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Abstract

We present OCTOPUS, an Al agent to jointly balance three
conflicting task objectives on a micro-crowdsourcing market-
place — the quality of work, total cost incurred, and time to
completion. Previous control agents have mostly focused on
cost-quality, or cost-time tradeoffs, but not on directly con-
trolling all three in concert. A naive formulation of three-
objective optimization is intractable; OCTOPUS takes a hier-
archical POMDP approach, with three different components
responsible for setting the pay per task, selecting the next
task, and controlling task-level quality. We demonstrate that
OCTOPUS significantly outperforms existing state-of-the-art
approaches on real experiments. We also deploy OCTOPUS
on Amazon Mechanical Turk, showing its ability to manage
tasks in a real-world, dynamic setting.

Introduction

Task control of workflows over micro-task crowdsourcing
platforms, such as Amazon Mechanical Turk (AMT), has
received significant attention in Al literature (Weld et al.
2015). Typically, a requester needs to balance three compet-
ing objectives — (1) total cost, owing to payments made to
workers for their responses (or ballots), (2) overall quality,
usually evaluated as accuracy of the final output, and (3) the
total time for completing the task. These criteria are inter-
related: increasing the pay per task attracts more workers to
the task, thereby reducing completion time. However, it also
exhausts the budget sooner, so requesters can afford fewer
ballots per task, likely reducing the overall quality.

Most prior work on crowd controllers has focused on the
tradeoff between cost (or no. of ballots) and quality (Dai et
al. 2013; Lin, Mausam, and Weld 2012; Bragg, Mausam,
and Weld 2013; Kamar et al. 2013; Parameswaran et al.
2012). A common approach is to define a Partially Observ-
able Markov Decision Process (POMDP) per task, which
decides on whether to get another ballot or submit the best
answer for that task. However, this work is time-agnostic,
and assumes that pay per ballot is given as input.

Recent work has also studied the tradeoff between
cost and completion time for a batch of tasks (Gao and
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Parameswaran 2014). They model the problem as a Markov
Decision Process (MDP) that changes the pay per ballot, so
that all ballots can be obtained by the given deadline in a
cost-efficient manner. However, this work assumes that the
number of ballots needed to complete the whole batch is a
constant known to the requester in advance.

There is limited research on simultaneously addressing
tradeoffs between cost, quality and latency. We know of only
one work that studies this for the specific workflow for find-
ing max of a set of items (Venetis et al. 2012). This work as-
sumes that latency is pay-independent — an assumption well-
known to be incorrect (Faradani, Hartmann, and Ipeirotis
2011; Gao and Parameswaran 2014). Under a fixed latency-
per-response assumption, they speed up the task and save
cost by taking fewer responses. Our three-way optimization
is for the broader case of answering a batch of tasks, and
uses variable pricing to alter the latency of task completion,
in line with crowdsourced marketplace dynamics.

Building upon these strands of research, we present OC-
TOPUS, an Al agent that can balance all three objectives
(cost, quality, time) in concert on real crowdsourced mar-
ketplaces, by optimizing a requester-specified, joint utility
function for a batch of tasks. It achieves this by controlling
both the pay per ballot and the (predicted) accuracy of each
individual task.

We could model the whole problem as a single POMDP,
however, that is unlikely to scale. An alternative could be to
use multi-objective MDPs, but they are also less tractable,
because they produce a pareto-optimal set of solution poli-
cies (Chatterjee, Majumdar, and Henzinger 2006). OCTO-
PUS uses a three-component architecture — one to set the
pay per ballot (COSTSETTER), another to choose the next
available task (TASKSELECTOR) and a third to control each
task’s quality (QUALITYMANAGER). A key technical nov-
elty is in the careful modeling of the COSTSETTER’S state
space in order to circumvent intractability — the state space
contains aggregate statistics regarding completion levels of
all tasks, so that it can decide the next best pay to set.

We perform extensive experiments using both simulated
and real data, as well as online experiments on AMT.
Since no existing system performs direct 3-way optimiza-
tion in crowdsourced marketplaces, our experiments com-
pare against existing state-of-the art approaches that opti-
mize 2 of the 3 objectives. We find that in most settings,



OCTOPUS simultaneously outperforms, or is at par with mul-
tiple variants of these baselines. Our contributions are:

1. We describe OCTOPUS, a novel framework to address
cost-quality-time optimization for a batch of tasks in a
crowdsourced marketplace setting. It contains three com-
ponents that set the pay per ballot, select the next task
and control each task’s quality. A key technical novelty
is the use of aggregate statistics of all tasks in the state
space design for the COSTSETTER, ensuring tractability
for real-time deployment.

2. OCTOPUS consistently performs at par with or better than
state-of-the-art baselines, yielding up to 37% reward im-
provements on real data.

3. We deploy OCTOPUS on AMT and demonstrate that it is
able to optimize utility effectively in a live, online exper-
iment.!

Related Work

Cost-Quality Optimization. There is significant work on
getting more quality out of a fixed budget. One branch of
this research focuses on collective classification, which de-
velops aggregation mechanisms to infer the best output per
task, given a static set of ballots (Whitehill et al. 2009;
Welinder et al. 2010; Oleson et al. 2011; Welinder and
Perona 2010). The other branch studies intelligent control,
which dynamically decides whether to ask for a new bal-
lot on a task, or stop and submit the answer. These include
control of binary or multiple choice tasks (Dai et al. 2013;
Parameswaran et al. 2012; Kamar et al. 2013), multi-label
tasks (Bragg, Mausam, and Weld 2013), and tasks beyond
multiple choice answers (Lin, Mausam, and Weld 2012;
Dai, Mausam, and Weld 2011). All these works design
agents to control a single task and assume a constant pay
per ballot. Our work closely follows the POMDP formula-
tion laid down in Dai ef al. (2013) for binary tasks.
Cost-Time Optimization. Increasing pay per ballot can re-
duce completion times. Faradani et al. (2011) develop mod-
els to find upfront, the static price per ballot so that a desired
deadline can be met. Gao & Parameswaran (2014) extend
this by varying pay at discrete time-steps using an MDP.
Both approaches assume a fixed number of ballots known
a-priori, without dynamic quality control of tasks. There
is also some work on price-independent latency reduction
(Haas et al. 2015).

Cost-Quality-Time Optimization. There is limited work in
this area. The only paper we are aware of is Venetis et al.
(2012), which addresses cost-quality-time optimization but
in a restrictive setting with important distinctions from our
work: (i) they look at max-finding for a set of items, while
our task-type is classification; (ii) they consider latency to
be pay-independent and fixed per task, while we study the
more realistic setting in which changing pay directly im-
pacts workers’ desire to work on our tasks; (iii) unlike us,
they don’t change pay per task directly, and instead, change
the number of responses sought per task to control both cost
and latency. Qualitatively, our work thus also highlights how

'Code can be found at https://github.com/krandiash/octopus.
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workers perceive pay changes in a crowdsourcing market-
place and its overall effect on task completion.
Worker Retention. Previous work deals with incentivizing
workers to perform more tasks via bonuses or diversification
(Rzeszotarski et al. 2013; Ipeirotis and Gabrilovich 2014;
Difallah et al. 2014; Dai et al. 2015). Recently, Kobren et al.
(2015) model the process of worker retention. We present
empirical results that suggest worker retention plays a dom-
inant role in determining task completion rates.
Task Routing. Prior work deals with two issues; deciding
which task from the batch to solve next, or which worker
to route a task to. Ambati ef al. (2011) rank tasks based on
user preferences using a max-entropy classifier. Other work
uses low-rank matrix approximations (Karger, Oh, and Shah
2014) for equal difficulty tasks. Rajpal er al. (2015) decide
which worker pool to route a task to. Other papers study task
routing on volunteer platforms (Bragg et al. 2014; Shahaf
and Horvitz 2010).

Like AMT, we assume no control on which worker picks
a ballot job, but we select the best next task to assign to an
incoming worker. Following (Mason and Watts 2010; Gao
and Parameswaran 2014), we assume that worker quality is
independent of the pay per ballot. We re-verify this for our
data in our experiments.
Decentralized Approaches. There is related work in decen-
tralized Wald stopping problems (Teneketzis and Ho 1987)
which considers how to optimize a common utility function
given a set of agents who each make independent observa-
tions. However, these approaches do not scale well with the
number of agents (tasks in our setting), which can be quite
large. There is also work in decentralized metareasoning
(Hansen and Zilberstein 2001) to decide when to stop op-
timizing a utility function. Metareasoning approaches typ-
ically assume that utility is monotonically increasing over
time, which is not true in our setting since for instance, con-
flicting ballots on a single task would decrease utility.

Problem Definition

A requester provides a batch of n binary tasks ¢ € 1...n,
each having a 0/1 response. They also provide a utility
function U, which describes how to tradeoff cost, time and
quality. The agent can dynamically change pay per ballot
¢, and choose a variable number of ballots per task to op-
timize the final objective. We study the setting where U/ is
expressed as a sum of task-level utilities (U') minus cost, i.e.
U=7>1_,U, —Cy). Here, Cy is total money spent on g.
We assume that answers to all tasks are to be returned to the
requester as one single batch.

MDP/POMDP background. An MDP models the long-
term reward optimization problem under full observability
and is defined by a five tuple (S, A, T, R,~). Here, S is
a set of states, A a set of actions, T'(s'|s,a) denotes the
probability of transitioning to state s” after taking action a
in state s, and R(s,a) maps a state-action pair to a real-
valued reward. v is the discount factor for making infinite-
horizon MDPs well formed. A POMDP extends an MDP
into a partially-observable setting, where the state is not fully
observable and only a belief (probability distribution) over



possible states can be maintained using observations from
the model. A POMDP is represented as (S, A, T, R, O, )
tuple, where a new function O(o|s’, a) denotes the distribu-
tion over observations on taking an action a and arriving in
a new state s’. Lack of space precludes a long discussion
of the subject — there are existing solvers for solving MDPs
and POMDPs of reasonable sizes, e.g. (Smith and Simmons
2012), which we use in our work.

To formulate the problem optimally, we would need to de-
fine a single, centralized POMDP over a state containing an-
swers and difficulty estimates of all individual tasks as well
as the current pay per ballot and the current time. The ac-
tions will include requesting a ballot on a task ¢, changing
the pay, and a terminal submit action. Solving this POMDP
would yield the optimal policy, which would decide which
task to get ballots on next, when to change pay and when to
submit. Since the number of tasks in a batch can be huge,
this POMDP is unlikely to scale due to a large state and ac-
tion space. Naive extensions to Dai et al.’s or Gao et al.’s
state-of-the-art models for cost-quality and cost-time opti-
mization respectively are not possible either — Dai et al.’s
model is solved per task, whereas pay must be set based on
progress of the whole batch of tasks; Gao et al.’s model as-
sumes a fixed number of ballots per task, and has no natural
way to optimize quality by taking a variable number of bal-
lots based on each task’s difficulty.

Task
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Task 1

Worker
Ballot
‘ Quality ‘
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Figure 1: OCTOPUS architecture.

OcTOPUS for Three-Way Optimization

We propose a three-component architecture (see Figure 1).
In OcTOPUS each task has its own QUALITYMANAGER
that decides, based on the current pay, whether it is worth
taking another ballot for this task (light edge) or not (dark
edge). This information is conveyed to the TASKSELEC-
TOR, which selects an available (light) task to route to an
incoming worker. Based on the current progress of the whole
batch, the COSTSETTER decides what pay per ballot to set;
this action is taken at periodic intervals. We design OCTO-
PUS such that it can allocate tasks as and when workers ar-
rive and works instantaneously in practice, therefore utiliz-
ing crowdsourcing marketplaces with full parallelism.
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QualityManager

Background. QUALITYMANAGERSs follow the worker re-
sponse model and POMDP formulation of Dai et al. (2013).
Each worker is assumed to have an error parameter v &€
(0, 00) (v = 0is error-free). An average worker has error pa-
rameter 7. Each task ¢ has an unknown true Boolean answer
t4, and an associated difficulty d, € [0, 1] (d, = 0 is easy) —
these are estimated using an Expectation-Maximization al-
gorithm (Whitehill et al. 2009) as data is received. Each task
has a prior difficulty distribution p(d,). A worker’s ballot for
q depends on their v, ¢, and d,,.

In Dai et al. (2013) the POMDP for ¢ maintains a belief
state b, over (d, t,) state tuples. For instance b, (0.5,1) =
0.4 indicates a 40% belief that d, = 0.5 and the answer
to ¢ is 1. The POMDP has two actions; (1) request another
ballot, or (2) mark ¢ as completed. The POMDP policy
maps every belief state to an action. Each time the POMDP
receives another ballot, a Bayesian update is performed to
re-estimate a new belief. For OcTOPUS, the POMDP opti-
mizes U, —C,. We note that 7, depends on the pay per ballot
c: if ¢ is smaller, the POMDP can afford more ballots. Dai
et al.’s original model keeps ¢ constant, but in our case the
COSTSETTER can change it, triggering a change in 7.

We define v, as the confidence in the most probable an-
swer for task ¢; v, = max(v),v q) [0.5,1], where vy, vg
are the current probabilities that ¢’s answer is O or 1 respec-
tively. v, can be computed from b, by summing out d,.
Computation of Aggregate Statistics. We now define two
batch-level statistics, which will be a key part of the state
space representation for the COSTSETTER.

We first define a normalized estimate of task quality, v, =
2v, — 1; v, normalizes v, so that it lies in [0, 1]. A high
value of v, (near 1) indicates the POMDP’s high confidence
in its estimated answer for ¢, and vice versa for a low (near
0) value We also define a related notion of batch quality,
v = TL Z q=1"a> which is an aggregate statistic estimating
the current quality for the entire batch of n tasks. Finally,
we construct the batch quality histogram — a histogram built
by binning tasks into equally sized bins based on their v,
values. The bin width is denoted as A,,.

The COSTSETTER also needs an estimate of the number
of ballots remaining. We define 0,(r,) as an estimate of the
expected number of ballots that will be needed (starting from
the current time) until task ¢ will be marked completed. For
notational ease we write 6, to denote 6,(m,). Recall that 7,
can change with a change in c. Hence 6, also depends on c.

How can we compute 6,? We use a trajectory-tree ap-
proach (similar to (Kearns, Mansour, and Ng 1999)) called
FRONTIERFINDING. We construct a binary tree of future ob-
servations, rooted at the current time step, where each edge
corresponds to an observation (a worker response of 0/1).
The node below any edge contains the belief state gener-
ated by updating the POMDP, using the observation associ-
ated with that edge. Each trajectory is a path from the root
to a leaf, and is generated with an associated path proba-
bility (using Dai ef al.’s generative model assuming an av-
erage worker). A leaf is created whenever the policy takes
the ‘mark as completed’ action, or when the path probabil-



ity drops below a threshold. 6, is simply the expected length
of a trajectory in this tree.

We also estimate the expected ballots to completion for
the batch: § = Y7/, 6. 0’s role is similar to that of 7 — it
is an aggregate statistic that describes how far the batch is
from completion. It also helps in quantifying the expected
cost of completion: if # = 1000 and ¢ = 3, we would expect
to spend ¢ - 8 = 3000 units of money to complete the batch.

In summary, we described the design of a per-task QUAL-
ITYMANAGER. Collectively, n of these help us in estimat-
ing two aggregated quantities, 7 and 6, which measure the
overall quality, and degree of completion of the batch, re-
spectively. All notation for this and future sections is sum-
marized in Table 1.

TaskSelector

The TASKSELECTOR decides which incomplete task to as-
sign to the next incoming worker. It must have an ‘anytime’
behavior, i.e. it must increase utility ¢/ quickly. This is be-
cause the time of final submission is not in its control, and
the batch might be submitted at any time by the COSTSET-
TER.

To be prepared for any contingency, the TASKSELECTOR
uses a 1-step greedy policy over expected utility gain. We
define each task’s priority (¢,) as the difference between the
current utility (U,) of ¢ and the expected utility after receiv-
ing 1 ballot (U, é) from an average worker (error rate ), given
the current belief state b, of ¢’s QUALITYMANAGER. Thus,
bq = E[U,|7,by] — U;. TASKSELECTOR assigns the task
with the maximum ¢, value to the next available worker.

Unfortunately, U, (and therefore I{) is neither mono-
tonic (conflicting ballots decrease utility) nor submodular
(a skilled worker could arrive after an error-prone one),
so we cannot utilize prior work on adaptive submodularity
(Golovin and Krause 2011; Bragg et al. 2014) to guarantee
solution quality. Providing quality bounds is left for future
work.

Lastly, note that the task allocation process is instanta-
neous, as well as completely parallelized, since we don’t
wait for a task to be returned before allocating another task.
Given enough workers, we could get ballots on every single
task in parallel. This is important, since it allows us to take
full advantage of micro-task marketplaces.

CostSetter

The COSTSETTER is an MDP that changes c (pay per ballot)
in order to maximize U/. It uses information about the com-
pletion level of each task to assess whether the batch of tasks
is completing on schedule or needs to be sped up or slowed
down. To influence the rate of completion of the batch, it sets
c at discrete time steps 7 € {0, A, 2A,, ... }.

The key challenge for the COSTSETTER is in defining the
state space. Ideally, as stated earlier, each task’s belief b,
should be part of the state, but that would make computa-
tions intractable. Instead, we approximate by using aggre-
gate statistics over the whole batch of tasks. We describe the
state space, actions, transition functions, and rewards of this
MDP below.
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| Symbol | Meaning \

Overall utility (requester defined function)

Per-task utility

Pay per ballot

Total cost incurred for all tasks

Total cost incurred for task ¢

Policy for task ¢’'s QUALITYMANAGER

Worker error parameter, average error

dg Difficulty of task ¢

tq True binary answer for task ¢

Belief state for task ¢

Probability of POMDP’s most likely true
answer for task ¢

Vg Task quality (v, = 2v, — 1)

7 Batch quality (7 = & > v,)

Estimated number of ballots required to

O complete task ¢
Estimated number of ballots required for
0 completing the batch of tasks (6 = > )
0(vy,c) | Mapping from (v, ¢) to 0, for task ¢ under 7
®q Priority of task ¢
Tinas Deadline
T Current Time

A Granularity (e.g. A;)

Table 1: Notation used in the paper.

State Space. The choice of the best pay per ballot ¢ depends
on its current value, the current time, and the aggregate de-
gree of completion of the batch. We choose the state to be a
4-tuple (7,0, 7, c). Both 7 and € are important for this deci-
sion; ¥ estimates the expected accuracy on the batch, while
0 gives us an idea of how much more improvement in 7
is possible (at the current c¢). For a fixed 7 and ¢, a high 6
would indicate the presence of several unsolved tasks and
the possibility of improving 7. On the other hand, a low 6
would indicate that most tasks are solved and there is lit-
tle improvement possible. 0 therefore captures the spread of
the distribution of task qualities v, while ¥ is the mean of
this distribution. We use this intuition later to construct the
transition function for the COSTSETTER.

As another example consider a case where both 6 and 7
are high. This indicates that the QUALITY MANAGERS con-
sider there be to scope for quality improvement despite the
batch quality being high already, possibly due to very low
c. If we did not have 6 in the state, we would instead base
our decision on the high v value, and believe that further
improvement in utility was not possible.

All state variables are continuous, and for tractability we
discretize them. 6 is discretized with a granularity Ay, U
with a granularity A,,, and 7 with a granularity A.. We as-
sume that ¢ can take values {c1, ¢a . . ., ¢x }. These values are
defined by the requester, and in practice would respect mar-
ketplace constraints, such as minimum wages. Interestingly,
the model is robust in that if a requester provides a very poor
starting wage, workers will likely not pick up the task, and
the model will subsequently respond by increasing the wage.



Actions and Rewards. Every state has access to two pay-
change actions: 1 and |. 1 increases c¢; to ¢;4; while | does
the opposite. The 1 and | actions incur no cost to the sys-
tem. However, in practice we assign a small cost to these
actions to prevent frequent cyclical pay-changes in a policy.
Changing ¢ has no impact on 7 and 7, but it does change
0, since the number of ballots remaining per task depends
on the current pay per ballot (via the policy 7). We discuss
how to compute this when defining the transition function.

We also have a no-change action, which increments 7 by
A, along with asking workers for more ballots at ¢, which
remains unchanged (for the next A, duration). This is essen-
tially a marketplace action, where we post tasks to the mar-
ketplace with a pay per ballot equaling c. At the end of A,
minutes, we would then arrive in a new state. The cost of this
transition (to the nearest Ay value) is just the amount paid
to workers during this duration on the marketplace, equaling
the number of ballots received during this time, multiplied
by c.

The final action is a ‘terminate’ action that submits all an-
swers to the requester. Its reward should be ¢/ based on batch
quality and current time (cost is not needed, since that was
already accounted in the no-change action). Unfortunately,
the MDP has access to only the aggregate statistics, and not
the full batch quality histogram, which is needed for com-
puting /. We now describe a novel -reconstruction pro-
cedure that allows us to extrapolate the full histogram from
aggregate statistics, useful for computing this reward as well
as the transition function.

(-Reconstruction. The goal is to reconstruct an approxi-
mate batch quality histogram given the aggregate statistics, v/
and 6, and the current c. The procedure assumes that the his-
togram can be approximated with a two parameter Beta dis-
tribution, 3y, x,. Also assume that we are provided a func-

tion # that maps a (v, ¢) pair to 6; it returns the expected
number of ballots needed for a task ¢ given its current quality
and pay per ballot. Note also that 6 will be a non-increasing
function of v. We now show that we can find suitable \; and
Ao given 7, 6 and 6.

To compute the best fit A;, A2 values, we solve two equa-
tions. The 1% equation enforces that the mean of the recon-
structed distribution is : /\1’11/\2 = v. We can reparameter-
ize B, using A1 = A7; Ay = A(1 — ) and write it as
B (7). Our task now reduces to finding the best fit A. A 274
equation imposes 6 as an expectation over the batch quality
distribution: A(\) = n [}y 8(v, ¢)Bx(v)dv ~ 6.

Since 0 is computed using a POMDP policy, it will rarely
be available in closed form. The integral above is approxi-
mated using a numerical algorithm. The best A is found via
argmin, |0(\) — 0| using a linear search, and works instan-
taneously in practice. Having found a suitable A value, we
now bin all n tasks into the 3 distribution to recover the task
quality histogram, as desired.

Finally, we describe the procedure for estimation of
0(vy, c). First we calculate the corresponding v, = 0.5(r, +

1). Intuitively, 6(v,, c) assesses the number of ballots taken
by the QUALITYMANAGER when its belief b, in the current
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answer is v, and it has difficulty d,. However, we haven’t
reconstructed d, — we use the prior distribution p(d) as its

belief on d,;. To compute 6(v,, ¢) we initiate the QUALITY-
MANAGER’s POMDP from such a belief state, and compute
04 under policy 7, using FRONTIERFINDING.

1/ | Transitions. We now describe the transitions for 1
action in a given state (7,0, 7, ¢;) to reach (7,0, 7, ¢;11).
As we change ¢, the main change is in . We quantify this
change by a simple observation: regardless of pay, the num-
ber of ballots taken until this point is fixed. Suppose that
at 7 = 0 we compute the estimated number of ballots for
the batch as 6y(c;). If we have taken x ballots till now,
our current estimate of 6 will be simply 0y(c;) — x. At
pay ci+1, our next state’s estimate should be 6y(c;+1) — .
Thus, when changing pay from ¢; to ¢; 1 we can simply add
Oo(cit1) — Oo(c;) to compute 0. A similar analysis works
for the | action.

No-Change Transitions. The no-change action emulates
the setting that the tasks are posted on the platform for A,
time at pay c. Let the next state be (7/,60",7 + A,,¢). Es-
timation of 7’ and 6’ requires a model of task completion.
Similar to Gao & Parameswaran (2014), we maintain a pay-
dependent ballot completion model, Pr(ny|A,,c), as the
probability that OCTOPUS will receive ny; ballots in dura-
tion A, at pay c. However, different from their work, the
probability model combines the effects of worker arrival, re-
tention and time taken per task (and not just arrival). Thus,
6 will reduce by n;, with probability Pr(ny| A, ¢). The cost
of the transition will be —c - ny,. Since ny, is discretized upto
Ay granularity, the cost will be rounded off to the nearest
bucket.

For updating o, we [-reconstruct the batch quality his-

togram using the current state. We then bin n tasks into this
histogram, and simulate the TASKSELECTOR on this recon-
structed batch. To do this, we first create a POMDP belief
state for each reconstructed task by choosing v from the his-
togram to recover v, and using the prior difficulty distribu-
tion. We then select a task, simulate a ballot using an average
worker (%) and compute the posterior belief. We continue
until all n; ballots are used up. At the end we compute the
7' based on the updated state of the batch. For robustness,
we repeat this entire procedure multiple times and average
the v values from different runs.
Implementation Details. We construct the whole MDP
with all transitions and rewards using simulations and -
reconstructions as described above. Since time can be un-
bounded, we keep a max time T,,x When defining the total
state space. We also recognize that the transition from 7 to
7’ depends on n; but not on any other part of the state. By
caching a table of (7, ny, ') values once, we can save on a
lot of simulations when computing the transition function of
the no-change action in various states.

We use Value Iteration to learn the policy with (v =
0,0 = n-maxf(v = 0,¢c = ¢1),7 = 0,¢ = ¢1) as our
start state. Intuitively, we are starting at O quality, the maxi-
mum possible number of ballots to completion, and the low-
est price.

In a real execution environment, it is possible that over
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Figure 2: (a) Ballots received vs. elapsed time for different
costs (in tenths of a cent); (b) Worker error distribution for
different costs are similar.

time, the COSTSETTER’s aggregates diverge from the set of
QUALITYMANAGER’s beliefs in the batch. To improve per-
formance, we synchronize the COSTSETTER’s © and 6 to
those of the real batch after every time interval. Experimen-
tally OCTOPUS performs well even without synchronization,
indicating that the learned transitions are effective.

In summary, we described the COSTSETTER, an MDP
that keeps track of the aggregate statistics v and 6 for a
batch of n tasks, and changes pay to optimize utility &/. A
key contribution is a novel -reconstruction procedure that
approximates the batch quality histogram for a state.

Experiments

We conduct three sets of experiments: (i) experiments on
simulated data; (ii) offline evaluation on real data; (iii) live
experiments on Amazon MTurk (AMT).
Model Parameters. For experiments, we initialize OCTO-
PUS with a hard deadline utility function: U; = —oo if
T < Tmax; Otherwise, U, = —P for every incorrect an-
swer and zero for a correct answer. This joint utility com-
bines the utilities from Dai et al.’s and Gao et al.’s models.
Here, penalty P represents how important quality is to the
requester. Notice that since a POMDP doesn’t know whether
it is submitting the correct answer, it cannot compute the
utility exactly. It uses its belief to estimate expected utility
as —P(1 — v, ). This linear utility makes the reward compu-
tations for COSTSETTER’s ‘terminate’ action simple. Given
the © of the state, the reward is calculated as —0.5P(1 — »)
on termination.

Having a hard deadline makes the COSTSETTER state
space finite, since we only consider states with 7 <
Tmax- We use a time-independent Poisson process for the

5 200 o £ 50—T—T—T—T—80
= 140t s 2 164
2 1201 £ < 56 —
8 w0l B o i S
1 2 3 4 5 6 172 3 4 5 6°

Price

Figure 3: Task completion statistics for our data: (a) Reten-
tion & Completion Rate; (b) Arrivals (Rate & Total)
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ballot completion model Pr(ny|A,,c). These parameters
are illustrative — OCTOPUS can accommodate other utili-
ties/distributions.

Baselines. Our main goal is to compare OCTOPUS’s per-
formance with state-of-the-art methods. However, we know
of no algorithms that performs direct three-way optimiza-
tion in a crowdsourced marketplace setting.> So we compare
against state-of-the-art methods that optimize 2 of the 3 ob-
jectives, while giving them the added benefit of our TASKS-
ELECTOR. We compare OCTOPUS to Dai ef al.’s and Gao
et al.’s models, which are related to our work. Code was pro-
vided by the authors.

All comparisons are on the requester’s utility function, I/

computed against gold labels with P = 200. We normalize
U so that OCTOPUS always has 1.0 utility, i.e. the perfor-
mance of baselines is represented as a proportion of OCTO-
PUS.
Data collection. We collect data on AMT at 6 pay points us-
ing a Twitter Sentiment dataset (Sheshadri and Lease 2013).
Workers are asked to classify the sentiments of tweets into
either positive or negative sentiment. At each price point
($0.001, $0.002, . . ., $0.006 per ballot), we post 400 tweets,
and seek 20 ballots/tweet. A single HIT contains 10 tweets
for a worker to solve. 40 tweets are common to all prices for
a total of 2200 tweets. Each price is posted on a different
weekday at the same time, and remains active for 24 hours.
This ensures consistency in data collection across prices and
minimizes interaction between different prices.

Figure 2a (task completion rates vs. pay) verifies that
higher pricing results in faster task completion: at 0.1 cent,
only 5500 ballots are received even after 24 hours, whereas
at 0.6 cents, all 8000 ballots are received within 12 hours.
We estimate the Poisson parameters using this data.
Worker Retention vs. Arrival. Contrary to prior
work  (Faradani, Hartmann, and Ipeirotis 2011;
Gao and Parameswaran 2014), we observe that the in-
crease in task completion rate with pay is predominantly
due to higher worker retention, rather than a higher rate or
number of worker arrivals (possibly due to the large number
of HITs that we sought). Figure 3a shows that both retention
and task completion rates are highly correlated, doubling as
price goes from 0.1 to 0.6 cents. However, Figure 3b shows
that the worker arrival rate does not rise much. To the best
of our knowledge, there is no prior marketplace model that
handles both retention and arrivals.

We also verify that worker quality is independent of pay.
We run a K-S test for every pair of costs. We could not reject
the null hypothesis (error rates drawn from cost-independent
distributions) at p < 0.05 (Figure 2b).

Simulation Experiments

Our main aim through simulations is to assess the quality of
[-reconstruction. We use a variety of parameter settings and
simulate OCTOPUS with ballot arrivals simulated accord-
ing to a pay-dependent Poisson process, and answers gen-

>We don’t compare to Venetis ez al. (2012) since they run a tour-
nament for max-finding, different from our task type. They also
don’t change pay directly or model latency as done by us.
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Figure 4: Performance of OCTOPUS on simulated data for several deadlines. (a), (c) are plots of the utility achieved. Each data
point in (b) represents the performance averaged over all deadlines considered in (a). (d), (f) compare the accuracy achieved
while (e), (g) compare the total cost incurred by OCTOPUS and competing baselines. Round dots on the figures denote that the
difference between OCTOPUS and the competing baseline (whether better or worse) is statistically insignificant at that point.
All other differences are statistically significant.

erated based on worker models. Note that this experiment
is without any synchronization between the COSTSETTER
state and the real batch. Figure 5a compares the ¢ values be-
tween the system and the batch (for one such setting®). Even
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High quality tracking of @ and v are essential. If we di- Figure 6: Comparison of the average pay/ballot against (a)
verge too far from the real values, we would likely optimize DAL, and (b) GAO on simulated data for several deadlines.
the long-term expected reward poorly. Overall, this reaf-

500 tasks with p(d) = £(2.0,2.0), worker errors sampled firms the hypothesis that the COSTSETTER is able to capture
from I"(2.0,0.5), P = 200, A; = 15 mins, Ay = 10, Ay = 100. the global state of the whole batch using just the aggregate

statistics.

Our other goal is to compare OCTOPUS’s performance

3000 T 0.8 with baselines in simulation, which we do below.
2250 —e— Actual 0.6 Comparison to DAI. Comparing OCTOPUS with DAI
© 100 - ou highlights the benefit of changing cost on real-world util-
ity. Ideally, our method should be able to vary pay to match
750 0-2 o State Estimate or exceed the utility of the static cost baselines. We run both
0.0 Octoprus and DAI with deadlines ranging from 60 to 360
0o 4 8 12 16 20 o 4 81z 1620 minutes. We run DATI for different static pays, ranging from

£ (B:=30) £ (A:=30)

1 to 6 (measured in a tenth of a cent), allowing it to take bal-
lots until the deadline. Statistical significance is indicated on
the plots.

Figure 4 shows the comparison. OCTOPUS simultane-
ously outperforms (or is at par with) all static cost baselines

Figure 5: Tracking the real state using S-reconstruction in
the COSTSETTER for the (a) 0 value, and (b) v value.
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Figure 7: Performance of OCTOPUS on real data for several deadlines. (a), (c) are plots of the utility achieved. Each data point
in (b) represents the performance averaged over all deadlines considered in (a). (d), (f) compare the accuracy achieved while (e),
(g) compare the total cost incurred by OCTOPUS and competing baselines. Round dots on the figures denote that the difference
between OCTOPUS and the competing baseline (whether better or worse) is statistically insignificant at that point. All other

differences are statistically significant.

for every deadline, whereas each static cost baseline has a
‘sweet spot’ range of deadlines where it does best. OCTO-
PUS plans robustly, where despite making pricing decisions
24 times without synchronizing for the 6 hr deadline, it still
outperforms DAI. Figure 4b depicts the utility averaged
across all deadlines as a function of task-completion rates.
As shown, OCTOPUS is robust to different task-completion
rates, and continues to outperform DAI on changing them.
Figure 4d & 4e explain why OCTOPUS achieves better util-
ity scores than DAI — it maintains very high accuracy while
keeping costs reasonable. Qualitatively, for every deadline,
we observe that OCTOPUS tends to have an average cost that
is close to the best static cost.

Comparison to GAO. Comparing with GAO allows us to
delineate the effect of the QUALITYMANAGERs while opti-
mizing for batch quality using aggregate statistics.

For fairness, we augment GAO’s framework; fixing r
ballots/task up-front, and using the same worker response
model as OcToPUS for ballot aggregation. Figure 4c
demonstrates OCTOPUS’s performance against GAO for dif-
ferent values of . OCTOPUS consistently outperforms GAO
for all values of r and across all deadlines. OCTOPUS’s per-
formance improves for longer deadlines, due to the higher
quality achieved by the QUALITYMANAGER. For instance,
Octoprus is around 100% better than GAO for the 6 hr
deadline. We see that GAO-3 and OCTOPUS incur nearly the
same cost (Figure 4g) but OCTOPUS is ~6% better in terms
of accuracy (Figure 4f). Examining Figure 6b reveals that
this is in part due to OCTOPUS collecting x% more ballots
than GAO-3 by changing pay/ballot more intelligently.
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It is interesting to note that increasing r does not sig-
nificantly improve baseline performance. This is due to the
fact that the QUALITY MANAGER only takes more ballots on
tasks that really need them. For GAO the extra cost spent on
every task is not offset by a corresponding increase in qual-
ity, especially for tasks that are very easy (don’t require r
ballots) or too hard (unsolved even with r ballots). In Fig-
ure 4f & 4g, we notice that OCTOPUS once again has near-
highest accuracy, but spends much less than GAO variants
that have higher accuracy than OCTOPUS.

Lastly, Figure 6 demonstrates that OCTOPUS has intu-
itive behavior — as the deadline length increases, OCTOPUS
spends less pay/ballot on average since more time can be
taken to finish the batch of tasks.

These experiments demonstrate that OCTOPUS simulta-
neously achieves higher utility than every variant of baseline
methods, and does so without sacrificing accuracy or incur-
ring high costs.

Offline Experiments on Real Data

We run extensive offline experiments on our collected data
against the state-of-the-art baselines described earlier.
When comparing algorithms we sample different execu-
tion trajectories from the real data by choosing a random
ballot for each task (since quality is cost-independent), while
keeping ballot arrivals as per the real data. Multiple trajec-
tories help compute statistical significance over algorithms’
performances. These experiments synchronize the COST-
SETTER’s state with the real batch after every A, time.
We use an uninformed uniform distribution for the difficulty



prior p(d).

Figure 7a shows OCTOPUS when compared to DAI at
different static price points, with the z-axis being different
Tmax Vvalues. Statistical significance is marked on the plots.
OCTOPUS outperforms most DAI costs across all deadlines,
with upto 37% increase in real utility. No single static cost
is able to match OCTOPUS across all deadlines. This under-
scores the benefits of changing pay dynamically based on
current task completion. In Figure 7d & 7e, we see that OC-
TOPUS achieves high accuracy at relatively low cost.

Figure 7b compares OCTOPUS with GAO-r, with r denot-
ing the static number of ballots per task. We find that Oc-
TOPUS outperforms GAO for most deadlines. Further analy-
sis reveals that our batch exhibits a bi-modal task difficulty
distribution — no algorithm exceeds around 76% accuracy,
while getting 70% is easy with ~1 ballot per task (in Fig-
ure 7f, we see a sharp jump in accuracy only when the dead-
line is long enough to take a lot of ballots). For shorter dead-
lines, where solving difficult tasks is infeasible, GAO out-
performs OCTOPUS slightly, since OCTOPUS optimizes with
respect to a uniform prior. For longer deadlines, estimates
of task difficulties are refined by the QUALITYMANAGERS,
and OCTOPUS gives large gains.

Lastly, OcTOPUS outperforms TASKSELECTOR base-
lines where GREEDY task selection is replaced by a random
policy (RANDOM), or a single round robin followed by ran-
dom selection (RANDOM-ROBIN), by large margins (Figure
7c). Note also that the baselines start to converge over time,
as the advantage of doing intelligent task selection dimin-
ishes when nearly all tasks are run till completion.

Overall, we find that OCTOPUS learns robust policies,
consistently outperforming all baselines.

Live Online Experiments

Lastly, we deploy OCTOPUS on AMT to test performance in
a dynamic, online setting, as well as gain qualitative insight
into worker behavior. In this, we keep exactly 3 HITS (of
10 tasks each) on AMT at a time. If a worker accepts a HIT,
another one is posted immediately — this enables greedy task
routing while ensuring full power of worker parallelism. Af-
ter every A mins, all available HITs are taken down and re-
posted with the new price output by OCTOPUS. OCTOPUS’s
policies are learned using task completion rates estimated
from real data earlier. At runtime, querying OCTOPUS is in-
stantaneous. We solve a batch of 500 tweets for 3 deadlines
— 1, 2, and 4 hours. We compare against GAO-1, the best
baseline in offline expts in Table 2.

For the 1 hr deadline, OCTOPUS maintains pay at 0.5
cent/ballot, before decreasing it to 0.1 cent/ballot in the last
15 minutes. This allows OCTOPUS to receive around 1 bal-
lot/task; more ballots stagnate I/ for short deadlines due to
conflicting workers, and OCTOPUS prefers to save money to
optimize utility. On the other hand, GAO maintains pay at
0.6 cent throughout to also ensure it receives 1 ballot/task,
but is unlucky in the responses it receives. In terms of de-
cision making, the superiority of OCTOPUS is clear, since it
recognizes the danger posed by disagreement on task quality
estimates.
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Method OCTOPUS Gao (r=1)
Deadline  Cost Acc. u Cost Acc. u
1 hr $2.63 744% -259 $2.68 714% -289
2 hrs $3.17 772% -231 $1.72 73.8% -26.4
4 hrs $6.23  774% -232 $0.50 744% -25.6

Table 2: Online performance comparison of OCTOPUS and
GAO (r = 1) for a single trial. I/ is shown in thousands.

In the 2 hr deadline, OCTOPUS once again increases pay
initially, but gets more ballot arrivals than expected. In re-
sponse, after 45 minutes OCTOPUS decreases pay so that it
can take a higher number of ballots for difficult tasks, getting
a substantial accuracy and utility improvement over GAO.

For the 4 hr deadline, OCTOPUS is aggressive in trying to
solve all tasks till completion. Due to the bi-modal difficulty
of the tasks, workers provide several conflicting ballots on
harder tasks, which the TASKSELECTOR prefers to re-route
for utility gain. The overall accuracy increases marginally
over the 2 hour deadline.

Qualitatively, workers respond as predicted — flocking to
the tasks when pay was set at 0.5 cent or more, and staying
away at very low pay. Workers respond naturally to the price
changing algorithm; dropping out immediately if the pay is
suddenly lowered, and coming back if it is increased once
again. No worker complained about the fluctuating pay.

Discussion

In this work, we focused on experiments with OCTOPUS in
a fixed time deadline setting to compare with past work. Ex-
tension to the popular fixed budget setting (where > q Cy
is constrained) is simple: (i) never synchronize 6 so that its
value in any state is simply the start value of 6 (which is fixed
and known) minus the ballots received, making it a proxy for
cost incurred so far; (ii) modify the COSTSETTER’s reward
to give a —oo reward for total cost (now computable using
0) exceeding the budget. Another extension involves using a
different formulation of the QUALITYMANAGER; any algo-
rithm that defines an appropriate policy and from which we
can compute # and 7 is suitable.

Conclusion

We present OCTOPUS, one of the first Al agents for a 3-way
optimization of total cost, work quality and completion time
in crowdsourcing. The agent combines three different sub-
agents that control quality per task, select the best next task
and set pay for the whole batch. A key technical contribution
is the computation of aggregate statistics of the quality and
completeness of the whole batch — this is used as the state
for best setting the next pay.

OcCTOPUS outperforms state-of-the-art baselines in a va-
riety of simulated and real world settings, demonstrating the
superiority of our approach. We also showcase OCTOPUS’s
real world applicability by deploying it directly on AMT. In
the future, we hope to develop general purpose formulations
of OCTOPUS as a plug-and-play architecture for practition-
ers.
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