
Permutation-Invariant Consensus over Crowdsourced Labels

Michael Giancola, Randy Paffenroth, Jacob Whitehill
Worcester Polytechnic Institute

Worcester, MA, USA
{ mjgiancola, rcpaffenroth, jrwhitehill } @ wpi.edu

Abstract

This paper introduces a novel crowdsourcing consensus
model and inference algorithm – which we call PICA
(Permutation-Invariant Crowdsourcing Aggregation) – that
is designed to recover the ground-truth labels of a dataset
while being invariant to the class permutations enacted by the
different annotators. This is particularly useful for settings
in which annotators may have systematic confusions about
the meanings of different classes, as well as clustering prob-
lems (e.g., dense pixel-wise image segmentation) in which
the names/numbers assigned to each cluster have no inher-
ent meaning. The PICA model is constructed by endowing
each annotator with a doubly-stochastic matrix (DSM), which
models the probabilities that an annotator will perceive one
class and transcribe it into another. We conduct simulations
and experiments to show the advantage of PICA compared to
two baselines (Majority Vote, and an “unpermutation” heuris-
tic) for three different clustering/labeling tasks. We also ex-
plore the conditions under which PICA provides better infer-
ence accuracy compared to a simpler but related model based
on right-stochastic matrices. Finally, we show that PICA can
be used to crowdsource responses for dense image segmenta-
tion tasks, and provide a proof-of-concept that aggregating re-
sponses in this way could improve the accuracy of this labor-
intensive task.

Introduction

In many crowdsourcing scenarios, annotators are asked to
view some kind of data (an image, video, text passage, etc.)
and to label it as belonging to some specific class from a set
of mutually exclusive classes. For example, annotators in a
facial expression labeling task might be requested to view a
set of face images and to label each face as displaying one
of a finite set of basic facial emotions – e.g., anger, surprise,
fear, joy, etc. (Ekman 1992). Based on the raw labels, a va-
riety of existing crowdsourcing consensus algorithms could
be used to try to infer simultaneously both the ground-truth
labels of the face images and also each individual labeler’s
accuracy score. However, what if some annotators had a sys-
tematic confusion in the form of a permutation of what the
different classes meant – e.g., the annotator perceives fear
when in fact the subject in the image is surprised, and the
annotator perceives surprise when the subject is actually in

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fear (Jack et al. 2009).1 In this case, the annotators’ labels
might still carry valuable information about which face im-
ages display the same facial expression. However, in order
to accurately infer the ground-truth, the consensus algorithm
would need to “un-permute” the labels assigned to the im-
ages according to the particular – and a priori unknown –
misunderstanding of that labeler.

In other crowdsourcing settings – e.g., asking annotators
to cluster a dataset – there may exist multiple ground-truth
labelings that are all equally valid and are equivalent mod-
ulo a permutation of the class labels. For instance, when
asking multiple annotators to perform dense image segmen-
tation and to assign each pixel a cluster label, the “name”
assigned to each cluster (1, 2, 3, etc.) may not carry any in-
herent meaning – what is important is which pixels belong
to the same class. In this case, it would be useful to be able
to aggregate over multiple annotators’ votes while ignoring
the particular name they assign to each class.

In this paper, we present a crowdsourcing consensus al-
gorithm called PICA (Permutation-Invariant Crowdsourcing
Aggregation), which is based on doubly-stochastic matri-
ces (DSMs) and the Sinkhorn-Knopp algorithm (Adams and
Zemel 2011; Sinkhorn 1964; Sinkhorn and Knopp 1967).
PICA is designed to perform permutation-invariant simulta-
neous inference of the ground-truth labels and the individual
annotators’ style of labeling. In contrast to previous work on
label aggregation for clustering settings (see section below),
our method can benefit from harnessing a smaller number of
degrees of freedom to reduce overfitting, and it can model
class-specific accuracies.

The chief contributions of our paper are the following:
(1) We propose and derive an inference algorithm for a
novel crowdsourcing consensus algorithm (“PICA”) that is
designed to be invariant to annotator-specific class permuta-
tions. (2) We assess the performance, in terms of accuracy of
recovering the ground-truth labels, of PICA for three differ-
ent kinds of clustering and labeling tasks – including a dense
pixel-wise image segmentation – and show that PICA signif-
icantly outperforms Majority Vote, as well as a simple “un-
permutation” heuristic. (3) We explore the conditions under

1This phenomenon has been observed particularly among anno-
tators whose cultural background differs from that of the subjects
whose faces they are observing; see Jack et al. 2009.

The Sixth AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2018)

21

Data

Labels

1 2 3 4 5 6 7 8 9 10
Annotator 1 1 1 1 2 2 2 2 3 3 3
Annotator 2 1 1 1 2 2 2 1 3 3 2
Annotator 3 3 3 2 1 1 1 1 2 2 2
Majority Vote 1 1 1 2 2 2 1 3 3 2
PICA 1 1 1 2 2 2 2 3 3 3
Ground-truth 1 1 1 2 2 2 2 3 3 3

Figure 1: Toy example: Entries give the cluster which each
annotator assigns to the given point. While the Majority
Vote heuristic makes several mistakes (bolded), the pro-
posed PICA algorithm recovers all the labels correctly.

which PICA also outperforms the related (but simpler) con-
sensus model by Smyth et al. (1995); in particular, we show
that the advantage can be substantial in settings in which one
class occurs relatively rarely compared to the others.

Toy example: Clustering

To convey the intuition behind the problem we are tackling,
suppose three annotators were asked to cluster the points
shown below into three clusters, and that the labels they
assigned to the points are given in Figure 1. In particular,
notice that, while annotators 1 and 2 agree mostly on which
points are assigned to clusters 1, 2, and 3, respectively, anno-
tator 3 has “permuted” 1,2,3 for 3,1,2. Moreover, while an-
notator 1’s labels are perfect, annotators 2 and 3 both make
a labeling error.

If we attempted to recover the true clustering simply by
computing the Majority Vote for each example, we would
make several inference errors due to differing – and arbitrary
– permutations that the labelers might have when “naming”
the different clusters (1, 2, and 3). In contrast, if we could
somehow infer each annotator’s “style”, then we could re-
cover the ground-truth with higher accuracy. Indeed, when
applying the PICA consensus algorithm proposed in this pa-
per, we can recover the ground-truth labels with perfect ac-
curacy, while Majority Vote achieves only 80% correct.

Related Work

Since about 10 years ago, when crowdsourcing services such
as Amazon Mechanical Turk and Crowdflower started to be-
come popular, a wide variety of algorithms have been de-
veloped for aggregating multiple annotators’ labels to ar-
rive at a consensus opinion about the ground-truth of a la-

beled dataset. Many of these algorithms are unsupervised
learning algorithms based on the Expectation-Maximization
framework and seminal work by Dawid and Skene (1979),
whereby the annotators’ accuracies as well as the ground-
truth labels of the dataset are estimated iteratively. While
early work on crowdsourcing consensus focused on binary
and multiple-choice labeling tasks (Whitehill et al. 2009;
Raykar et al. 2010; Smyth et al. 1995), consensus algorithms
now exist for more complex label types such bounding boxes
in images (Salek, Bachrach, and Key 2013), taxonomies and
trees (Bragg, Weld, and others 2013; Sun et al. 2015), and
open-ended text responses (Lin, Weld, and others 2012).
Moreover, such algorithms are sometimes able to achieve
higher label inference accuracy by exploiting more detailed
information about the annotators and the task itself, such as
example difficulty (Whitehill et al. 2009), task-dependent
biases (Kamar, Kapoor, and Horvitz 2015), and schools of
thought among labelers (Tian and Zhu 2012).

The specific issue of how to conduct crowdsourcing
consensus for clusterings has also received significant re-
search attention, possibly due to the prevalent use of clus-
tering for data visualization and data pre-processing (Strehl
and Ghosh 2002; Alush and Goldberger 2012; Kaminsky
and Goldberger 2016; Gomes et al. 2011; Yi et al. 2012;
Vinayak and Hassibi 2016).

Some of these works frame the clustering problem as a bi-
nary classification task, whereby each example is compared
to another example to assess whether or not they belong to
the same cluster. They then attempt to infer the set of all pos-
sible binary comparisons from a small crowdsourced sub-
set of comparisons. For example, the approach by Yi et al.
(2012) learns a distance metric from the sparse set of pair-
wise similarity scores. Vinayak and Hassibi (2016) compare
two methods for collecting information about which edges
are contained in the graph of all binary comparisons: ran-
dom edge queries (one edge is observed) and random trian-
gle queries (a triplet of edges is observed). They show that
collecting triangle queries can result in more reliable edge
information. The work of Gomes et al. (2011) is concerned
with how to capture the possibly different dimensions (e.g.,
size, color, shape) along which different annotators assign
examples to clusters, into a “master” clustering model. Their
model is optimized using a variational Bayes method.

In terms of application domain (specifically dense im-
age segmentation), the two prior works most similar to ours
are (Alush and Goldberger 2012) and (Kaminsky and Gold-
berger 2016). In these works, the authors frame the cluster-
ing problem as a binary classification task, whereby each ex-
ample is compared to every other example to assess whether
or not they belong to the same cluster. By estimating the
ground-truth binary decision value for each of the d(d−1)/2
unordered comparisons (for d examples), and by taking such
annotator parameters into account as overall skill (Alush
and Goldberger 2012) and granularity (Kaminsky and Gold-
berger 2016), the ground-truth cluster labels of every exam-
ple can be inferred. In both of these papers, the authors ap-
plied their technique to a dense image segmentation task,
whereby the annotator partitions the set of pixels in an image
into disjoint sets that represent different objects. Compared

22

to other segmentation algorithms, their consensus-based ap-
proach yielded improved accuracy.

In our work, we also tackle (among others) the image seg-
mentation problem using crowdsourcing consensus. How-
ever, rather than conduct inference over the d(d − 1)/2 un-
ordered comparisons, we directly optimize the cluster la-
bels assigned to the individual examples as an n-way clas-
sification problem (for n clusters). Our model endows each
annotator with his/her own style matrix that specifies how
the ground-truth label assignment is mapped to the annota-
tor’s own labels. This allows our model to capture cluster-
specific accuracy characteristics – e.g., when performing
dense image segmentation of a sky, some annotators might
be better at distinguishing certain kinds of clouds than oth-
ers. Moreover, our algorithm generalizes beyond consensus
over clusterings: it can be used for inferring ground-truth for
multiple-choice questions in which each annotator may per-
mute his/her labels according to some fixed transformation
matrix. In this sense, our algorithm offers a way of conduct-
ing permutation-invariant crowdsourcing consensus.

Finally, we note that our proposed PICA method is similar
to the much older method by Smyth et al. (1995); however,
they did not explicitly test their model for clustering applica-
tions or permutation-invariant labeling settings. We discuss
differences between and empirically compare the two mod-
els in greater detail later in the paper.

Notation

We use Futura font to denote random variables and Ro-
man font to denote random draws of these variables. For
instance, S and z are random variables, and S and z are ran-
dom draws, respectively. We use upper-case letters to denote
matrices/vectors and lower-case letters to denote scalars. For
example, S is a matrix and z is a scalar.

PICA: Model Description

Consider a dataset of d examples. Each example has a
ground-truth label in the finite set Ω. Let n = |Ω|. Our goal
is to use crowdsourcing to determine the ground-truth label
of each example j – which we represent with random vari-
able zj ∈ Ω – for every example in our dataset. To do this,
we collect a vector L(i) ∈ (Ω ∪ {ε})d of labels from each
of m different labelers, where L

(i)
j is the label given by an-

notator i to example j. If labeler i did not annotate example
j, then we define L

(i)
j = ε. Together, the annotators’ label

vectors define an indexed set L = {L(1), L(2), . . . , L(m)}. L
is the set of observed labels.

We wish to model how different annotators who are la-
beling the same example may perceive the same latent cate-
gory but transcribe the perceived category into different la-
bels. For example, in clustering tasks, different annotators
may use different names, numbers, or colors to denote the
same set of clusters. We can model the process by which
each annotator transcribes his/her perception into a label via
a n×n matrix, which we call the style of the annotator. In
particular, our model endows each annotator i with an n×n

matrix S(i), where entry S
(i)
zl ∈ (0, 1) gives the probability

that the annotator perceives an example to belong to class
z but transcribes it as l ∈ Ω. In addition to style, we also
model each annotator’s accuracy. In particular, we define
random variable a(i) ∈ (0, 1) as the probability that annota-
tor i perceives the correct category of some example. When
conducting crowdsourcing consensus over all the labelers to
infer the ground-truth labels, it is important to take both style
and accuracy into account.

Likelihood Model

We define the probability that annotator i assigns label l ∈ Ω
to example j, given the ground-truth label z, style matrix S,
and accuracy a as:

p(L
(i)
j = l | zj = z, S(i) = S, a(i) = a)

.
= a× Szl + (1− a)×

∑
z′ �=z Sz′l

n− 1

=

⎛⎜⎜⎜⎝S

⎡⎢⎢⎢⎣
a 1−a

n−1 . . .
1−a
n−1 a 1−a

n−1 . . .
...

. . .
1−a
n−1 a

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

zl

(1)

The intuition is that there are two situations in which an
annotator i would respond with some particular label l: ei-
ther (i) they correctly perceived the example as belonging to
class z but transcribed it into l (i.e., a× Szl), or (ii) they in-
correctly perceived some other class z′ but still transcribed it
into l (i.e., (1−a)×∑

z′ �=z Sz′l). Notice that, in either case,
it is possible that l = z. We assume that the probability of
an incorrect perception z′ �= z is distributed uniformly over
all (n− 1) incorrect classes.

Probability distribution over permutations

While a permutation matrix containing only 0s and 1s is able
to model an annotator’s transformation from perceptions
onto observed labels (i.e., their “style” of labeling), they
are difficult to optimize since they belong to a discrete set.
Following the work of Adams and Zemel (2011), we utilize
doubly-stochastic matrices (DSMs), i.e., matrices compris-
ing non-negative real numbers (probabilities) in which every
row sums to 1 (i.e., the matrix is right-stochastic) and every
column sums to 1 (i.e., the matrix is also left-stochastic).
DSMs can be considered as “differentiable relaxations of
permutation matrices” (Adams and Zemel 2011), and this
enables us to use continuous optimization methods such as
gradient descent and Expectation-Maximization. DSMs of-
fer the additional advantage that they can model a “soft”
style whereby an annotator “usually” transcribes z into l but
may sometimes transcribe it into l′, etc.

Simplifying the Likelihood Model

Notice that, in Equation 1, the style matrix S is right-
multiplied by an accuracy matrix containing a on the diago-
nal and 1−a

n−1 everywhere else. The accuracy matrix can eas-

23

ily be verified to be a DSM. Moreover, by making use of a
simple lemma, we can simplify our model:

Lemma 1. Let A and B be two arbitrary DSMs. Then AB
is also a DSM.

Proof. See appendix.

We can therefore “fold” the accuracy matrix into the style
matrix, so that the latter expresses both the permutation and
accuracy of the annotator. This enables us to simplify the
likelihood model to be:

p(L
(i)
j = l | zj = z, S(i) = S) = Szl (2)

Inference

Given the observed labels L and our simplified likelihood
model (Equation 2), we can use Expectation-Maximization
to optimize over the style matrices of all the annotators and
infer the ground-truth of each example. However, the con-
straint that each style matrix be doubly-stochastic requires
special handling, which we describe in the M-Step section
below.
E-Step: In this step, we compute the posterior proba-
bility distributions of zj ∈ Ω ∀j ∈ {1, . . . , n} given
S(1), . . . , S(m) from the last M-Step and the observed labels
L.

p(zj = zj | L(1) = L(1), . . . , L(m) = L(m),

S(1) = S(1), . . . , S(m) = S(m))

∝ p(zj)
∏

i:L
(i)
j �=ε

S
(i)

zj ,L
(i)
j

where S
(i)

zj ,L
(i)
j

is the zj th row and L
(i)
j th column of S(i).

M-Step: In this step, we maximize the auxiliary function Q,
defined as the expectation of the joint log-likelihood of the
observed labels and ground-truth labels, with respect to the
posterior distribution of each zj computed in the last E-Step,
denoted p̃.

Q(S(1), . . . , S(m))

= E[log p(L(1), . . . , L(m),

z1, . . . , zd|S(1), . . . , S(m))]

= E

⎡⎢⎣log∏
j

⎛⎜⎝p(zj)
∏

i:L
(i)
j �=ε

p(L
(i)
j |zj , S(i))

⎞⎟⎠
⎤⎥⎦

=
∑
ij

∑
zj

log

(
S
(i)

zj ,L
(i)
j

)
p̃(zj) + const.

Prior on S(i): In some settings, we may also wish to add a
regularization term to “push” the style matrices towards the
identity permutation; this can be useful if most labelers are
assumed to use some “default” permutation (identity). To do
so, we can add to Q an additional term γ

n2 ‖S(i)−I‖2Fr where

γ specifies the strength of the regularization, I is the identity
matrix with the same dimensions as S(i), and ‖ · ‖2Fr is the
squared Frobenius norm.

Optimizing over Doubly-Stochastic Matrices

If S were simply a real-valued matrix, we could simply use
a gradient ascent method (stochastic, conjugate, etc.) to find
values of S(1), . . . , S(m) that maximize Q. However, the
constraint that each style matrix is doubly-stochastic ma-
trix (DSM) requires a more specialized optimization method
to ensure that the result of each gradient update remains
on the Birkhoff polytope of DSMs. In particular, we utilize
a method called Sinkhorn Propagation (Adams and Zemel
2011), which relies on Sinkhorn Normalization (Sinkhorn
1964), described below.

Sinkhorn Normalization

Sinkhorn Normalization is a method of transforming a
square matrix A (which we call the parameterizing matrix)
to a DSM. The algorithm iteratively performs row and col-
umn normalizations on A. Sinkhorn (1964) showed that this
iterative normalization necessarily converges to a DSM if
all the entries of A are strictly positive. The row and column
normalization functions are given below:

Ri,j(M) =
Mi,j∑n
k=1 Mi,k

Ci,j(M) =
Mi,j∑n

k=1 Mk,j

Sinkhorn Propagation

Sinkhorn Propagation (SinkProp) utilizes Sinkhorn Normal-
ization to optimize functions of DSMs (Adams and Zemel
2011). Starting with a strictly positive parameterizing matrix
A, we perform alternating rounds (row, column, row, etc.) of
Sinkhorn Normalization to arrive at a DSM T . In particular,
we define the SinkProp function SP as:

SPs(A) =

{
A if s = 0

C(R(SPs−1(A))) otherwise
(3)

where s is the number of Sinkhorn iterations and R and
C are the row and column normalization functions applied
element-wise to the matrix A. (In practice, for the experi-
ments in this paper we found that s = 25 rounds was suffi-
cient.)

After computing T = SPs(A) for some s, we can com-
pute the gradient of f with respect to the parameterizing ma-
trix A by back-propagating the gradient through the row and
column normalizations. Since R and C are matrix-valued
functions, we vectorize them so that the Jacobian of each
function can be represented by a 2-D matrix (rather than a
tensor). We thus apply the chain rule as:

∂f

∂A
=

∂f

∂vec[C]

∂vec[C]

∂vec[R]

∂vec[R]

∂vec[C]
. . .

∂vec[R]

∂vec[A]
(4)

where

∂f

∂vec[C]
=

[
∂f

∂C11
. . . ∂f

∂C1n

∂f
∂C21

. . . ∂f
∂Cnn

]

24

∂vec[C]

∂vec[R]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂C11

∂R11
. . . ∂C1n

∂R11

∂C21

∂R11
. . . ∂Cnn

∂R11

...
∂C11

∂R1n

∂C11

∂R21

. . .
...

...
∂C11

∂R2n

...
∂C11

∂Rnn
. . . ∂Cnn

∂Rnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂Cij

∂Rxy
= δ(i, x)

(
δ(j, y)∑n
k=1 Rky

− Rxy

(
∑n

k=1 Rky)2

)
Here, δ(·) is the Kronecker delta function. The matrix ∂R

∂C

has a similar structure to ∂C
∂R . The gradient expression is the

same as well, with indices transposed appropriately.

Optimization in Log-Space

To optimize S(1), . . . , S(m) to maximize Q during the M-
Step, we first set the parameterizing matrix A to I for each
S(i), where I is the n × n identity matrix. Although A
is required to be strictly positive to guarantee convergence
of Sinkhorn Normalization (Sinkhorn 1964), the SinkProp
backpropagation does not guarantee that A will stay strictly
positive after the gradient update. Hence, to maintain pos-
itivity, we conduct the optimization in log-space, and set
A′ = exp(A) (element-wise exponentiation) as the starting
value for each S(i).

Inference of Ground-Truth

After conducting Expectation-Maximization, we take the fi-
nal probability distribution, from the last E-Step, of each zj
as the estimated label for each example j.

Comparison to RSM-based Model

PICA is based on doubly-stochastic matrices (DSMs), which
are a special case of right-stochastic matrices (RSMs) –
non-negative matrices in which the rows, but not necessar-
ily the columns, sum to 1. RSMs are therefore also capa-
ble of modeling the same kinds of “styles” that our pro-
posed DSM-based model can model. RSM-based models
for crowdsourcing consensus algorithms were first devel-
oped by Smyth et al. (1995). Compared to RSM-based mod-
els, DSMs directly encode how each annotator may permute
his/her perception of the class into a different label. DSMs
can have an advantage over RSMs due to a smaller number
of degrees of freedom: whereas an n×n RSM has n(n− 1)
free parameters, DSMs have only (n− 1)2, which for small
n (i.e., a small number of classes or clusters) can be substan-
tial in relative terms. When collecting only a modest number
of labels per labeler, this reduction in free parameters can
lead to better estimation of each annotator’s style matrix and
more accurate inference of the ground-truth labels.

Labels

1 2 3 4 5 6 7 8 9 10
Annotator 1 1 1 1 2 2 2 2 3 3 3
Annotator 2 1 3 3 2 2 2 2 3 3 1
Annotator 3 1 2 1 2 1 3 1 1 2 3
Heuristic (L=1) 1 1 3 2 2 2 2 3 3 1
Heuristic (L=2) 1 1 1 2 2 2 2 1 3 3
Heuristic (L=3) 2 1 1 2 2 3 2 2 1 3
PICA 1 1 1 2 2 2 2 3 3 3
Ground-truth 1 1 1 2 2 2 2 3 3 3

Table 1: With labels from inaccurate annotators, PICA per-
fectly recovers the ground-truth labels while the Unpermu-
tation Heuristic makes mistakes regardless of the choice of
leader. Incorrectly inferred labels are shown in bold.

Comparison to Unpermutation Heuristic

An alternative way2 to find consensus over crowdsourced la-
bels despite annotators’ permutations is to “un-permute” the
labels based on similarities between annotators. For exam-
ple, if for some subset of examples Annotator 1 uses label A
and Annotator 2 uses label B, it is likely A and B refer to the
same class. Based on this idea, we constructed the following
algorithm, which we refer to as the Unpermutation Heuristic
(UH):

• Randomly pick an annotator i as the “leader”.

• For each annotator j �= i

• For each class k = 1, ..., n according to i’s labels
• Find the symbol used most frequently by j to express

class k.
• Un-permute j’s labels based on the inferred permuta-

tion.

• Conduct majority vote over the unpermuted labels of all
annotators.

To illustrate how PICA and the Unpermutation Heuristic
differ, recall the toy example presented in Figure 1, but con-
sider a new set of observed labels given in Table 1. Annota-
tor 1 is the same as in the previous example (perfect accu-
racy, identity style). Annotator 2 and 3 also have an identity
style, but have low accuracy. PICA is able to identify this
and again recovers the ground-truth labels with perfect accu-
racy. In contrast, the Unpermutation Heuristic misinterprets
the low accuracy of Annotators 2 and 3 as a style transfor-
mation and makes several mistakes.

In addition, it is important to note that the performance of
the Unpermutation Heuristic is highly sensitive to the choice
of the “leader”. This is not surprising; if the leader is highly
inaccurate, unpermuting the other annotators’ labels based
on their labels will propagate the error. The results of the Un-
permutation Heuristic for each possible choice of leader are
given in Table 1. The accuracy of the Unpermutation Heuris-
tic for each leader is 80%, 90%, and 60% respectively, while
PICA scores 100%.

2Suggested anonymously by a reviewer; thanks.

25

Experiments

To evaluate our proposed PICA model, we performed three
experiments: (1) a Mechanical Turk-based experiment on
clustering text passages; (2) an abstract labeling simulation;
and (3) a dense (pixel-wise) image segmentation experi-
ment.

Permutation-invariant accuracy measurement: Since
the cluster labels in our experiments have no inherent mean-
ing (e.g., we could swap the labels “1” and “2” without
changing any semantics of the clusters), we computed ac-
curacy of the estimated cluster labels as the maximum accu-
racy, over all n! permutations, of the estimates w.r.t. ground-
truth cluster labels.

Optimization details: For all but the image segmentation
experiment, we conducted Expectation-Maximization until
Q(k) − Q(k−1) < 10−4, where Q(k) is the value of Q at
the kth iteration. For the image segmentation experiment,
we used a tolerance of 10−5. The code for the PICA model
implementation as well as the experimental analyses is avail-
able at https://github.com/mjgiancola/MQP.

Text Passage Clustering

We designed a text passage clustering task which required
annotators to cluster 6 passages into three groups (see Figure
2). This experiment was conducted on real annotators from
Amazon Mechanical Turk. The workers were not told how
many passages to put into each group, or by what character-
istics to cluster them. They were told simply to “Determine
how to group the passages based on any similarities and dif-
ferences that you can identify”. Of the six text passages, two
were in English, two were in Italian, and two were in Rus-
sian. We expected that most people would cluster by lan-
guage, as the content of the passages were selected to be to-
tally unrelated. (The passages were selected from Wikipedia
articles on disparate topics such as mongoose, jet pack, Ital-
ian soccer players, etc.) See Figure 2 for the task description
that we posed on Mechanical Turk.

We had 25 workers complete our task, one of whom didn’t
label one of the passages, resulting in 149 labels. Qualita-
tively, we observed that, while the majority of workers clus-
tered by language, there was some noise in the data due to
people clustering with some other reasoning in mind. We as-
sessed accuracy based on a randomly chosen subset (with-
out replacement) of just 3 (out of 25) annotators, and then
repeated the experiment 100 times to obtain an average per-
formance estimate. Hence, the accuracy statistics we report
reflect an annotation scenario in which only a small number
of annotators provide labels, and the job of the aggregator is
to infer the ground-truth labels despite the annotators’ dif-
fering styles.

Results: The proposed PICA model (based on DSMs)
achieved an average (over all 100 samplings) of 93% ac-
curacy, with average cross-entropy (computed between the
probability distributions of the zj w.r.t. ground-truth labels)
of 2.54. In contrast, the Unpermutation Heuristic achieved
an accuracy of only 90.5%, and simple Majority Vote
scored 89%. This provides a simple proof-of-concept on la-
bels from real human annotators that permutation-invariant

Instructions

Below is a collection of passages of text in different lan-
guages. The objective of this HIT is to collect the pas-
sages into three groups. Determine how to group the pas-
sages based on any similarities and differences that you
can identify. To complete this HIT:

• Read all the passages.
• Decide how to group the passages and go back to se-

lect a group for each passage.

Passages

1. Mongoose is the popular English name for 29 of the
34 species in the 14 genera of the family Herpestidae,
which are small feliform carnivorans native to south-
ern Eurasia and mainland Africa.
© Group 1 © Group 2 © Group 3

2. Nicola Ventola (Grumo Appula, 24 maggio 1978), un
ex calciatore italiano, di ruolo attaccante.
© Group 1 © Group 2 © Group 3
...

6. L’oceano Indiano e un oceano della Terra. In partico-
lare, sia per superficie che per volume, tra i cinque
oceani della Terra e il terzo.
© Group 1 © Group 2 © Group 3

Figure 2: The text passage clustering task we posted on
Amazon Mechanical Turk. The annotators’ job was to group
the different text passages into clusters.

consensus algorithms can be useful. The best performing
model, however, was actually the RSM approach (Smyth et
al. 1995), which achieved an accuracy of 96% and cross-
entropy of 1.65; this shows that the lower number of free
parameters in DSMs may not always be decisive.

Rare Class Simulation

This simulation was designed to highlight the difference
between our DSM-based model and a simpler RSM-based
model (e.g., (Smyth et al. 1995)). Recall that, once n − 1
rows of an n×n DSM have been identified, then the last row
can be inferred unambiguously. With RSMs, on the other
hand, all of the rows must be inferred from data indepen-
dently (since there is no constraint that each column sums
to 1). This difference can be decisive in a setting in which
one of the classes (from {1, . . . , n}) occurs only rarely in
the dataset, so that few of the observed labels provide any
information on the values of each S(i).

For this simulation, we generated 100 examples, each of
which was assigned a label zj ∈ Ω = { ‘a’, ‘b’, ‘c’ }, with
p(‘a’) = 0.5, p(‘b’) = 0.45, p(‘c’) = 0.05. We then simu-
lated 100 annotators who each have a random accuracy a(i)

sampled uniformly from [0.75, 1). Each annotator had a ran-
dom permutation of the identity for their style matrix. For
each annotator, we collected 10 labels, sampled randomly
(without replacement) from the 100 total examples, giving a
total of 1000 observed labels. As in the Text Passage Cluster-

26

(a) Original (b) Ground-truth (c) Noisy labeler

Figure 3: A dense (pixel-wise) image segmentation task on
one of the images (“couple”) from the ADE20K dataset
(Zhou et al. 2017). Sub-figures a-c show (in order) the origi-
nal image, the ground-truth segmentation, the segmentation
collected from one of the simulated noisy labelers.

ing experiment, results were averaged over 100 independent
trials.

Results: The DSM-based PICA algorithm achieved a per-
cent correct of 88% and 4.01 cross entropy, while the RSM-
based model scored 79% with 6.32 cross entropy. As a base-
line, the Unpermutation Heuristic scored 62% and Major-
ity Vote scored 47%. These results show an example of
how the more constrained DSM-based PICA algorithm can
yield higher accuracy than the simpler (and less constrained)
RSM-based approach.

Dense Image Segmentation

In this experiment we explored whether PICA could recon-
struct a dense (pixel-wise) image segmentation from mul-
tiple noisy segmentations. In our experiment, we used an
image and ground-truth segmentation (Figure 3a and 3b)3

from the ADE20K dataset (Zhou et al. 2017), which in turn
included images from the LabelMe dataset (Russell et al.
2008). Based on the ground-truth segmentation, we then
generated segmentations for 10 simulated annotators by per-
muting the class labels and adding noise (see Figure 3c
for an example). The input to our model thus consisted of
10 × numPixels labels, where each of the 10 segmenta-
tions corresponded to the labels of a single annotator, and
each pixel corresponded to an individual example (i.e. pixel
j in image i is label L

(i)
j). We generated a segmentation

dataset for four different images: “couple”, “flag”, “light’,
and “people”; the “couple” image is shown in Figure 3a;
the others are not shown due to space limitations. Together,
these data enable us to assess whether PICA can infer each
annotator’s different “style” in assigning pixels to colors and
combine them across annotators to yield aggregated labels
that are more accurate.

Results: Accuracy in inferring the ground-truth clustering
labels w.r.t. the ground-truth of the four approaches – PICA
(based on DSMs), RSM, the Unpermutation Heuristic, and
Majority Vote – are shown in Table 2. Graphical results just
for the “couple” image are also shown in Figure 4. As with
the previous experiments, we compute the %-correct accu-

3Figure 3 and 4 are best viewed in color.

(a) PICA (DSM) (b) RSM

(c) Heuristic (d) MV

Figure 4: Results of the crowdsourced image segmentation
task. Sub-figures a-d show (in order) the inferred ground-
truth (over all 10 noisy labelers) using the proposed DSM-
based PICA algorithm, the RSM-based algorithm (Smyth et
al. 1995), the Unpermutation Heuristic, and simple Majority
Vote.

racy and cross-entropy as the maximum over all n! permu-
tations, where n is the number of class labels. Hence, the
accuracies of the models are not penalized due to just the
arbitrary coloring assigned to each cluster in the image.

For the “couple” image, PICA was able to reconstruct the
original segmentation with 100% accuracy. In contrast, the
RSM model achieved 80% accuracy relative to the original
segmentation, as it was unable to distinguish the foreground
and background of the image. A simple majority vote still
achieved 77% accuracy, but generates a segmentation with a
lot of noise. For this example, the Unpermutation Heuristic
achieved the same level of performance as PICA – this was
expected as the simulated annotators were highly accurate.

For all four images that we tested, the results are shown
in Table 2. For three of the four images, PICA performed
the best in terms of %-correct clustering accuracy (frac-
tion of pixels assigned to the correct cluster, after taking the
maximum over all n! permutations), tying with the Unper-
mutation Heuristic twice. For the fourth image, PICA tied
with RSM. In terms of cross-entropy, the results were more
mixed, and both RSM and PICA achieved the best cross-
entropy in two of the four images.

While this is simply a proof-of-concept, it illustrates how
crowdsourcing – and principled algorithms for aggregating
over crowdsourced labels – can be used for image segmen-
tation tasks. After investigating annotation consistency be-
tween segmentations, Zhou et al. (2017) discussed the im-
portant sources of error. The first was varying levels of seg-
mentation quality from different annotators. The second was
ambiguities in object naming (i.e. one annotator labeled a

27

Model Image

“couple” “flag” “light” “people”
% C.E. % C.E. % C.E. % C.E.

PICA 100 65.5 99.4 .077 99.8 .020 99.0 48.2
RSM 80.4 13.9 98.7 .139 99.1 .040 99.0 39.6
UH 100 – 99.2 – 99.8 – 98.9 –
MV 77.5 – 81.5 – 88.9 – 86.0 –

Table 2: Accuracy of the proposed DSM-based PICA model
compared to the RSM-based model (Smyth et al. 1995) and
the Unpermutation Heuristic (UH) for aggregating over mul-
tiple annotators’ dense (pixel-wise) image segmentations.
We applied the algorithms to four different images (“cou-
ple”, “flag”, “light”, and “people”). We provide the results of
Majority Vote as a baseline. Accuracy was measured using
%-correct accuracy in assigning pixels to clusters, as well as
cross-entropy.

truck as “car”). As shown empirically, the proposed PICA
model can construct a segmentation which eliminates the
noise in the given data. The object naming issue would be
eliminated entirely, as PICA is invariant to each annotator’s
style.

Conclusion & Future Work

This paper introduced a model for crowdsourcing consensus
– PICA – which provides a degree of invariance to permuta-
tions of class labels, provided that there is enough data from
the annotators to recover each annotator’s “style” of label-
ing. We showed that this invariance made our model well-
suited to clustering tasks. Moreover, we identified a particu-
lar regime – annotation tasks in which some classes may oc-
cur only rarely – in which doubly-stochastic matrix (DSM)-
based PICA can provide better performance than a simpler
right-stochastic matrix (RSM)-based model. In other set-
tings, the empirical results suggest that DSM and RSM seem
to perform equally well.

Future research: Permuting one class label for another
is an instance of how a labeler may have a particular
“style”, over which a crowdsourcing consensus algorithm
must marginalize when inferring ground-truth labels. But
there are other settings in which style may be more com-
plex. For instance, in transcription tasks in which labelers
generate not just a fixed-length label but an entire sentence,
each annotator may tend to use different words or symbols
to mean the same thing. It would be interesting to explore
how more general forms of style can be modeled.

More technically, an interesting area of future inquiry is
exploring the relationship between the number of annotators
and examples in some labeling task. One would expect that
the number of annotators and examples have an inverse rela-
tionship in the sense that having more annotators can com-
pensate for having fewer labels per annotator. But is there
a limit to the extent that more examples can make up for a
lack of annotators (and vice-versa)? For the particular case
of PICA, it would be interesting to investigate how this is-
sue interacts with the relative benefits/drawbacks of using
DSM-based versus RSM-based models.

Appendix: Proofs and Derivations

Lemma 1: Dot Product of two DSMs is a DSM

Let A and B be two arbitrary DSMs.

A =

⎡⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
an1 an2 . . . ann

⎤⎥⎥⎦

B =

⎡⎢⎢⎣
b11 b12 . . . b1n
b21 b22 . . . b2n

...
bn1 bn2 . . . bnn

⎤⎥⎥⎦
Column j of AB has the form:

AB∗j =

⎡⎢⎢⎣
a11b1j + a12b2j + · · ·+ a1nbnj
a21b1j + a22b2j + · · ·+ a2nbnj

...
an1b1j + an2b2j + · · ·+ annbnj

⎤⎥⎥⎦
Taking the sum of the elements in column j, we can re-

order the terms and find:

b1j(a11 + · · ·+ an1)

+b2j(a12 + · · ·+ an2)

+ . . .

+bnj(a1n + · · ·+ ann)

= b1j + b2j + · · ·+ bnj
= 1

A similar argument shows that each row of AB sums to 1.

Expectation-Maximization Gradient Derivations

Our derivations below make use of the conditional indepen-
dence encoded in the graphical model in Figure 5.
E-Step: In this step, we compute the posterior probabilities
of zj ∈ Ω ∀j ∈ {1, . . . , n} given the S values from the last
M-Step and the set of all observed labels:

p(zj = zj | L(1) = L(1), . . . , L(m) = L(m),

S(1) = S(1), . . . , S(m) = S(m))

= p(zj | L(1), . . . , L(m), S(1), . . . , S(m))

∝ p(zj)p(L
(1), . . . , L(m) | S(1), . . . , S(m), zj)

= p(zj)
∏

i:L
(i)
j �=ε

p(L
(i)
j | zj , S(i))

= p(zj)
∏

i:L
(i)
j �=ε

S
(i)

z,L
(i)
j

where we note that p(zj |S(1), . . . , S(m)) = p(zj) by condi-
tional independence assumptions from the graphical model.
M-Step: In this step, we maximize the auxiliary function
Q, defined as the expectation of the joint log-likelihood of

28

Figure 5: Graphical model of ground-truth, observed labels,
styles, and accuracies. Only the observed labels (shaded) are
observed. The accuracies a(1), . . . , a(m) can be “folded” into
the style matrices due to Lemma 1.

the observed and ground-truth labels given the parameters
S(1), . . . , S(m), with respect to the posterior probabilities of
z computed in the last E-Step, denoted by probability distri-
bution p̃.

Q(S(1), . . . , S(m))

= E [log p(L = L, z = z | S = S)]

= E [log p(L, z | S)]

= E

⎡⎣log∏
j

(
p(zj)

∏
i

p(L
(i)
j | zj , S(i))

)⎤⎦
since L

(i)
j are cond. indep.

=
∑
j

E [log p(zj)] +
∑
ij

E [log
(
L
(i)
j | zj , S(i)

)
]

= C +
∑
ij

E[log
(
L
(i)
j | zj , S(i)

)
]

since
∑
j

E[log p(zj)] is const. w.r.t. each S(i)

=
∑
ij

∑
z1,...,zd

log
(
p(L

(i)
j |zj , S(i))

)
p̃(z1, . . . , zd)

=
∑
ij

∑
zj

log
(
p(L

(i)
j |zj , S(i))

)
p̃(zj)∑

z1,...,zj−1
zj+1,...,zd

p̃(z1, . . . , zj−1, zj+1, . . . , zd)

=
∑
ij

∑
zj

log
(
p(L

(i)
j |zj , S(i))

)
p̃(zj)

=
∑
ij

∑
zj

log

(
S
(i)

z,L
(i)
j

)
p̃(zj)

To take the first derivative of Q, we vectorize each S(i):

∂Q

∂vec[S(i)]
=

[
∂Q

∂S
(i)
11

. . . ∂Q

∂S
(i)
1n

∂Q

∂S
(i)
21

. . . ∂Q

∂S
(i)
nn

]
where

∂Q

∂S
(i)
xy

=
∑

j:L
(i)
j �=ε

∑
zj

∂

∂S
(i)
xy

[log

(
S
(i)

zj ,L
(i)
j

)
]p̃(zj)

=
∑

j:L
(i)
j �=ε

∂

∂S
(i)
xy

[log

(
S
(i)

x,L
(i)
j

)
]p̃(x)

=
∑

j:L
(i)
j �=ε

δ(L
(i)
j , y)

∂

∂S
(i)
xy

[log
(
S(i)
xy

)
]p̃(x)

=
∑

j:L
(i)
j �=ε

δ(L
(i)
j , y)

p̃(x)

S
(i)
xy

Text Passage Clustering Data

We collected passages on Wikipedia for our text cluster-
ing experiment. Since we wanted passages in multiple lan-
guages, we used English, Russian, and Italian Wikipedia ar-
ticles. The passages we used came from the following arti-
cles: Mongoose and Jet Pack (English), Nicola Ventola and
Indian Ocean (Italian), and Ludwig van Beethoven and G-
Eazy (Russian).

Image Segmentation Data

We used an image and segmentation from the ADE20K
dataset (Zhou et al. 2017). The image was originally from
the LabelMe dataset (Russell et al. 2008). To reduce time
costs, we cropped sections of the image to use. Also, to
simplify the results, we regenerated our own segmentations
which ignored a few class labels (i.e. small objects in the
background).

References

Adams, R. P., and Zemel, R. S. 2011. Ranking via sinkhorn
propagation. arXiv preprint arXiv:1106.1925.
Alush, A., and Goldberger, J. 2012. Ensemble segmen-
tation using efficient integer linear programming. IEEE
transactions on pattern analysis and machine intelligence
34(10):1966–1977.
Bragg, J.; Weld, D. S.; et al. 2013. Crowdsourcing multi-
label classification for taxonomy creation. In First AAAI
conference on human computation and crowdsourcing.
Dawid, A. P., and Skene, A. M. 1979. Maximum likelihood
estimation of observer error-rates using the em algorithm.
Applied statistics 20–28.
Ekman, P. 1992. An argument for basic emotions. Cognition
& emotion 6(3-4):169–200.

29

Gomes, R. G.; Welinder, P.; Krause, A.; and Perona, P. 2011.
Crowdclustering. In Advances in neural information pro-
cessing systems, 558–566.
Jack, R. E.; Blais, C.; Scheepers, C.; Schyns, P. G.; and Cal-
dara, R. 2009. Cultural confusions show that facial expres-
sions are not universal. Current Biology 19(18):1543–1548.
Kamar, E.; Kapoor, A.; and Horvitz, E. 2015. Identifying
and accounting for task-dependent bias in crowdsourcing. In
Third AAAI Conference on Human Computation and Crowd-
sourcing.
Kaminsky, O., and Goldberger, J. 2016. Combining clus-
terings with different detail levels. In Machine Learning for
Signal Processing (MLSP), 2016 IEEE 26th International
Workshop on, 1–6. IEEE.
Lin, C. H.; Weld, D.; et al. 2012. Crowdsourcing
control: Moving beyond multiple choice. arXiv preprint
arXiv:1210.4870.
Raykar, V. C.; Yu, S.; Zhao, L. H.; Valadez, G. H.; Florin,
C.; Bogoni, L.; and Moy, L. 2010. Learning from crowds.
Journal of Machine Learning Research 11(Apr):1297–1322.
Russell, B. C.; Torralba, A.; Murphy, K. P.; and Freeman,
W. T. 2008. Labelme: a database and web-based tool for
image annotation. International journal of computer vision
77(1-3):157–173.
Salek, M.; Bachrach, Y.; and Key, P. 2013. Hotspotting-a
probabilistic graphical model for image object localization
through crowdsourcing. In AAAI.
Sinkhorn, R., and Knopp, P. 1967. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics 21(2):343–348.
Sinkhorn, R. 1964. A relationship between arbitrary posi-
tive matrices and doubly stochastic matrices. The annals of
mathematical statistics 35(2):876–879.
Smyth, P.; Fayyad, U. M.; Burl, M. C.; Perona, P.; and Baldi,
P. 1995. Inferring ground truth from subjective labelling of
venus images. In Advances in neural information processing
systems, 1085–1092.
Strehl, A., and Ghosh, J. 2002. Cluster ensembles—a
knowledge reuse framework for combining multiple parti-
tions. Journal of machine learning research 3(Dec):583–
617.
Sun, Y.; Singla, A.; Fox, D.; and Krause, A. 2015. Building
hierarchies of concepts via crowdsourcing. In IJCAI, 844–
853.
Tian, Y., and Zhu, J. 2012. Learning from crowds in the
presence of schools of thought. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 226–234. ACM.
Vinayak, R. K., and Hassibi, B. 2016. Crowdsourced clus-
tering: Querying edges vs triangles. In Advances in Neural
Information Processing Systems, 1316–1324.
Whitehill, J.; Wu, T.-f.; Bergsma, J.; Movellan, J. R.; and
Ruvolo, P. L. 2009. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise. In
Advances in neural information processing systems, 2035–
2043.

Yi, J.; Jin, R.; Jain, S.; Yang, T.; and Jain, A. K. 2012.
Semi-crowdsourced clustering: Generalizing crowd labeling
by robust distance metric learning. In Advances in neural
information processing systems, 1772–1780.
Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; and
Torralba, A. 2017. Scene parsing through ade20k dataset.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

30

