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Abstract

We investigate the possibility of leveraging side information
for improving quality control over crowd-sourced data. We
extend the GLAD model, which governs the probability of
correct labeling through a logistic function in which worker
expertise counteracts item difficulty, by systematically encod-
ing different types of side information, including worker in-
formation drawn from demographics and personality traits,
item information drawn from item genres and content, and
contextual information drawn from worker responses and la-
beling sessions. Modeling side information allows for better
estimation of worker expertise and item difficulty in sparse
data situations and accounts for worker biases, leading to bet-
ter prediction of posterior true label probabilities. We demon-
strate the efficacy of the proposed framework with overall
improvements in both the true label prediction and the un-
seen worker response prediction based on different combina-
tions of the various types of side information across three new
crowd-sourcing datasets. In addition, we show the framework
exhibits potential of identifying salient side information fea-
tures for predicting the correctness of responses without the
need of knowing any true label information.

Introduction

Crowd-sourcing, the process of outsourcing human intelli-
gence tasks to an undefined, generally large group of people
to seek answers via an open call (Sheng, Provost, and Ipeiro-
tis 2008), has gained much popularity in machine learn-
ing communities in recent years for generating and collect-
ing labeled data, thanks to the development of the corre-
sponding online service providers, such as Amazon Mer-
chanical Turk1 and CrowdFlower2. These platforms facili-
tate large-scale online data labeling and collection processes
in an inexpensive and timely manner. However, they are
also constantly confronted by workers with various motives
and abilities, who end up producing conflicting labels for
the same items. Moreover, an ever-growing number of unla-
beled items versus limited budgets in most crowd-sourcing
projects often results in a small number of responses per
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item. Aggregating such small numbers of conflicting re-
sponses using majority vote to infer the true label of each
item is often unreliable.

To overcome the above problem, the quality of responses
must be controlled in a principled manner such that the in-
fluence of “high-quality” responses can outweigh that of
“low-quality” ones when aggregated for the true labels. This
activity is known as Quality Control for Crowd-sourcing
(QCCs) (Lease 2011). The QCCs methods, largely based
on statistical modeling and machine learning, consider the
abilities of workers to govern the quality of the labels
they produce with greater abilities indicating higher quality
(Dawid and Skene 1979; Raykar et al. 2010a). Some of them
also consider the difficulty of items that can counteract the
worker abilities to undermine the label quality (Rasch 1960;
Whitehill et al. 2009; Bachrach et al. 2012). These methods
have overall achieved superior performance over the conven-
tional majority vote, and the basic pre-task or in-task incom-
petent worker filtering using control questions. In fact, it is
typical for the QCCs methods to follow the filtering in a pi-
pline to enhance the quality control performance nowadays.

However, there exists one major pitfall of the current
QCCs models which is that they are vulnerable to the label
sparsity problem, which happens frequently in real-world
crowd-sourcing scenarios where only few labels get col-
lected for each item or from each worker for a task (Jung
and Lease 2012). Consequently, parameter estimation for
these models (e.g. estimates of worker abilities and item dif-
ficulty) becomes unreliable, causing the models’ QCCs per-
formance to deteriorate. As an example, due to the paucity
of her provided labels, an expert worker can be considered
inaccurate by the QCCs models if most of her labels hap-
pen to disagree with the majority, while a novice worker can
be considered as accurate if her happens to have made some
fortunate guesses. In this case, extra side information about
the demographics of these workers, the questions they have
answered, the time they have taken to respond, or even their
situated environments can possibly help to improve the es-
timation of their parameters in the models when the labels
they provide are scarce. Following the previous example, if
we know that the demographics of the expert (e.g. her educa-
tion, interests related to the particular crowd-sourcing task)
is very similar to those of the other experts who have been
labeling correctly (e.g. by agreeing with the majority), then
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the belief of her being a novice due to her poor performance
so far can be counteracted by her similarity with the other
experts. As a result, her next label will be more trusted by
the models.

In most crowd-sourcing tasks, there is always extra side
information that is easy to collect (e.g. labeling prices,
worker comments or feedback), or can be collected with
some minor efforts (e.g. designing simple surveys to collect
demographics or programming to collect them silently). The
side information can be elicited from the items, the work-
ers and the contexts in which worker-item interaction takes
place during the crowd-sourcing process. Relevant work in
crowd-sourcing thus far has focused on exploiting only very
specific types of side information for improving the perfor-
mance of QCCs. To our best knowledge, a study that de-
velops a scalable framework able to integrate and utilize ar-
bitrary types of side information for improving true label
prediction is still missing.

The corresponding contributions of this paper are summa-
rized as follows:
• We have developed a probabilistic framework, by extend-

ing the basic GLAD model (Whitehill et al. 2009), that
seamlessly integrates various types of side information
while modeling the interaction between the worker exper-
tise and the item difficulty;

• Overall improvements in both the true label prediction
and the unseen (held-out) worker response prediction
have been found in our experiments over three new
crowd-sourcing datasets all of which experience the label
sparsity problem for their items. The experiments involve
(1) the comparison between the different instantiations of
our framework with incremental amounts of side infor-
mation and three baseline methods in terms of the above
two prediction tasks, and (2) their comparison in terms
of the same prediction tasks by learning from small ran-
dom response subsets sampled from the workers of the
three datasets where they are exposed to escalated spar-
sity across both the workers and the items.

• We show the framework has the potential of automatically
identifying side information features important for pre-
dicting the correctness of responses in an unsupervised
manner.

Related Work

Research that considers differences in worker abilities while
inferring the true labels for items dates back to the work
of Dawid and Skene (1979), who integrated parameters
modeling workers’ abilities and biases into a single confu-
sion matrix accommodating conditional probabilities of all
possible response labels given all possible true labels. Since
then, many models have been proposed to prevent the learn-
ing of the confusion matrix for each worker from over-fitting
the corresponding labeled data. They have succeeded via
either simplifying the confusion matrix setting by making
it symmetric (Whitehill et al. 2009; Raykar et al. 2010b;
Liu, Peng, and Ihler 2012; Wauthier and Jordan 2011),
or grouping workers with similar confusion matrices to-
gether to smooth the worker-specific confusion matrices

with the ones learned at the group-level (Venanzi et al. 2014;
Moreno et al. 2014). Sometimes modeling worker abilities
alone is not enough for accurate estimation of label qual-
ity, which might also be affected by variations in labeling
accuracy across items. Accordingly, there has been research
(Whitehill et al. 2009; Bachrach et al. 2012) taking into ac-
count another set of model parameters known as item diffi-
culty, with others further considering the multi-dimensional
interactions between the two entities (Welinder et al. 2010;
Ruvolo, Whitehill, and Movellan 2013).

Among all the prior work, research investigating the use
of side information to improve QCCs is limited. Kamar,
Kapoor, and Horvitz (2015) studied utilizing observed side
information, in particular features of the items, to estimate
item-side confusion matrices to account for task-dependent
biases. Kajino, Tsuboi, and Kashima (2012) developed con-
vex optimization techniques using worker-specific classi-
fiers centered on a base classifier which takes in item fea-
tures for inferring their true labels. Ruvolo, Whitehill, and
Movellan (2013) built a multi-dimensional logit model for
predicting the correct label probability based on observed
worker features. Ma et al. (2015) took into account “bag-of-
word” information for learning the topical expertise of in-
dividual workers. Venanzi et al. (2016) considered response
delay information to better distinguish spammers from gen-
uine workers. We can see that each of these relevant works
has focused on exploiting only one specific type of side
information for improving the label quality control perfor-
mance.

Proposed Framework

We are interested in developing a unified framework that is
able to predict item true labels based on both worker re-
sponses and various types of side information about work-
ers, items and contexts. The framework should be scalable
for incorporating new types of side information. Table 1
summarizes the inputs, parameters and hyper-parameters of
the proposed framework.

Basic Framework

Our proposed framework extends the GLAD (Whitehill et
al. 2009) model which is shown in Figure 1a. GLAD applies
a logistic function to the product between worker expertise
and item difficulty variables to calculate the probability of
correct labeling. More precisely, GLAD defines the proba-
bility of a response ruv being correct, (i.e. equal to the true
label lv), as follows:

p(ruv = lv) = fH
uv =

1

1 + exp(−zHuv)

zHuv = fHu
u fHv

v fHu
u = eu fHv

v = exp(dv) (1)

where H = {eu, dv}u∈U,v∈V denotes the set of model pa-
rameters excluding the latent true labels L of items V . Ac-
cording to GLAD, eu ∈ � models the expertise of worker
u, and 1/ exp(dv) with dv ∈ �models the difficulty of item
v. For clarity, we call dv the easiness of item v for the rest of
the paper. Moreover, GLAD assumes normal priors over eu
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and dv with μv, σ
2
v and μu, σ

2
u being their prior means and

variances respectively. Whitehill et al. (2009) further sim-
plify the GLAD model so that instead of needing to infer a
|K| × |K| matrix of parameters for each worker as done by
Dawid and Skene (1979), the model makes use of the fol-
lowing conditional statements:

p(ruv|lv) = fH
uv if ruv = lv; otherwise =

1− fH
uv

|K| − 1
(2)

We choose GLAD as the basis of our framework because
of its factorization nature which easily allows for linear com-
bination of different factors encoding arbitrary information
about workers, items and their dyadic relations.

Incorporating Worker Information

We start with encoding information about workers into the
basic framework as shown in Figure 1b. In this case, the
worker-side expression fHu

u is changed to be:

fHu
u = eu + xT

uβ
U (3)

Here the dot product between the multi-dimensional feature
vector xu of worker u and the weight vector βU forms a
global regression across all the workers with βU learned to
bring the expertise offsets of similar workers closer together.
This helps to smooth the irregular expertise estimates that
result from the sparse labels across workers. Moreover, we
assume a normal prior over the m-th component of βU with
mean μU

m and standard deviation σU
m.

Incorporating Item Information

The item information is incorporated into the basic frame-
work as shown in Figure 1c. The item-side expression fHv

v
now has the following form:

fHv
v = exp(dv + xT

v β
V) (4)

where the dot product between the multi-dimensional fea-
ture vector xv of item v and weight vector βV forms a global
regression over all the items. βV serves the same purpose as
its worker-side counterpart. We assume a normal prior over
the m-th component of βV with mean μV

m and standard de-
viation σV

m.

Incorporating Response and Session Information

We consider contextual information at both the response
level and the session level. The former type of contextual in-
formation is specific to each response given by a worker to
an item, encoded by features including response delay and
order, while the latter is specific to each labeling session of
a worker which we define to start when a task page is loaded
and to end once the page is submitted with no time-out in be-
tween. In this case, session features can include labeling de-
vices (e.g. a personal computer), rendering browsers and the
time periods (e.g. the day of the week) of the labeling. The
session features capture much more variation in the labeling
across different workers than within each worker as most
of the workers remain situated in the same environments

Symbols Description

Inputs

U set of workers
V set of items
K set of label categories

ruv ∈ K response of worker u for item v

R set of responses {ruv|(u ∈ U) ∧ (v ∈ V)}
xu feature vectors for worker u
xv feature vectors for item v

xus feature vectors for a labeling session s of worker u
xuv feature vectors for the response given by worker u to item v

Parameters

L = {lv}v∈V set of latent true label variables for items in V
H set of model parameters excluding L
θ probability vector over item true label categories
eu expertise variable eu ∈ (−∞,+∞) of worker u
dv “easiness” variable dv ∈ [0,+∞) of item v

βU weight vector for worker features xu

βV weight vector for item features xv

βS weight vector for session features xus

αu weight vector for the responses given by worker u
Hyper-parameters

H0 set of hyper-parameters for the model parameters
γ Dirichlet prior for item true label lv

μu, σu Normal prior for eu
μv, σv Normal prior for dv

μU , σU Normal prior for each weight component of βU

μV , σV Normal prior for each weight component of βV

μS , σS Normal prior for each weight component of βS

μα, σα Normal prior for each weight component of αu

Table 1: List of Notation used.

throughout the entire crowd-sourcing tasks. In contrast, the
response features should provide much more insight into the
variation within each worker’s labeling behavior.

To leverage the advantages of both types of contextual in-
formation, we incorporate them into the basic framework as
shown in Figures 1d and 1e, where S is the set of label-
ing sessions each corresponding to a task page containing a
number of label-collecting questions.

The corresponding changes made to the worker-side ex-
pression and to the entire expression are respectively the fol-
lowing:

fHu
u = eu + xT

usβ
S

zHuv = fHu
u fHv

v + xT
uvαu (5)

Here the dot product between the multi-dimensional feature
vector xus of worker u within session s and the weight vec-
tor βS forms a global regression over all the sessions of all
the workers, while αu are specific to worker u, serving as
the weight vector of a local linear regression over the fea-
ture vectors of all the responses made by worker u. Such
local regressions aim at addressing worker-specific biases
that GLAD fails to handle properly (Welinder et al. 2010).
We again assume normal priors over the m-th component of
both βS and αu with means μS

m, μmu and standard devia-
tions σS

m, σmu, respectively.
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ruvlvρ

λ

eu

dv μe, σe

μd, σd

UV UV

(a) GLAD

ruvlvρ

λ

eu

xudv βU

μU , σUμd, σd

μe, σe

UV UV

(b) GLAD + worker features

ruvlvρ

λ

eu

dv

xv

βV

μV , σV

μe, σeμd, σd

UV UV

(c) GLAD + item features

ruvlvρ

λ

eu

dv xusβS

μS , σSμd, σd

μe, σe

US

UV UV

(d) GLAD + labeling session features

ruv

xuv

lvρ

λ

eu

dv

μe, σe

αu

μd, σd μα, σα

UV UV

(e) GLAD + response features

Figure 1: (a), (b), (c), (d) and (e) show the GLAD model, and the GLAD model with the observed features about workers, items,
sessions and responses respectively.

Inference

In this section, we describe a stochastic parameter estima-
tor to obtain posterior probabilities of the latent true label
variables L. More specifically, in each iteration of the esti-
mation, we alternate between the Collapsed Gibbs sampling
(Griffiths and Steyvers 2004) for L given the current esti-
mates of the model parameters H, and the one-step gradient
descent for updating H given the sampled L.

Collapsed Gibbs Sampling for L
At this stage, we employ a collapsed Gibbs sampler to ob-
tain posterior samples for L = {lv}v∈V given the current
estimates of H. In this case, the conditional probabilities of
true label lv is obtained by marginalizing out the multino-
mial probability vector θ, which ends up being:

P (lv = k|L\v,Rv,H,γ) ∝ N\vk + γk∑
j∈K

(N\vj + γj)
×

∏
u∈Uv

(
(fH

uv)
�{ruv=lv}

(1− fH
uv

|K| − 1

)�{ruv �=lv}
)

(6)

where Uv is the set of workers who responded item v with a
set of responses Rv , L\v is the set of current true label as-
signments to all the items excluding item v, and N\vk is the
number of items excluding v whose true labels are currently
inferred to be k.

Gradient Descent for H
The conditional probability distributions of the model pa-
rameters H = (θ, e,d,βU ,βV ,βS ,α) are hard to compute
analytically due to the presence of the logistic function. In-
stead, we run the gradient descent for one step with respect

to H on the negative logarithm of its joint conditional prob-
ability distribution.

Q(H) = −
∑
v∈V

∑
u∈Uv

log

(
(fH

uv)
�{ruv=lv}×

(1− fH
uv

|K| − 1

)�{ruv �=lv}
)
− log p(H|H0). (7)

The first term of Equation 7 is the negative log-likelihood of
the response data, and the second term is the log-prior with
H0 denoting the set of hyper-parameters of H. To minimize
Q(H), we take partial derivative of Equation 7 with respect
to each element in H.

Estimate eu and dv In this case, the relevant prior terms
in log p(H|H0) are (dv−μv)

2

2σ2
v

+ (eu−μu)
2

2σ2
u

. The gradients of
eu and dv are thus:

∂Q
∂dv

= −
∑
u∈Uv

(
δuvf

Hu
u fHv

v

)
+

dv − μv

σ2
v

(8)

∂Q
∂eu

= −
∑
v∈Vu

(
δuvf

Hv
v

)
+

eu − μu

σ2
u

, (9)

where δuv = [�{ruv = lv}(1 − fH
uv) − �{ruv �= lv}fH

uv],
and Vu is the set of items responded by worker u.

Estimate βU
m and βV

m Taking derivatives w.r.t. βU
m and βV

m,
the m-th components of βU and βV respectively, yields sim-
ilar equations:

∂Q
∂βU

m

= −
∑
v∈V

∑
u∈Uv

(
δuvf

Hv
v xmu

)
+

βU
m − μU

σU2 (10)

∂Q
∂βV

m

= −
∑
v∈V

∑
u∈Uv

(
δuvf

Hu
u fHv

v xmv

)
+

βV
m − μV

σV2 (11)
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Equation 10 is also applied to ∂Q
∂βS

m
with xmus and βS

m

respectively replacing xmu and βU
m.

Estimate αmu The gradient w.r.t. αmu, the m-th compo-
nent of αu, is given by:

∂Q
∂αmu

= −
∑
v∈Vu

(
δuvxuv

)
+

αmu − μα

σ2
α

(12)

Experiments

We present experiments that study the performance of our
framework on combining different types of side information
to improve the quality control for crowd-sourcing on three
real-world datasets.

Datasets

The three datasets were collected in separate crowd-sourcing
tasks on CrowdFlower with three responses collected for
each item. As a basic quality control measure, we filtered out
workers who did not achieve 88% accuracy on pre-defined
control questions. The qualified workers were also asked for
additional information including demographics and personal
traits3. Each qualified worker is allowed to label a certain
number of items for each task and is free to quit labeling at
any time. Nineteen items were randomly selected and shown
to the a worker on each task page. Table 2 provides a sum-
mary of the three datasets.

Dataset # Worker # Item # Response

Stack Overflow 505 14,021 42,063
Evergreen Webpage 434 7,336 22,008

TREC 2011 160 1826 5,478

Table 2: Dataset Summary.

TREC 2011 Crowd-sourcing Track Each CrowdFlower
worker was asked to judge the relevance levels (i.e. highly
relevant, relevant and non-relevant) of 38 Web-pages to
their corresponding queries in the TREC 2011 Crowd-
sourcing Track dataset4. Figure 2a shows a question for
collecting the relevance judgments for a pair of query (i.e.
“french lick resort and casino”) and document.

Stack Overflow Post Status Judgement Each Crowd-
Flower worker was asked to judge the status of 95 archived
questions from Stack Overflow5. The status of a question
can be either open, meaning it is regarded suitable to stay

3This was done by mixing the demographic survey questions
with the control questions in the quiz for the workers to answer
prior to starting the crowd-sourcing task. As a result, there exist a
small number of missing values in the demographic data collected
as not all the survey questions were chosen by CrowdFlower to
appear on the quiz page.

4https://sites.google.com/site/treccrowd/2011
5The set of questions judged is a random subset of the

training dataset used in the Kaggle competition “Predict Closed
Questions on Stack Overflow” (https://www.kaggle.com/c/predict-
closed-questions-on-stack-overflow).

Dataset

Side Info. Stack-Overflow Evergreen TREC

1. age, 2. gender, 3. education, 4. personality traits
self-appraisal about: 1. mother tongue 1. mother tongue

1. programming self-appraisal about: self-appraisal about:

experience 2. frequency of 2. frequency of
2. frequency of online search online search

Worker search/post/ 3. frequency of 3. diversity of
edit/answer bookmarking online search

-ing questions Web-pages topics
3. diversity of 4. frequency of 4. average #

questions revisiting SERPs
dealt with Web-pages checked

Item 1. content length, 2. item genre
- 1. Web-page features -

Response 1. response time/delays, 2. response order
Session 1. weekends or weekdays, 2. time of the day

3. labeling devices (e.g. PC, tablets, etc.)

Table 3: features encoding different types of information.

active (i.e. visible, answerable and editable) on Stack Over-
flow, or closed, meaning the opposite for reasons including
that it is not a real question (i.e. questions that are ambigu-
ous, too broad or “show no efforts” in seeking answers), not
constructive to the Website (i.e. questions that are subjective
and have no correct answers) and too localized (i.e. ques-
tions that are not reproducible, thus useless to other workers
in the future). Figure 2b shows a question for collecting the
status judgments for a Stack Overflow post.

Evergreen Webpage Judgment Each CrowdFlower
worker was asked to judge 57 Web-pages6 on whether
they think these Web-pages have a timeless quality or, in
other words, will still be considered by average workers as
valuable or relevant in the future.

Feature Collection

We collected various types of side-information as summa-
rized in Table 3.

Worker Feature The worker features include both the de-
mographic and personality trait features which are com-
mon to all the three tasks, and the “self-appraisal” features
which vary from task to task. The ages of workers (start-
ing from 18) were discretized into 9 groups with the first
8 groups each having a 5-year gap onward and the last be-
ing of age 60 or over. The education backgrounds of work-
ers were divided into 5 categories from “Less than high
school” to “Master degree or above”. To collect informa-
tion about the personality traits of workers, we directly em-
ployed the 10 survey questions used by Kazai, Kamps, and
Milic-Frayling (2012) based on the so called five personal-
ity trait dimensions (John, Naumann, and Soto 2008). As for
the “self-appraisal” features, these were designed to capture
the possible nuances in workers’ expertise levels on different
tasks from their own perspectives.

6We used the training set from the Kaggle Competition “Stum-
bleUpon Evergreen Classification Challenge”:
https://www.kaggle.com/c/stumbleupon.
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(a) a question for relevance judgment (b) a question for Stack Overflow post status judgment

Figure 2

Item Feature The item features include both the common
features which are the content length and item genres (al-
ready known for each item of each dataset), and those unique
to the Evergreen dataset which are the original Web-page
features7 provided in the Kaggle competition.

Response and Session Features The contextual features
were collected at both the response and the session lev-
els, and were the same across all the tasks. Response-level
feature “response delay” records the amount of time each
worker took to label each item. Its value was calculated by
subtracting the click time of the previous item (or the page
load time if it was more recent) from the click time of the
particular item. We also computed the “response order” of
each item by ordering items by their “last click time”. As
for the session feature “time of the day”, we set its value,
either “daytime”, “night” or ‘late night”, corresponding to
the periods [6am, 7pm), [7pm, 23pm), and [23pm, 6am), re-
spectively.

Feature Normalization The pre-processing of the fea-
tures involved binarizing the non-numeric features, and nor-
malizing the numeric features using a Z-score transforma-
tion, (except for the numeric feature “response order” for
which we used a min-max normalization as its values were
always uniformly distributed). For numeric features with
highly skewed empirical distributions, a log-transformation8

was applied prior to normalizing with the Z-score transfor-
mation. Finally, we normalized the response-level feature
“response delay” on a per-worker basis (i.e. using worker
specific mean and standard deviation values), in order to
facilitate local linear regression with the worker-specific
weight vector αu as specified in Equation 5.

Experiment Setup

Baselines We verify the efficacy of our model by compar-
ing it with the following three baselines:

• Majority Vote: the predicted true label for an item is the
response given by the majority of the workers.

7https://www.kaggle.com/c/stumbleupon/data
8log(c+ x) where c = min(0.1,min(x))

• GLAD: the probability of a correct response is a logistic
function over the product between the worker expertise
and the item “easiness” variables.

• Community-based Dawid-Skene (DS) (Venanzi et al.
2014): to smooth out unreliable estimates of the confusion
matrix entries due to label sparsity, the matrix is drawn
(row-wise) from one that is shared by a community to
which the worker is inferred to belong.

Evaluation Metrics We use the following metrics to eval-
uate the performance of the baseline methods and our pro-
posed framework in terms of the item true label prediction:
• Predictive accuracy (Accu):

1
|V|

∑
v∈V

�{lv = l̂v}
where l̂v = argmax

l∈K
P (lv = l|R,Model)

• Log-Loss (Log):
− 1

|V|
∑

v∈V
∑
l∈K

�{lv = l} log (P (lv = l|R,Model)
)

We use the following metric to evaluate the performance of
the baselines nd our proposed framework with respect to the
unseen worker response prediction.
• Mean Absolute Error (MAE):

1
|Rh|

∑
ruv∈Rh

�(ruv �= r̂uv)

where r̂uv = argmax
l∈K

P (ruv = l|R\h,Model)

The first measure (Accu) tells us the performance in terms
of the number of correctly predicted true labels. The sec-
ond measure (Log) tells us how confident the model is in its
predictions of the true labels. The second measure is often
more sensitive than the first and can therefore be useful for
comparing similarly performing models. The third measure
(MAE) informs us of the performance with respect to the av-
erage number of correctly predicted held-out responses Rh

from the workers based on the posterior mode r̂uv given the
training responses R\h and the specific model being tested.
In the experiment using the entire responses, the proportion
of the held-out test data Rh is set to be 30% and the accu-
racy of the unseen worker response prediction of a model is
obtained by averaging its performance over 10 such held-out
tests.
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Hyper-parameter Setup For GLAD, Whitehill et al.
(2009) imposes normal priors over both eu and dv with
means and standard deviations both set to be 1. This set-
ting assumes that a priori approximately 75% of workers
are reliable and 75% of items are relatively easy for aver-
age workers. Although straightforward, we believe that the
above hyper-parameter settings for GLAD is not particularly
effective for modeling common crowd-sourcing scenarios
for two main reasons.

First, crowd-sourcing tasks conducted on CrowdFlower
can only be attempted, by default, by leveled 9 (in other
words, experienced and high-quality) workers. We adopted
this default setting for all our tasks. Moreover, control ques-
tions are very often used to vet and remove low-performing
workers before and during the tasks. Thus, we believe that a
priori no workers should be considered unreliable (that is eu
below or close to 0). Instead, all workers should be expected
to have abilities close to the prior mean.

Secondly, it is common to collect only a small number of
responses for each item during crowd-sourcing. Such few re-
sponses can hardly provide sufficient information for GLAD
to reliably estimate dv . Moreover, GLAD applies an expo-
nential transformation on dv to ensure its non-negativity,
which is likely to further “inflate” its inaccurate estimation.
As an example, when dv = 3 (i.e. two positive standard de-
viations from its prior mean), exp(dv) = 20.1, much larger
than eu = 3 which is also at two positive standard devia-
tions. As a result, the log-odds of correct labeling, modeled
as their product in GLAD, is likely to be dominated by the
potentially inaccurate estimates of dv . Thus, we suggest a
stronger regularization penalty for dv to suppress these prob-
lems. Based on the above analysis, we set the prior means for
eu and dv to be 2 and 0 respectively. Note that assigning the
latter to zero imposes an uninformative setting for the prior
of dv . We set the prior variance for both to be 0.1 in accor-
dance with the arguments above (to limit the variance of eu
and to increase the regularization on dv).

Each component of the Dirichlet prior vector γ is set to
be 1. For each regression weight vector (e.g. βU ), we set the
prior means of its components to be 0, and the prior stan-
dard deviations to be (0.01 / #features) so that the influence
brought by each global/local regression is comparable to that
brought by its affecting factor (e.g. eu). As for the gradient
descent step size, we define a default step size of η = 0.001
and calculate a parameter-specific size based on the num-
ber of data instances available for estimating the parameter,
that is (η/#datapoints). Discounting η is necessary as pa-
rameters are estimated at different (global or local) levels in
our framework. Except for the Dirichlet prior for the class
proportions to be fixed all at 1, the other hyper-parameters
of the community-based DS, including the number of com-
munities, is set through 10-fold cross-validaton repeated and
averaged over 5 times, evaluated upon the likelihood of the
validation responses.

Prediction with Subsampled Responses While the de-
fault evaluation task is to check the efficacy of our frame-

9http://crowdflowercommunity.tumblr.com/post/80598014542
/introducing-contributor-performance-levels

work under item-side label sparsity as only 3 responses were
collected for each item, we would like to further investigate
whether the framework can handle even greater degrees of
label sparsity which happens not only on the item side but
also on the worker side. To do this, we randomly subsampled
the same number of responses from each worker. By merg-
ing all the subsampled responses from each worker, we ob-
tained a data subset with far fewer items for each of the three
datasets. We varied the number of responses subsampled per
worker from 1 to 12 (after which we actually observed very
marginal differences in the model performence), and ran all
the models for the true label prediction as well as the un-
seen (held-out) worker response prediction at each subsam-
pling point. The unseen response prediction is evaluated on
the remaining responses. Both prediction tasks are evaluated
using the same metrics before as used in the experiments
with the full responses. The whole subsampling procedure
was repeated 5 times before we obtained the average pre-
dictive accuracy of each model. The hyper-parameter setup
in this case remained unchanged as we employed the same
hyper-parameter setting for our framework and GLAD, and
the 10-fold cross-validation for finding the optimal number
of communities.

Stackoverflow Evergreen TREC
Accu Log Accu Log Accu Log

MV 0.6083 0.9748 0.7630 0.6635 0.4720 1.124
4-Community DS 0.6088 0.9292 0.7633 0.6248 0.4818 1.112

GLAD 0.6084 0.9323 0.7631 0.6385 0.4747 1.126
GLAD+I 0.6085 0.9306 0.7632 0.6280 0.4765 1.122
GLAD+L 0.6084 0.9311 0.7631 0.6296 0.4751 1.126
GLAD+R 0.6087 0.9294 0.7633 0.6271 0.4766 1.122
GLAD+S 0.6085 0.9306 0.7631 0.6292 0.4760 1.123

GLAD+I+L+R 0.6088 0.9294 0.7633 0.6256 0.4808 1.116
GLAD+I+L+S 0.6087 0.9301 0.7633 0.6252 0.4804 1.116
GLAD+I+R+S 0.6090 0.9289 0.7634 0.6245 0.4819 1.112
GLAD+L+R+S 0.6088 0.9298 0.7633 0.6258 0.4802 1.118

GLAD+I+L+R+S 0.6090 0.9288 0.7634 0.6238 0.4820 1.108

Table 4: True label predictive accuracy of the models across
the three datasets. We denote the side information about the
workers, the items, the sessions and the responses respec-
tively with capital letters “L”, “I”, “S” and “R”.

Results

The results of the experiment using the entire response data
are summarized in Tables 4 and 5. For clarity, the side in-
formation of the workers, the items, the sessions and the re-
sponses is abbreviated to “L”, “I”, “S” and “R” respectively.
From Table 4, our framework with all the features outper-
forms the three baselines (with the comunity-based DS op-
timized at 4 communities) on all the datasets. The largest
improvement in predictive accuracy is seen over Majority
Vote (MV) on the TREC dataset (i.e. by 1%). Marginal im-
provements in accuracy have been observed over the three
baselines on the Stackoverflow and the Evergreen datasets.
We believe the reason for observing only marginal improve-
ments on these datasets is that all workers have exhibited
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Figure 3: Changes of the true label predictive accuracy by varying the number of responses subsampled from each worker
across the three datasets.

Stackoverflow Evergreen TREC
MAE MAE MAE

4-Community DS 0.2306 0.1858 0.5176
GLAD 0.2438 0.1901 0.5216

GLAD+I 0.2347 0.1874 0.5176
GLAD+L 0.2396 0.1898 0.5195
GLAD+R 0.2288 0.1854 0.5173
GLAD+S 0.2356 0.1901 0.5211

GLAD+I+L+R 0.2245 0.1801 0.5162
GLAD+I+L+S 0.2325 0.1854 0.5187
GLAD+I+R+S 0.2276 0.1812 0.5169
GLAD+L+R+S 0.2318 0.1860 0.5184

GLAD+I+L+R+S 0.2226 0.1801 0.5160

Table 5: Unseen (held-out) response predictive accuracy of
the models across 30% held-out response data from the three
datasets.

similar ability for these tasks, producing labels of similar
quality across the items.

We note from Table 4 that incorporating the observed fea-
tures about items appears to produce a larger reduction in
the log-loss than that is achieved by adding worker or ses-
sion features. This is in line with our expectation of the first
experiment which is that the item features help to reduce the
uncertainty in the item easiness dv , which likely has suf-
fered from label sparsity across the three crowd-sourcing
tasks with only three labels collected for each item . In con-
trast, reduction in the uncertainty of worker expertise eu, at-
tributed to the addition of the worker and the session fea-
tures into our framework, appears far less beneficial given
that there is already abundant response data available for the
estimation. Moreover, it appears that incorporating response
information brings systematic improvements in both accu-

racy and log-loss. The result confirms that our framework is
able to consistently utilize such information to mitigate the
bias specific to each worker.

From Table 5, we can see that when equipped with all
the side information features, our framework again defeats
the baseline models GLAD and community-based DS (the
majority vote intrinsically not suitable for predicting worker
responses) with the minimum mean absolute error (high-
lighted in bold font) for the 30% held-out response data
across all the datasets.

The results of the experiment using the randomly sub-
sampled response data from workers are summarized in Fig-
ures 3 and 4. We observe from Figure 3 that when the num-
ber of responses subsampled per worker is below 6, our
framework has significantly outperformed GLAD and Ma-
jority Vote aross all the three datasets by leveraging only
one type of side information. When the number is 12, our
framework with combined types of side information still dis-
tinctly exceeds the performance of the two baselines over
the TREC dataset. The community-based DS, whose opti-
mal number of community is 2 in this case, is clearly beaten
by our framework with (1) a single side-information type
over the Evergreen dataset when the number of subsampled
responses is below 4, and (2) the combined types over the
TREC and the Stackoverflow datasets when the number is
below 3.

When applied to the task of predicting unseen (held-out)
responses of workers as shown in Figure 4, our framework
still holds clear advantages over the GLAD model by lever-
aging only single types of side information, and over the
community-based DS model (with its optimal number of
communities being 2) by leveraging multiple (in our experi-
ment at least 3) types of side information.

Overall, our framework has made much more significant
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Figure 4: Changes of the unseen (held-out) response predictive accuracy by varying the number of responses subsampled from
each worker across the three datasets.

improvements over the baselines when the items are far
fewer and the response data are far more scarce, compared
to its performance in the previous experiments based on the
entire responses.

Statistical Analysis of Feature Importance

To get a clear idea of which features might be important
for predicting the accuracy of the responses, we conducted
one-way ANOVA where the resulting P-values indicate the
significance of the correlation between the features and the
correct responses (Kazai, Kamps, and Milic-Frayling 2013;
Li, Zhao, and Fuxman 2014). We compared the P-values
with the feature weight estimates from our framework with
all the types of side information. We listed Top-5 features
with respect to the P-values and the absolute feature weight
values inferred from the Evergreen dataset in Table 6. We
also obtained similar results with Stack-Overflow and TREC
datasets. Although our framework works in a fully unsuper-
vised manner whereas one-way ANOVA is supervised, the
results show that our framework is equally capable of iden-
tifying salient features for predicting the accuracy of each
response.

Conclusions and Future Work

In this paper we have developed a probabilistic framework
for improving the quality control over crowd-sourced data
by leveraging its associated side information from items,
workers, labeling sessions and responses. The respective
source features include item genres and content features,
worker demographics and personality traits, labeling devices
and labeling time periods, response delays and response or-
ders. The efficacy of the framework has been demonstrated

Top 5 features ranked according to:
Supervised Prediction (P-value) Unsupervised Prediction (weight)

I

1. num alphaNumeric chars 1. num links
2. num links 2. num alphaNumeric chars
3. domain business 3. content length
4. content length 4. frame tag ratio
5. frame tag ratio 5. domain business

L

1. searchOnline sometimes 1. searchOnline veryOften
2. artist agreeModerately 2. lazy slightlyAgree
3. revisit topic diversity level3 3. revisit topic diversity level3
4. education Bachelor 4. thorough stronglyAgree
5. search topic diversity level3 5. age 45 to 49

S
1. use mobilePhone, 2. use PC 1. use mobilePhone, 2. use tablet
3. use tablet, 4. weekends, 5. latenight 3. use PC, 4. weekends, 5. latenight

Table 6: Comparison between top 5 most predictive features
for supervised and unsupervised (actual) setting.

on three new crowd-sourcing datasets, where we have ob-
served overall consistent improvements in predictive accu-
racy and log-loss, as well as in unseen (held-out) response
prediction, when the response data is scarce across both
workers and items. Moreover, response-level information
was found particularly useful for helping the framework to
account for worker-specific biases. In addition, our frame-
work is found to be promising at identifying salient source
features without having to know any true-label information.

Future work includes extending the current framework
with the matrix factorization component to allow for
domain-specific expertise to be estimated for each worker
and the level of domain membership to be estimated for each
item.
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