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Abstract

As AI continues to advance, human-AI teams are inevitable.
However, progress in AI is routinely measured in isolation,
without a human in the loop. It is crucial to benchmark
progress in AI, not just in isolation, but also in terms of how
it translates to helping humans perform certain tasks, i.e., the
performance of human-AI teams.
In this work, we design a cooperative game – GuessWhich –
to measure human-AI team performance in the specific con-
text of the AI being a visual conversational agent. Guess-
Which involves live interaction between the human and the
AI. The AI, which we call ALICE, is provided an image which
is unseen by the human. Following a brief description of the
image, the human questions ALICE about this secret image to
identify it from a fixed pool of images.
We measure performance of the human-ALICE team by the
number of guesses it takes the human to correctly identify the
secret image after a fixed number of dialog rounds with AL-
ICE. We compare performance of the human-ALICE teams for
two versions of ALICE. Our human studies suggest a counter-
intuitive trend – that while AI literature shows that one ver-
sion outperforms the other when paired with an AI questioner
bot, we find that this improvement in AI-AI performance does
not translate to improved human-AI performance. This sug-
gests a mismatch between benchmarking of AI in isolation
and in the context of human-AI teams.

1 Introduction

As Artificial Intelligence (AI) systems become increasingly
accurate and interactive (e.g. Alexa, Siri, Cortana, Google
Assistant), human-AI teams are inevitably going to become
more commonplace. To be an effective teammate, an AI
must overcome the challenges involved with adapting to hu-
mans; however, progress in AI is routinely measured in iso-
lation, without a human in the loop. In this work, we focus
specifically on the evaluation of visual conversational agents
and develop a human computation game to benchmark their
performance as members of human-AI teams.

Visual conversational agents (Das et al. 2017a; 2017b;
de Vries et al. 2017; Strub et al. 2017) are AI agents trained
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Figure 1: A human and an AI (a visual conversation agent
called ALICE) play the proposed GuessWhich game. At the
start of the game (top), ALICE is provided an image (shown
above ALICE) which is unknown to the human. Both ALICE
and the human are then provided a brief description of the
image. The human then attempts to identify the secret im-
age. In each subsequent round of dialog, the human asks a
question about the unknown image, receives an answer from
ALICE, and makes a best guess of the secret image from a
fixed pool of images. After 9 rounds of dialog, the human
makes consecutive guesses until the secret image is iden-
tified. The fewer guesses the human needs to identify the
secret image, the better the human-AI team performance.

to understand and communicate about the contents of a
scene in natural language. For example, in Fig. 1, the visual
conversational agent (shown on the right) replies to answers
questions about a scene while inferring context from the di-
alog history – Human: ”What is he doing?” Agent: ”Playing
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frisbee”. These agents are typically trained to mimic large
corpora of human-human dialogs and are evaluated auto-
matically on how well they retrieve actual human responses
(ground truth) in novel dialogs.

Recent work has evaluated these models more pragmati-
cally by evaluating how well pairs of visual conversational
agents perform on goal-based conversational tasks rather
than response retrieval from fixed dialogs. Specifically, (Das
et al. 2017b) train two visual conversational agents – a
questioning bot QBOT, and an answering bot ABOT – for
an image-guessing task. Starting from a description of the
scene, QBOT and ABOT converse over multiple rounds of
questions (QBOT) and answers (ABOT) in order to improve
QBOT’s understanding of a secret image known only to
ABOT. After a fixed number of rounds, QBOT must guess
the secret image from a large pool and both QBOT and ABOT
are evaluated based on this guess.

(Das et al. 2017b) compare supervised baseline mod-
els with QBOT-ABOT teams trained through reinforcement
learning based self-talk on this image-guessing task. They
find that the AI-AI teams improve significantly at guessing
the correct image after self-talk updates compared to the su-
pervised pretraining. While these results indicate that the
self-talk fine-tuned agents are better visual conversational
agents, crucially, it remains unclear if these agents are in-
deed better at this task when interacting with humans.
GuessWhich. In this work, we propose to evaluate if
and how this progress in AI-AI evaluation translates to the
performance of human-AI teams. Inspired by the popular
GuessWhat or 20-Questions game, we design a human com-
putation game – GuessWhich – which requires collaboration
between human and visual conversational AI agents. Mir-
roring the setting of (Das et al. 2017b), GuessWhich is an
image-guessing game that consists of 2 participants – ques-
tioner and answerer. At the start of the game, the answerer
is provided an image that is unknown to the questioner and
both questioner and answerer are given a brief description
of the image content. The questioner interacts with the an-
swerer for a fixed number of rounds of question-answer (dia-
log) to identify the secret image from a fixed pool of images
(see Fig. 1).

We evaluate human-AI team performance in Guess-
Which, for the setting where the questioner is a human and
the answerer is an AI (that we denote ALICE). Specifically,
we evaluate two versions of ALICE for GuessWhich:

1. ALICESL which is trained in a supervised manner on the
Visual Dialog dataset (Das et al. 2017a) to mimic the an-
swers given by humans when engaged in a conversation
with other humans about an image, and

2. ALICERL which is pre-trained with supervised learning
and fine-tuned via reinforcement learning for an image-
guessing task as in (Das et al. 2017b).

It is important to appreciate the difficulty and sensitivity of
the GuessWhich game as an evaluation tool – agents have
to understand human questions and respond with accurate,
consistent, fluent and informative answers for the human-AI
team to do well. Furthermore, they have to be robust to their
own mistakes, i.e., if an agent makes an error at a particular

round, that error is now part of its conversation history, and
it must be able to correct itself rather than be consistently
inaccurate. Similarly, human players must also learn to adapt
to ALICE’s sometime noisy and inaccurate responses.

At its core, GuessWhich is a game-with-a-purpose
(GWAP) that leverages human computation to evaluate vi-
sual conversational agents. Traditionally, GWAP (Von Ahn
and Dabbish 2008) have focused on human-human collabo-
ration, i.e. collecting data by making humans play games to
label images (Von Ahn and Dabbish 2004), music (Law et
al. 2007) and movies (Michelucci 2013). We extend this to
human-AI teams and to the best of our knowledge, our work
is the first to evaluate visual conversational agents in an in-
teractive setting where humans are continuously engaging
with agents to succeed at a cooperative game.
Contributions. More concretely, we make the following
contributions in this work:

• We design an interactive image-guessing game (Guess-
Which) for evaluating human-AI team performance in the
specific context of the AIs being visual conversational
agents. GuessWhich pairs humans with ALICE, an AI ca-
pable of answering a sequence of questions about images.
ALICE is assigned a secret image and answers questions
asked about that image from a human for 9 rounds to help
them identify the secret image (Sec. 4).

• We evaluate human-AI team performance on this game
for both supervised learning (SL) and reinforcement
learning (RL) versions of ALICE. Our main experimen-
tal finding is that despite significant differences between
SL and RL agents reported in previous work (Das et al.
2017b), we find no significant difference in performance
between ALICESL or ALICERL when paired with human
partners (Sec. 6.1). This suggests that while self-talk and
RL are interesting directions to pursue for building better
visual conversational agents, there appears to be a discon-
nect between AI-AI and human-AI evaluations – progress
on former does not seem predictive of progress on latter.
This is an important finding to guide future research.

2 Related Work

Given that our goal is to evaluate visual conversational
agents through a human computation game, we draw con-
nections to relevant work on visual conversational agents,
human computation games, and dialog evaluation below.
Visual Conversational Agents. Our AI agents are vi-
sual conversational models, which have recently emerged
as a popular research area in visually-grounded language
modeling (Das et al. 2017a; 2017b; de Vries et al. 2017;
Strub et al. 2017). (Das et al. 2017a) introduced the task
of Visual Dialog and collected the VisDial dataset by pair-
ing subjects on Amazon Mechanical Turk (AMT) to chat
about an image (with assigned roles of questioner and an-
swerer). (Das et al. 2017b) pre-trained questioner and an-
swerer agents on this VisDial dataset via supervised learn-
ing and fine-tuned them via self-talk (reinforcement learn-
ing), observing that RL-fine-tuned QBOT-ABOT are better at
image-guessing after interacting with each other. However,
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as described in Section 1, they do not evaluate if this change
in QBOT-ABOT performance translates to human-AI teams.
Human Computation Games. Human computation games
have been shown to be time- and cost-efficient, reliable, in-
trinsically engaging for participants (Jain and Parkes 2013;
Krause and Smeddinck 2011), and hence an effective
method to collect data annotations. There is a long line of
work on designing such Games with a Purpose (GWAP)
(Von Ahn and Dabbish 2008) for data labeling purposes
across various domains including images (Von Ahn and
Dabbish 2004; Von Ahn, Liu, and Blum 2006; Law and
Von Ahn 2009; Kazemzadeh et al. 2014), audio (Diakopou-
los, Luther, and Essa 2008; Law et al. 2007), language (Aras
et al. 2010; Chamberlain, Poesio, and Kruschwitz 2008),
movies (Michelucci 2013) etc. While such games have tra-
ditionally focused on human-human collaboration, we ex-
tend these ideas to human-AI teams. Rather than collecting
labeled data, our game is designed to measure the effective-
ness of the AI in the context of human-AI teams.
Evaluating Conversational Agents. Goal-driven (non-
visual) conversational models have typically been evaluated
on task-completion rate or time-to-task-completion (Paek
2001), so shorter conversations are better. At the other end
of the spectrum, free-form conversation models are often
evaluated by metrics that rely on n-gram overlaps, such as
BLEU, METEOR, ROUGE, but these have been shown to
correlate poorly with human judgment (Liu et al. 2016). Hu-
man evaluation of conversations is typically in the format
where humans rate the quality of machine utterances given
context, without actually taking part in the conversation, as
in (Das et al. 2017b) and (Li et al. 2016). To the best of our
knowledge, we are the first to evaluate conversational mod-
els via team performance where humans are continuously
interacting with agents to succeed at a downstream task.
Turing Test. Finally, our GuessWhich game is in line with
ideas in (Grosz 2012), re-imagining the traditional Turing
Test for state-of-the-art AI systems, taking the pragmatic
view that an effective AI teammate need not appear human-
like, act or be mistaken for one, provided its behavior does
not feel jarring or baffle teammates, leaving them wondering
not about what it is thinking but whether it is.

Next, we formally define the AI agent ALICE (Sec. 3),
describe the GuessWhich game setup (Sec. 4 and 5), and
present results and analysis from human studies (Sec. 6).

3 The AI: ALICE

Recall from Section 1 that our goal is to evaluate how
progress in AI measured through automatic evaluation trans-
lates to performance of human-AI teams in the context of vi-
sual conversational agents. Specifically, we are considering
the question-answering agent ABOT from (Das et al. 2017b)
as ABOT is the agent more likely to be deployed with a hu-
man partner in real applications (e.g. to answer questions
about visual content to aid a visually impaired user). For
completeness, we will review this work in this section.

(Das et al. 2017b) formulate a self-supervised image-
guessing task between a questioner bot (QBOT) and an an-
swerer bot (ABOT) which plays out over multiple rounds of
dialog. At the start of the task, QBOT and ABOT are shown

a one sentence description (i.e. a caption) of an image (un-
known to QBOT). The pair can then engage in question and
answer based dialog for a fixed number of iterations after
which QBOT must try to select the secret image from a
pool. The goal of the QBOT-ABOT team is two-fold, QBOT
should: 1) build a mental model of the unseen image purely
from the dialog and 2) be able to retrieve that image from a
line-up of images.

Both QBOT and ABOT are modeled as Hierarchical Re-
current Encoder-Decoder neural networks (Das et al. 2017a;
Serban et al. 2016) which encode each round of dialog in-
dependently via a recurrent neural network (RNN) before
accumulating this information through time with an addi-
tional RNN (resulting in hierarchical encoding). This rep-
resentation (and a convolutional neural network based im-
age encoding in ABOT’s case) are used as input to a de-
coder RNN which produces an agent’s utterance (question
for QBOT and answer for ABOT) based on the dialog (and
image for ABOT). In addition, QBOT includes an image fea-
ture regression network that predicts a representation of the
secret image based on dialog history. We refer to (Das et al.
2017b) for complete model details.

These agents are pre-trained with supervised dialog data
from the VisDial dataset (Das et al. 2017a) with a Max-
imum Likelihood Estimation objective. This pre-training
ensures that agents can generally recognize objects/scenes
and utter English. Following this, the models are fine-tuned
by ‘smoothly’ transitioning to a deep reinforcement learn-
ing framework to directly improve image-guessing perfor-
mance. This annealed transition avoids abrupt divergence of
the dialog in face of an incorrect question-answer pair in
the QBOT-ABOT exchange. During RL based self-talk, the
agents’ parameters are updated by gradients corresponding
to rewards depending on individual good or bad exchanges.
We refer to the baseline supervised learning based ABOT
as ALICESL and the RL fine-tuned bot as ALICERL. (Das
et al. 2017b) found that the AI-AI pair succeeds in retriev-
ing the correct image more often after being fine-tuned with
RL. In the following section, we outline our GuessWhich
game designed to evaluate whether this improvement be-
tween ALICESL and ALICERL in automatic metrics translates
to human-AI collaborations.

4 Our GuessWhich Game
We begin by describing our game setting; outlin-
ing the players and gameplay mechanics. A video
of an example game being played can be found at
https://vimeo.com/229488160.
Players. We replace QBOT in the AI-AI dialog with hu-
mans to perform a collaborative task of identifying a secret
image from a pool. In the following, we will refer to ABOT
as ALICE and the human player as H. We evaluate two ver-
sions of ALICE – ALICESL and ALICERL, where SL and RL
correspond to agents trained in a supervised setting and fine-
tuned with reinforcement learning respectively.
Gameplay. In our game setting, ALICE is assigned a se-
cret image Ic (unknown to H) from a pool of images I =
{I1, I2, ..., In} taken from the COCO dataset (Lin et al.
2014). Prior to beginning the dialog, both ALICE and H are
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Figure 2: GuessWhich Interface: A user asks a question to ALICE in each round and ALICE responds with an answer. The user
then selects an appropriate image which they think is the secret image after each round of conversation. At the end of the dialog,
user successively clicks on their best guesses until they correctly identify the secret image.

provided a brief description (i.e. a caption) of Ic generated
by Neuraltalk2 (Karpathy 2016), an open-source implemen-
tation of (Vinyals et al. 2015). H then makes a guess about
the secret image by selecting one from the pool I based only
on the caption, i.e. before the dialog begins.

In each of the following rounds, H asks ALICE a question
qt about the secret image Ic in order to better identify it from
the pool and ALICE responds with an answer at. After each
round, H must select an image It that they feel is most likely
the secret image Ic from pool I based on the dialog so far. At
the end of k = 9 rounds of dialog, H is asked to successively
click on their best guess. At each click, the interface gives H
feedback on whether their guess is correct or not and this
continues until H guesses the true secret image. In this way,
H induces a partial ranking of the pool up to the secret image
based on their mental model of Ic from the dialog.

4.1 Pool Selection

When creating a pool of images, our aim is to ensure that the
game is challenging and engaging, and not too easy or too
hard. Thus, we construct each pool of images I in two steps –
first, we choose the secret image Ic, and then sample similar
images as distractors for Ic. Fig. 2 shows a screenshot of our
game interface including a sample image pool and chat.
Secret Image Selection. VisDial v0.5 is constructed on 68k
COCO images which contain complex everyday scenes with
80 object categories. ABOT is trained and validated on Vis-
Dial v0.5 train and val splits respectively. As the images for

both these splits come from COCO-train, we sample secret
images and pools from COCO-validation to avoid overlap.

To select representative secret images and diverse image
pools, we do the following. For each image in the COCO
validation set, we extract the penultimate layer (‘fc7’) ac-
tivations of a standard deep convolutational neural network
(VGG-19 from (Simonyan and Zisserman 2015)). For each
of the 80 categories, we average the embedding vector of all
images containing that category. We then pick those images
closest to the mean embeddings, yielding 80 candidates.
Generating Distractor Images. The distractor images are
designed to be semantically similar to the secret image Ic.
For each candidate secret image, we created 3 concentric
hyper-spheres as euclidean balls (of radii increasing in arith-
metic progression) centered on the candidate secret image in
fc7 embedding space, and sampled images from each sphere
in a fixed proportion to generate a pool corresponding to the
secret image. The radius of the largest sphere was varied
and manually validated to ensure pool difficulty. The sam-
pling proportion can be varied to generate pools of varying
difficulty. Of the 80 candidate pools, we picked 10 that were
of medium difficulty based on manual inspection.

4.2 Data Collection and Player Reward Structure

We use AMT to solicit human players for our game. Each
Human Intelligence Task (HIT) consists of 10 games (each
game corresponds to one pool) and we find that overall
76.7% of users who started a HIT completed it i.e. played
all 10 games. We note that incomplete game data was dis-
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carded and does not contribute to the analysis presented in
subsequent sections.

We published HITs until 28 games with both ALICESL
and ALICERL were completed. This results in a total of 560
games split between the agents, with each game consisting
of 9 rounds of dialog and 10 rounds of guessing. Workers
are paid a base pay of $5 per HIT (∼$10/hour).

To incentivize workers to try their best at guessing the se-
cret image, workers are paid a two-part bonus – (1) based on
the number of times their best guess matched the true secret
image after each round (up to $1 per HIT), and (2) based on
the rank of the true secret image in their final sorting at the
end of dialog (up to $2 per HIT).

This final ranking explicitly captures the workers’ mental
model of the secret image (unlike the per-round, best-guess
estimates), and is closer to the overall purpose of the game
(identifying the secret image at the end of the dialog). As
such, this final sorting is given a higher potential bonus.

4.3 Evaluation

Since the game is structured as a retrieval task, we evaluate
the human-AI collaborative performance using standard re-
trieval metrics. Note that the successive selection of images
by H at the end of the dialog tells us the rank of the true
secret image in a sorting of the image pool based on H’s
mental model. For example, if H makes 4 guesses before
correctly selecting the secret image, then H’s mental model
ranked the secret image 5th within the pool.

To evaluate human-AI collaboration, we use the following
metrics: (1) Mean Rank (MR), which is the mean rank of the
secret image (i.e. number of guesses it takes to identify the
secret image). Lower values indicate better performance. (2)
Mean Reciprocal Rank (MRR), which is the mean of the
reciprocal of the rank of the secret image. MRR penalizes
differences in lower ranks (e.g., between 1 and 2) greater
than those in higher ranks (e.g., between 19 and 20). Higher
values indicate better performance.

At the end of each round, H makes their best guess of
the secret image. To get a coarse estimate of the rank of the
secret image in each round, we sort the image pool based on
distance in fc7 embedding space from H’s best guess. This
can be used to assess accuracy of H’s mental model of the
secret image after each round of dialog (e.g., Fig. 4b).

5 Infrastructure

We briefly outline the backend architecture of GuessWhich
in this section. Unlike most human-labeling tasks that are
one-way and static in nature (i.e., only involving a human
labeling static data), evaluating AI agents via our game re-
quires live interaction between the AI agent and the human.
We develop a robust workflow that can maintain a queue of
workers and pair them up in real-time with an AI agent.

We deploy ALICESL and ALICERL on an AWS EC2 (AWS
2017) GPU instance. We use Django (a Model-View-
Controller web framework written in Python) which helps
in monitoring HITs in real-time. We use (RabbitMQ 2017),
an open source message broker, to queue inference jobs that
generate dialog responses from the model. Our backend is

Figure 3: We outline the backend architecture of our im-
plementation of GuessWhich. Since GuessWhich requires
a live interaction between the human and the AI, we design
a workflow that can handle multiple queues and can quickly
pair a human with an AI agent.

asynchronously connected to the client browser via web-
sockets such that whenever an inference job is completed,
a websocket polls the AI response and delivers it to the hu-
man in real-time. We store and fetch data efficiently to and
from a PostgreSQL database. Fig. 3 shows a schematic dia-
gram of the backend architecture. Our complete backend in-
frastructure and code is publicly available on github.com/VT-
vision-lab/GuessWhich for others to easily make use of our
human-AI game interface.

6 Results

6.1 ALICESL vs. ALICERL

We compare the performance of the two agents ALICESL and
ALICERL in the GuessWhich game. These bots are state-of-
the-art visual dialog agents with respect to emulating human
responses and generating visually discriminative responses
in AI-AI dialog. (Das et al. 2017b) evaluate these agents
against strong baselines and report AI-AI team results that
are significantly better than chance on a pool of ∼10k im-
ages (rank ∼1000 for SL, rank ∼500 for RL). In addition to
evaluating them in the context of human-AI teams we also
report QBOT-ALICE team performances for reference.

In Table 1, we compare the performances of human-
ALICESL and human-ALICERL teams according to Mean
Rank (MR) and Mean Reciprocal Rank (MRR) of the se-
cret image based on the guesses H makes at the end of di-
alog. We observe that at the end of each game (9 rounds of
dialog), human subjects correctly guessed the secret image
on their 6.86th attempt (Mean Rank) when ALICESL was
their teammate. With ALICERL as their teammate, the aver-
age number of guesses required was 7.19. We also observe
that ALICERL outperforms ALICESL on the MRR metric. On
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(a) ALICESL and ALICERL perform about the same for most
games and outperform a baseline model that makes a string of
random guesses at the end of each game.

���
���
���
���
���
���

�	(� �	�� �	
� �	�� �	�� �	�� �	�� �	�� �	���	()�

�
�
��
��

��

���������������

��������������������������������

�������$����� �������$����� ������

(b) ALICESL and ALICERL perform about the same, and clearly
outperform a baseline model that randomly chooses an image.
As described in Sec. 4.3, this is only a coarse estimate of the
rank of the secret image after each round of dialog.

Figure 4: Mean rank (MR) of secret image across (a) number of games and (b) rounds of dialog. Lower is better. Error bars are
95% confidence intervals from 1000 bootstrap samples.

Team MR MRR

Human-ALICESL 6.86 ± 0.53 0.27 ± 0.03

Human-ALICERL 7.19 ± 0.55 0.25 ± 0.03

Table 1: Performance of Human-ALICE teams with AL-
ICESL and ALICERL measured by MR (lower is better) and
MRR (higher is better). Error bars are 95% CIs from 1000
bootstrap samples. Unlike (Das et al., 2017b), we find no
significant difference between ALICESL and ALICERL.

both metrics, however, the differences are within the stan-
dard error margins (reported in the table) and not statisti-
cally significant. As we collected additional data, the error
margins became smaller but the means also became closer.
This interesting finding stands in stark contrast to the results
reported by (Das et al. 2017b), where ALICERL was found to
be significantly more accurate than ALICESL when evaluated
in an AI-AI team. Our results suggest that the improvements
of RL over SL (in AI-AI teams) do not seem to translate to
when the agents are paired with a human in a similar setting.
MR with varying number of games. In Fig. 4a, we plot
the mean rank (MR) of the secret image across different
games. We see that the human-ALICE team performs about
the same for both ALICESL and ALICERL except Game 5,
where ALICESL seems to marginally outperform ALICERL.
We compare the performance of these teams against a base-
line model that makes a string of random guesses at the end
of the game. The human-ALICE teams outperforms this ran-
dom baseline with a relative improvement of about 25%.
AI-ALICE teams versus human-ALICE teams. In Table 2,
we compare team performances by pairing three kinds of
questioners – human, QBOT (SL) and QBOT (RL) with AL-
ICESL and ALICERL (6 teams in total) to gain insights about
how the questioner and ALICE influence team performances.
Interestingly, we observe that AI-ALICE teams outperform
human-ALICE teams. On average, a QBOT (SL)-ALICESL

Team ALICESL ALICERL

Human 6.9 7.2

QBOT (SL) 5.6 5.3

QBOT (RL) 4.7 4.7

Table 2: Performance of Human-ALICE and QBOT-ALICE
teams measured by MR (lower is better). Error bars are 95%
confidence intervals from 1000 bootstrap samples. We ob-
serve that AI-AI teams outperform human-AI teams.

team takes about 5.6 guesses to arrive at the correct secret
image (as opposed to 6.86 guesses for a human-ALICESL
team). Similarly, a QBOT (RL)-ALICERL team takes 4.7
guesses as opposed to a human-ALICERL team which takes
7.19 guesses. When we compare AI-AI teams (see Row 2
and 3) under different settings, we observe that teams hav-
ing QBOT (RL) as the questioner outperform those with
QBOT (SL). Qualitatively, we found that QBOT (SL) tends to
ask repeating questions in a dialog and that questions from
QBOT (RL) tend to be more visually grounded compared to
QBOT (SL). Also, note that among the four teams ALICE
does not seem to affect performance across SL and RL.

Since we observe that QBOT (RL) tends to be a better
questioner on average compared to QBOT (SL), as future
work, it will be interesting to explore a setting where we
evaluate QBOT via a similar game with the human playing
the role of answerer in a QBOT-human team.
MR with varying rounds of dialog. Fig. 4b shows a coarse
estimate of the mean rank of the secret image across rounds
of a dialog, averaged across games and workers. As ex-
plained in Sec. 4.3, image ranks are computed via distance
in embedding space from the guessed image (and hence, are
only an estimate). We see that the human-ALICE team per-
forms about the same for both ALICESL and ALICERL across
rounds of dialog in a game. When compared with a baseline
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Figure 5: Worker ratings for ALICESL and ALICERL on 6
metrics. Higher is better. Error bars are 95% confidence
intervals from 1000 bootstrap samples. Humans perceive
no significant differences between ALICESL and ALICERL
across the 6 feedback metrics.

agent that makes random guesses after every round of dia-
log, the human-ALICE team clearly performs better.
Statistical tests. Observe that on both the metrics (MR and
MRR), the differences between performances of ALICESL
and ALICERL are within error margins. Since both standard
error and bootstrap based 95% confidence intervals overlap
significantly, we ran further statistical tests. We find no sig-
nificant difference between the mean ranks of ALICESL and
ALICERL under a Mann-Whitney U test (p = 0.44).

6.2 Human perception of AI teammate

At the end of each HIT, we asked workers for feedback on
ALICE. Specifically, we asked workers to rate ALICE on a 5-
point scale (where 1=Strongly disagree, 5=Strongly agree),
along 6 dimensions. As shown in Fig. 5, ALICE was rated
on – how accurate they thought it was (accuracy), how con-
sistent its answers were with its previous answers (consis-
tency), how well it understood the secret image (image un-
derstanding), how detailed its answers were (detail), how
well it seemed to understand their questions (question un-
derstanding) and how fluent its answers were (fluency).

We see in Fig. 5 that humans perceive both ALICESL and
ALICERL as comparable in terms of all metrics. The small
differences in perception are not statistically significant.

6.3 Questioning Strategies

Fig. 6 shows the distribution of questions that human sub-
jects ask ALICE in GuessWhich. Akin to the format of
the human-human GuessWhat game, we observe that bi-
nary (yes/no) questions are overwhelmingly the most com-
mon question type, for instance, “Is there/the/he ...?” (re-
gion shaded yellow in the figure), “Are there ...?” (region
shaded red), etc. The next most frequent question is “What
color ...?”. These questions may be those that help the hu-
man discriminate the secret image the best. It could also be
that humans are attempting to play to the perceived strengths
of ALICE. As people play multiple games with ALICE, it
is possible that they discover ALICE’s strengths and learn
to ask questions that play to its strengths. Another com-
mon question type is counting questions, such as “How
many ...?”. Interestingly, some workers adopt the strategy
of querying ALICE with a single word (e.g., nouns such as

Figure 6: Distribution of first n-grams for questions asked
to ALICE. Word ordering starts from the center and radiates
outwards. Arc length is proportional to the number of ques-
tions containing the word. The most common question-types
are binary – followed by ‘What color..’ questions.

“people”, “pictures”, etc.) or a phrase (e.g., “no people”,
“any cars”, etc.). This strategy, while minimizing human ef-
fort, does not appear to change ALICE’s performance. Fig. 7
shows a game played by two different subjects.

7 Challenges

There exist several challenges that are unique to human com-
putation in the context of evaluating human-AI teams, for in-
stance, making our games engaging while still ensuring fair
and accurate evaluation. In this section, we briefly discuss
some of the challenges we faced and our solutions to them.
Knowledge Leak. It has been shown that work division in
crowdsourcing tasks follows a Pareto principle (Little 2009),
as a small fraction of workers usually complete a majority
of the work. In the context of evaluating an AI based on
performance of a human-AI team, this poses a challenge.

Recently, (Chandrasekaran et al. 2017) showed that hu-
man subjects can predict the responses of an AI more accu-
rately with higher familiarity with the AI. That is, a human’s
knowledge gained from familiarity with their AI teammate,
can bias the performance of the human-AI team – knowl-
edge from previous tasks might leak to later tasks. To pre-
vent a biased evaluation of team performance due to human
subjects who have differing familiarity with ALICE, every
person only plays a fixed number of games (10) with ALICE.
Thus, a human subject can only accept one task on AMT,
which involves playing 10 games. The downside to this is
that our ability to conduct a fair evaluation of an AI in an
interactive, game-like setting is constrained by the number
of unique workers who accept our tasks.

8



A man sitting on a couch with a 
laptop

How many people are in the picture? 
1 person

What color is the man's shirt? it is 
black

What color is the mans pants? He has 
black pants

What color is the laptop? It is black

What color are the walls? They are 
beige

How big is the room? It looks pretty 
large

What color is the floor? It is brown

Is there a tv in the room? No I don’t 
see TV

Is there a coffee table in the room? I 
can’t tell

A man sitting on a couch with a 
laptop

What color is the couch? Brown

Is there a television? Yes

Do you see any lamps? Yes

Are there any windows? Yes

What color is the floor? Brown

What color are the walls? Beige

Are there any doors? No

Do you see any pictures on the walls? 
No

Are there curtains at the window? Yes

Pool Dialog 2 (Human-AliceRL)Dialog 1 (Human-AliceSL)

Rank: 3 Rank: 3
Figure 7: We contrast two games played by different workers with ALICESL and ALICERL on the same pool (secret image
outlined in green). In both cases, the workers are able to find the secret image within three guesses. It is also interesting to note
how the answers provided by ALICE are different in the two cases.

Engagement vs. Fairness. In order to improve user-
engagement while playing our games, we offer subjects
performance-based incentives that are tied to the success of
the human-AI team. There is one potential issue with this
however. Owing to the inherent complexity of the visual di-
alog task, ALICE tends to be inaccurate at times. This in-
creases both the difficulty and unpredictability of the game,
as it tends to be more accurate for certain types of ques-
tions compared to others. We observe that this often leads
to unsuccessful game-plays, sometimes due to errors accu-
mulating from successive incorrect responses from ALICE
to questions from the human. In a few other cases, the hu-
man is misled by ALICE by a single wrong answer or by the
seed caption that tends to be inaccurate at times. While we
would like to keep subjects engaged in the game to the best
extent possible by providing performance-based incentives,
issuing a performance bonus that depends on both the hu-
man and ALICE (who is imperfect), can be dissatisfying. To
be fair to the subjects performing the task while still reward-
ing good performance, we split our overall budget for each
HIT into a suitable fraction between the base pay (majority),
and the performance bonus.

8 Conclusion

In contrast to the common practice of measuring AI progress
in isolation, our work proposes benchmarking AI agents
via interactive downstream tasks (cooperative games) per-
formed by human-AI teams. In particular, we evaluate visual
conversational agents in the context of human-AI teams. We
design a cooperative game – GuessWhich – that involves a
human engaging in a dialog with an answerer-bot (ALICE)

to identify a secret image known to ALICE but unknown to
the human from a pool of images. At the end of the dialog,
the human is asked to pick out the secret image from the
image pool by making successive guesses. We find that AL-
ICERL (fine-tuned with reinforcement learning) that has been
found to be more accurate in AI literature than it’s super-
vised learning counterpart when evaluated via a questioner
bot (QBOT)-ALICE team, is not more accurate when evalu-
ated via a human-ALICE team. This suggests that there is a
disconnect between between benchmarking of AI in isola-
tion versus in the context of human-AI interaction. An inter-
esting direction of future work could be to evaluate QBOT
via QBOT-human teams.

We describe the game structure and the backend archi-
tecture and discuss the unique computation and infrastruc-
ture challenges that arise when designing such live inter-
active settings on AMT relative to static human-labeling
tasks. Our code and infrastructure is publicly available on
github.com/VT-vision-lab/GuessWhich.

Acknowledgements

We would like to acknowledge the effort provided by work-
ers on Amazon Mechanical Turk. We are grateful to the
developers of Torch (Collobert, Kavukcuoglu, and Farabet
2011) for building an excellent framework. This work was
funded in part by NSF CAREER awards to DB and DP, ONR
YIP awards to DP and DB, ONR Grant N00014-14-1-0679
to DB, ONR Grant N00014-16-1-2713 to DP, a Sloan Fel-
lowship to DP, an Allen Distinguished Investigator award to
DP from the Paul G. Allen Family Foundation, Google Fac-
ulty Research Awards to DP and DB, Amazon Academic

9



Research Awards to DP and DB, AWS in Education Re-
search grant to DB, and NVIDIA GPU donations to DB. SL
was partially supported by the Bradley Postdoctoral Fellow-
ship. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the U.S. Government, or any sponsor.

References

Aras, H.; Krause, M.; Haller, A.; and Malaka, R. 2010.
Webpardy: harvesting qa by hc. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, 49–52. ACM.
AWS. 2017. Amazon. https://aws.amazon.com/ec2/. [On-
line; accessed 04-May-2017].
Chamberlain, J.; Poesio, M.; and Kruschwitz, U. 2008.
Phrase detectives: A web-based collaborative annotation
game. In Proceedings of the International Conference on
Semantic Systems (I-Semantics’ 08), 42–49.
Chandrasekaran, A.; Yadav, D.; Chattopadhyay, P.; Prabhu,
V.; and Parikh, D. 2017. It Takes Two to Tango: Towards
Theory of AI’s Mind. arXiv preprint arXiv:1704.00717.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011.
Torch7: A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop.
Das, A.; Kottur, S.; Gupta, K.; Singh, A.; Yadav, D.; Moura,
J. M.; Parikh, D.; and Batra, D. 2017a. Visual Dialog. In
CVPR.
Das, A.; Kottur, S.; Moura, J. M.; Lee, S.; and Batra, D.
2017b. Learning cooperative visual dialog agents with deep
reinforcement learning. In ICCV.
de Vries, H.; Strub, F.; Chandar, S.; Pietquin, O.; Larochelle,
H.; and Courville, A. 2017. GuessWhat?! visual object dis-
covery through multi-modal dialogue. In CVPR.
Diakopoulos, N.; Luther, K.; and Essa, I. 2008. Audio puz-
zler: piecing together time-stamped speech transcripts with a
puzzle game. In Proceedings of the 16th ACM international
conference on Multimedia, 865–868. ACM.
Grosz, B. 2012. What question would turing pose today? AI
Magazine 33(4):73.
Jain, S., and Parkes, D. C. 2013. A game-theoretic analysis
of the esp game. ACM Trans. Econ. Comput. 1(1):3:1–3:35.
Karpathy, A. 2016. Neuraltalk2.
https://github.com/karpathy/neuraltalk2. [Online; accessed
04-May-2017].
Kazemzadeh, S.; Ordonez, V.; Matten, M.; and Berg, T. L.
2014. ReferItGame: Referring to Objects in Photographs of
Natural Scenes. In EMNLP.
Krause, M., and Smeddinck, J. 2011. Human computation
games: A survey. In Signal Processing Conference, 2011
19th European, 754–758. IEEE.
Law, E., and Von Ahn, L. 2009. Input-agreement: a new
mechanism for collecting data using human computation
games. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, 1197–1206. ACM.

Law, E. L.; Von Ahn, L.; Dannenberg, R. B.; and Crawford,
M. 2007. Tagatune: A game for music and sound annotation.
In ISMIR, volume 3, 2.
Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao, J.; and Juraf-
sky, D. 2016. Deep Reinforcement Learning for Dialogue
Generation. In EMNLP.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollr, P.; and Zitnick, C. L. 2014. Microsoft
COCO: Common Objects in Context. In ECCV.
Little, G. 2009. How many turkers are there.(dec 2009).
Liu, C.-W.; Lowe, R.; Serban, I. V.; Noseworthy, M.; Char-
lin, L.; and Pineau, J. 2016. How NOT To Evaluate
Your Dialogue System: An Empirical Study of Unsuper-
vised Evaluation Metrics for Dialogue Response Genera-
tion. In EMNLP.
Michelucci, P. 2013. Handbook of human computation. In
Springer.
Paek, T. 2001. Empirical methods for evaluating dialog
systems. In Proceedings of the workshop on Evaluation for
Language and Dialogue Systems-Volume 9.
RabbitMQ. 2017. RabbitMQ. https://www.rabbitmq.com/.
[Online; accessed 04-May-2017].
Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A.; and
Pineau, J. 2016. Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models. In
AAAI.
Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR.
Strub, F.; de Vries, H.; Mary, J.; Piot, B.; Courville, A. C.;
and Pietquin, O. 2017. End-to-end optimization of goal-
driven and visually grounded dialogue systems. arXiv
preprint arXiv:1703.05423.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In CVPR.
Von Ahn, L., and Dabbish, L. 2004. Labeling images with
a computer game. In CHI.
Von Ahn, L., and Dabbish, L. 2008. Designing games with
a purpose. Communications of the ACM 51(8):58–67.
Von Ahn, L.; Liu, R.; and Blum, M. 2006. Peekaboom: a
game for locating objects in images. In Proceedings of the
SIGCHI conference on Human Factors in computing sys-
tems, 55–64. ACM.

10


