accuracy.

Finally, we consider another use scenario. Thus far, we
collected labels for each example until a satisfactory aggre-
gated label was obtained. However, since the MDP provides
aggregated label estimates for all document-topic examples,
we might instead use the MDP to intelligently determine
which example to label next (e.g., the document-topic pair
with the lowest estimated quality). This is especially use-
ful in low budget settings, where we cannot afford to collect
multiple labels for every instance and want the MDP to in-
telligently allocate the budget across the examples.

We simulate this process by first randomly selecting one
label for each example from the set of all earlier collected
labels. Thereafter, we select the document-topic pair to label
next which has the lowest estimated aggregated label qual-
ity. We iteratively repeat this process until we either achieve
the desired quality target or exhaust the labeling budget. We
compare this approach with a round-robin baseline (Sheng,
Provost, and Ipeirotis 2008), where we iterate through topic-
document examples in a fixed order in soliciting additional

labels. We average results across 20 runs.
Figure 2 presents results. The x-axis indicates the number

of labels collected and the y-axis denotes the corresponding
aggregated label accuracy achieved. As we can see, the MDP
results in a steadily increasing accuracy, which demonstrates
the MDP’s ability to effectively identify those examples in
greatest need of additional labels, thus yielding the greatest
benefit from additional label collection. In contrast, the ac-
curacy of the round-robin strategy tends to fluctuate though
eventually trends upward. As the earlier Table 3 showed, the
MDP also requires fewer annotations (compared to random
example selection) in order to obtain a conclusive aggregate
label, so the MDP plot terminates earlier than round-robin’s.

7 Conclusion

Whereas peer-aggregation (Dawid and Skene 1979) and
gold-checks (Snow et al. 2008) are the typical hallmarks of
statistical quality assurance in crowdsourced labeling today,
behavioral models offer an intriguing alternative approach
which, once trained, can predict future work quality without
requiring redundant labeling or further gold label creation.

We investigated the feasibility of using behavioral traces
of crowd workers for two tasks: predicting correctness of
labels (classification) and predicting the labeling accuracy
of workers (regression). We proposed three prediction mod-
els that use only behavioral data, as well as a hybrid model
which also uses non-behavioral data. We further described
how these behavioral models could be used to improve label
aggregation. Finally, we showed how behavioral modeling
could drive a markov decision process (MDP) model for dy-
namic label collection in order to optimize aggregate label
quality vs. labeling costs, e.g., using 9% fewer labels.

Results show that behavioral data can be effectively mod-
eled to predict label correctness and workers’ accuracies,
further bolstering the limited prior work in this area (Rzes-
zotarski and Kittur 2011; Kazai and Zitouni 2016). In partic-
ular, results showed that behavioral models can be especially
useful for the cold start problem in which individuals’ prior
work history is unavailable. Results also showed success for
downstream label aggregation, label filtering, and optimized
collection of labels via our behavior-driven MDP model.

Many directions for future work can be envisioned, such
as developing more sophisticated hybrid models integrating
behavioral and non-behavioral cues. We might train behav-
ioral model via peer-agreement pseudo-gold. Future work
(especially from industry) might exploit larger (proprietary)
behavioral traces, and at this scale, likely benefit from neu-
ral modeling (Hochreiter and Schmidhuber 1997). Model-
ing longer sequential behaviors, e.g., across multiple HITs,
would also be interesting, as would varied types of work on
different platforms having diverse demographics.
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