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Abstract

This paper studies the use of a multi-prize compensation
scheme for “simple” contests where participation is costly
and the quality of participants’ contributions is a priori un-
certain at the time they make their decision related to par-
ticipating in the contest. The equilibrium analysis provided
enables demonstrating not only that a multi-prize structure
is often beneficial but also that in some cases the principal’s
expected profit is maximized when offering a second prize
greater than the first prize. This may seem somehow counter-
intuitive especially given that the principal’s profit is only in-
fluenced by the quality of the best submission rather than the
aggregate of submissions. Special emphasis is placed on the
case where the contestants are a priori homogeneous which
is often the case in real-life, whenever the contestants are ba-
sically a priori alike and the quality of their submissions is
determined subjectively by some referee. Here, we manage to
prove that a multi-prize structure is dominated by a winner-
takes-all scheme, suggesting that the benefit in the multi-prize
contest scheme fully derives from the heterogeneity between
prospective contestants. Finally, we show that there is a class
of settings where the use of the multi-prize crowdsourcing
contest model enables achieving the performance of the fully
cooperative model (which is an upper bound for the perfor-
mance in any type of contest), and that for settings of this
class the optimal prize allocation can be extracted through a
set of linear equations.

Introduction

A “Crowdsourcing Contest” is an important and nowadays
highly popular crowdsourcing mechanism aiming to solicit
effort of the crowd in solving problems (DiPalantino and
Vojnovic 2009; Chawla, Hartline, and Sivan 2012; Liu et
al. 2014; Vojnovi 2016). The contest typically specifies a
well defined task the requester is interested in accomplish-
ing and a reward scheme according to which contributors
will be compensated for their efforts, with a strong correla-
tion between the quality of the contribution one submits and
the expected prize awarded.

There are numerous examples for crowdsourcing con-
tests, perhaps the most famous is the Netflix Prize Chal-
lenge which was an open contest, with a one million
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USD prize, soliciting innovative movie-preference predic-
tion algorithms (www.netflixprize.com/). Other examples
include platforms such as Taskcn (www.taskcn.com/), Top-
Coder (www.topcoder.com) and Kaggle (www.kaggle.com).
All three allow requesters to solicit contributions through
contests with monetary prizes. The use of crowdsourc-
ing contests is not limited to firms seeking technological
solutions—these are nowadays broadly used in Q&A web-
sites, allowing users to post questions and typically award-
ing “best” responses through points and reputation scores,
by government agencies such as in Challenge.gov platform,
with the goal of hosting challenges and prize contests to
solve mission-centric problems and by non-profit organiza-
tions that seek major breakthroughs for the benefit of hu-
manity, such as X Prize (www.xprize.org) and the Hult Prize
(www.hultprize.org).

The key feature of contest-based crowdsourcing is its all-
pay nature: online workers invest (costly and irreversible) ef-
forts in producing solutions to a task, and only those whose
solutions are selected as the winning ones are awarded
a prize (Vojnovi 2016; DiPalantino and Vojnovic 2009;
Chawla, Hartline, and Sivan 2012). As such, and much
like with any crowdsourcing mechanism aiming to increase
effort and participation of workers (Difallah et al. 2014;
Elmalech et al. 2016; Faradani, Hartmann, and Ipeirotis
2011), the choice of the payments (prizes in our case) to be
awarded to workers is fundamental.

In this paper we study multi-prize allocation for crowd-
sourcing contests where participants’ strategy space is cap-
tured entirely by their decision of whether to participate or
not to participate in the contest (Ghosh and Kleinberg 2016;
Levy, Sarne, and Rochlin 2017). This kind of contest is ap-
plicable in any setting where participants do not know ahead
of time or have no influence or control over the quality of
their contributions. For example, consider the case of hav-
ing to decide whether to agree to be nominated to an award.
Obviously at the time of nomination a candidate has no in-
fluence whatsoever over her past achievements, typically ac-
cumulated over decades, though the recommendation to be
made by the award committee is based entirely on those.

Prior work provides various other examples for contest
settings of this kind, differing primarily in whether or not
participants know the quality of their contributions in the
contest at the time of making their decision. In this work we
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focus in contests where the quality of contribution is a pri-
ori uncertain. This is typically the case whenever submission
quality is being determined subjectively by external judges
based on some attributes, tastes and factors that are not fully
disclosed. For example, in award nominations there is much
uncertainty concerning how much the committee will be im-
pressed by any specific achievement and what weight will be
given to different details in one’s CV. This is especially true
when the identity of the committee members is not known,
which is often the case in real life.

The choice of participation in contests of the above type
is not trivial, as participation typically incurs a cost. This
cost may be substantial as in the case of the reputational
loss incurred when being nominated for a prestigious award
and not winning. Indeed, it is not uncommon for people to
choose not to become nominated if they think the chance of
winning is small. In general the effect of the participation
cost depends on the magnitude of the prize awarded and the
number of prospective contestants, and even a small cost can
lead to a mixed participation strategy whenever the prize is
moderate.

Contributions. In this paper we study the usefulness of
prize division (i.e., dividing the grand prize into several sub-
prizes) in the above archetypal contest model. Our analy-
sis is theoretical, and assumes participants are fully ratio-
nal and aim to maximize their expected profit. The contribu-
tions of the paper are threefold. First, the equilibrium analy-
sis provided enables demonstrating that, somehow counter-
intuitively, despite the fact that the contest organizer is in-
terested only in the best performance obtained (e.g., getting
the most deserving candidate for the award), allocating the
prizes budget in the form of several prizes is beneficial, as
far as the organizer’s expected profit is concerned. As we
discuss in more detail in the related work section, the idea
of prize-splitting per-se is not new - it has been researched
in literature (Ghosh and Hummel 2015; Kaplan et al. 2002;
Moldovanu and Sela 2001) and used in practice.1 Still, it
has been shown to be effective mostly in contest models
that assume the contest organizer benefits from the sum
of yields (hence the increase in benefit there is quite intu-
itive) (Ghosh and Kleinberg 2016; Luo, Tan, and Xia 2014;
Koutsopoulos 2013) or in models where contributors strate-
gize on the effort they exert (Moldovanu and Sela 2001;
Archak and Sundararajan 2009), and in various others it has
been proved ineffective (Chawla, Hartline, and Sivan 2012;
Liu et al. 2014).

Second, we show that it is possible (setting-dependent)
that the optimal allocation of prizes is such that the j-th
(j > 1) prize is greater than the first prize. Meaning that the
winner envies others that actually performed worse in the
contest. To the best of our knowledge, this phenomena has
not been demonstrated in any prior contest model studied.
The increase in the organizer’s profit derives from various
dynamics the prize division generates and the paper illus-
trates some of them. Furthermore, we prove that the orga-

1E.g., TopCoder contests typically offer two prizes, where the
second prize is half the amount of the first prize.

nizer’s benefit from splitting the prize is fully attributed to
the heterogeneity of contestants since in the case of a priori
homogeneous contestants the winner-takes-all scheme is the
dominating one.

Finally, we show that in some settings, through prize divi-
sion the contest organizer can actually reach a profit equiv-
alent to the fully cooperative case, which is an upper bound
to the expected profit in any contest. Furthermore, in such
case the optimal (expected-profit-maximizing) prize alloca-
tion can be extracted using a set of linear equations.

The Model

The model considers a contest organizer (or principal, de-
noted “manager” onwards) and a set A = {A1, ..., Ak}
of contributors (denoted “agents” onwards) that can poten-
tially participate in (i.e., “contribute” to) the contest. The
contest is considered “simple” in the sense that the qual-
ity of the contribution of a participating agent is beyond
its control—it can only decide whether to participate or
not participate in the contest (Ghosh and Kleinberg 2016;
Levy, Sarne, and Rochlin 2017). The agents are heteroge-
neous in terms of their competence and cost of taking part in
the contest - the quality of the contribution made by agent Ai

if participating (or its “performance”, for short) is a random
variable characterized by a probability distribution function
fi(x) and its cost of taking part in the contest is denoted ci.

Agents are assumed to be fully rational and self-
interested. Their participation in the contest thus depends
on the compensations (in the form of prizes) offered by the
manager. We use M to denote the prize budget available
to the manager. The manager can divide this amount into
any set of prizes {M1, ...,Mn} (n ≤ k) such that Mi is
the prize to be awarded to the i-ranked participating agent
(
∑

Mi = M ), where ranking is determined according to
quality of contributions made (with no requirement to ex-
ceed any performance threshold in order to become eligi-
ble). The model assumes that a prize can be awarded only
to agents participating in the contest, i.e., if the number of
participating agents is k′ < n then only prizes M1, ..,Mk′

will be awarded. Similar to most prior work (Chawla,
Hartline, and Sivan 2012; DiPalantino and Vojnovic 2009;
Ghosh and Kleinberg 2016) our model assumes full and
symmetric information. Specifically, in our case it is as-
sumed that the manager and all the agents are familiar with
the prize allocation {M1, ...,Mn} and the individual distri-
butions f1(x), ..., fk(x) and costs c1, ..., ck.2

The goal of each agent is to maximize its expected profit,
defined as the expected prize it is being awarded minus its
participation cost whenever participating. The manager is
assumed to be interested only in the highest quality contri-
bution among those participating agents and has no value
for lesser contributions (Chawla, Hartline, and Sivan 2012;
Ghosh and Kleinberg 2016; Liu et al. 2014; Moldovanu and

2Alternatively we can assume that each agent is of a specific
type t, where type t is characterized by a distribution ft(x) and
cost ct, and the manager and agents are familiar with the type dis-
tribution. This will require very minor modifications in the analysis
and all the main results will still hold.
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Sela 2001; Archak and Sundararajan 2009). Assuming the
qualities of contributions can be expressed in terms of their
monetary value to the manager, the manager’s goal is to al-
locate the prize budget M such that the expected highest
contribution achieved minus the expected overall prize pay-
ments made is maximized. For simplicity we take the ex-
pected highest contribution to be of zero quality in case all
agents opt not to participate in the contest though the ex-
tension of the analysis to incorporate some pre-set fallback
quality v0 is trivial.

Equilibrium Analysis
We provide a formal equilibrium analysis to the crowdsourc-
ing contest model described above under the multi-prize
scheme. To illustrate findings, we use a tractable synthetic
setting that simplifies calculations yet enables demonstrat-
ing the main solution characteristics in a clean manner (i.e.,
eliminating the need to isolate external phenomena that are
commonly present in simulated or real-life applications).

We use {P,¬P} to denote the set of actions available to
each agent, corresponding to participating and not partici-
pating in the contest, respectively. A strategy can thus be
represented by the probability p (0 ≤ p ≤ 1) of partic-
ipating in the contest. A strategy profile is a vector S =
(p1, p2, ..., pk) such that pi is the probability agent Ai will
participate in the contest.

We use Gi(x, l) to denote the probability that agent Ai
will end up ranked l in the contest if participating and
its eventual contribution quality turns to be x. The value
Gi(x, l) obtains is given by:

Gi(x, l) =
∑

A′⊆A−i∧|A′|=l−1

⎛
⎜⎝ ∏

Aj∈A′
pj(1 −Fj(x))

∏
Aj∈A−i\A′

(pj Fj(x) + (1 −pj))

⎞
⎟⎠

(1)
where A−i is the set of all agents other than Ai and Fj(x) is
the cumulative distribution functions of fj(x). Ending up
ranked l happens if exactly l − 1 agents perform better.
Therefore, the calculation iterates over all possible subsets
of A−i with size l− 1 and multiplies the probability of hav-
ing all agents of that set perform better than x by the prob-
ability that all remaining agents (i.e., in A−i \ A′) perform
worse than x or do not participate at all.

This leads to the calculation of the expected profit of any
agent Ai that participates in the contest, denoted Bi(P ),
which is a simple integration over all possible performance
values y minus the cost of participation:

Bi(P ) =

∞∫
y=−∞

∑
1≤j≤n

(MjGi(y, j))fi(y)dy − ci (2)

If not participating, the expected profit is Bi(¬P ) = 0.
An equilibrium is therefore a solution (p1, ..., pk) such

that all agents are using their best-response strategy given
the strategies of the others, i.e.: (a) Bi(P ) ≤ Bi(¬P ) for
every agent Ai that uses pi = 0; (b) Bi(P ) ≥ Bi(¬P ) for
every agent Ai that uses pi = 1; and (c) Bi(P ) = Bi(¬P )
for every agent Ai that uses 0 < pi < 1. It is possible that a
given setting will have more than a single equilibrium solu-
tion (i.e., multi-equilibria), though the question of which of
those will be used is beyond the scope of the current paper.

Figure 1 illustrates the changes in the equilibrium ob-
tained as a function of the portion allocated for second prize
out of the total prize budget M , denoted α, in a two-prize
scheme (i.e., α = M2/M ). Note that α = 0 corresponds
to winner-takes-all whereas α = 1 to allocating the entire
prize budget to the second prize. It is based on a setting of
two agents - a “strong” and a “weak” one. The strong agent
differs from the weak one in the sense that its underlying
distribution function and participation cost are more favor-
able. Specifically, the strong agent uses a uniform distribu-
tion function over the interval (0, 2) and its participation cost
is 0.1. The weak agent uses a uniform distribution function
over the interval (0, 1) and its participation cost is 0.23. The
total prize budget is M = 0.4. As can be seen in the fig-
ure, for α < 0.66 the only equilibrium is the one where
only the strong agent participates in the contest. The weak
agent has no incentive to deviate from not participating, as
even with a second prize of 2M/3 its expected profit is neg-
ative, due to its substantial participation cost. For α > 0.66
having both agents participate is in equilibrium. Here, nei-
ther of the agents have an incentive to deviate to not partic-
ipating, as they win the first prize with probability 0.75 (for
the strong agent) and 0.25 (for the weak agent) and the sec-
ond prize with probability 0.75 and 0.25, respectively, which
means they always end up with a positive profit. Interest-
ingly, within the interval (0.75, 1) we find two additional
equilibria. The first is where neither participate and the sec-
ond is when they both mix between participating and not
participating, ending up with a zero profit (where the par-
ticipation probability of the weaker player increases and the
participation probability of the stronger player decreases as
α increases). This calls for some intuitive explanation, espe-
cially given the fact that these equilibria co-exist alongside
an equilibrium according to which both agents participate.
We begin with the coexistence of the equilibrium accord-
ing to which both agents participate along the one where
neither participate. This can happen only when the second
prize offered is greater than the first prize. Here, each agent
actually benefit from the participation of the other, as this
brings in the option to gain the second (greater) prize. With-
out the other agent in the contest, the agent can only win
the first prize, which is less than the participation cost for

0 1

mixed

0.66

only strong participates

neither 
participate

both participate

0.75α->

Figure 1: Different equilibria that hold for different prize
allocations. See main text for the parameters of the setting
used.
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both. The coexistence of the mixed equilibrium along the
pure one according to which both participate is even more
counter-intuitive. If both agents find it optimal to participate
when the other participates (according to the pure equilib-
rium) then why should a solution according to which they
both mix be stable? The answer is once again based on the
contribution of the second prize to the individual profit—the
agent actually loses from the fact that the other agent is mix-
ing between participating and not participating, as it is now
less likely that it will win the second prize, which enables
the indifference between participating and not participating
for the agent itself.

We now turn to calculating the manager’s expected profit
from the contest, denoted Bmanager. For this purpose we
first calculate the probability that the best performance ob-
tained in the contest is lower than or equal to x, denoted
FM (x):

FM (x) =
∏

Aj∈A

(pj · Fj(x) + (1− pj)) (3)

Consequently, the expected profit of the manager is:

B
manager

= −M +

∞∫
y=−∞

y
d(FM (y))

dy
dy (4)

+
∑

(A′⊂A)∧(0≤|A′|≤n−1)

⎛
⎜⎝(

∏
Aj∈A′

pj)(
∏

Aj∈A\A′
(1 − pj))

n∑
j=|A′|+1

Mj

⎞
⎟⎠

where the second term is the expected quality of the first-
ranked contribution and the third term is the expected un-
awarded prize (iterating over all cases where the subset of
agents participating in the contest is smaller than the num-
ber of prizes offered n).

Figure 2 illustrates the effect of splitting the prize budget
over the manager’s expected profit (top graph) as a function
of the portion of the second prize out of the total prize budget
(α) in the setting used for Figure 1 above. The two bottom
graphs in the figure decompose the expected profit into the
expected performance (left) and the expected prize payment
(right). The equilibrium used is the one that maximizes the
manager’s expected profit (out of those detailed in Figure 1)
for the corresponding α value, though in this example any
different selection criterion does not change the observations
that follow, qualitatively. Here, the increase in the second
prize (at the expense of the first prize) results in an increase
in the manager’s expected profit, as long as the equilibrium
is to have only the strong agent participate in the contest (as
the expected performance does not change, while the prize
payment decreases). At α = 0.66 the equilibrium changes
to having both agents participate. For any setting where this
equilibrium holds the manager’s expected profit is fixed, as
both the expected performance and the payment made (to-
tal of first and second prize) do not change. For α > 0.75
we obtain three equilibria, as depicted in Figure 1. Among
these, the one that results in the maximum expected profit
for the manager in the interval (0.75 − 0.87) is the mixed
one. Here, the increase in α results in an increase both in the
expected performance and in the expected prize awarded—
both phenomena explained by the fact that the increase in

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α->
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α-> 0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α->

Figure 2: The manager’s expected profit (top), the expected
maximum performance achieved (bottom left) and the ex-
pected prize payment (bottom right) as a function of the por-
tion of the second prize out of the total prize budget (α). See
main text for the parameters of the setting used.

the participation probability of the weaker agent is substan-
tially greater than decrease in the participation probability of
the stronger agent. Still, the sum of the two components de-
creases as α increases, as observed in the top graph. Finally,
for α > 0.87 the equilibrium that maximizes the manager’s
expected profit is the one where both agents participate.

An interesting observation made based on Figure 2 is that
it is possible that the manager’s expected profit is maximized
when the second prize is greater than the first prize. This, as
mentioned earlier, is a highly counter-intuitive phenomena
that has not been reported to hold in prior contest-theory
literature. In this example, it is maximized for α = 0.66.
The improvement in the manager’s expected profit derives
from the fact that the prize division enables saving some
portion of the prize without having any of the agents change
its participation decision (and therefore we obtain the same
performance level for a lesser expense). This, however, is
not the sole source of improvement that can be achieved
through prize splitting in our model, and not the only dy-
namic explaining the phenomenon according to which the
manager’s expected profit is maximized for α > 0.5. A dif-
ferent (and perhaps more intuitive) dynamic that leads to the
phenomenon is the ability to push more agents to participate
in the contest through offering (possibly even greater) sec-
ond prize. This is illustrated in Figure 3 which depicts the
manager’s expected profit for a 2-agents setting where the
strong agent uses a uniform distribution function over the
interval (0, 3.3) and its participation cost is 0.165 whereas
the weak agent uses a uniform distribution function over the
interval (0, 2.3) and its participation cost is 0.22. Here, as
α increases the equilibrium changes from having only the
strong agent participate to having both agents not partici-
pating, having both participating and finally having both not
participating. The maximum expected profit is achieved at
0.67 ≤ α ≤ 0.78 when both agents participate in the con-
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Figure 3: The manager’s expected profit as a function of the
portion of the second prize out of the total prize budget (α).
Here the improvement is attributed to the ability to push the
weak agent to participate through prize splitting. See main
text for the parameters of the setting used.
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Figure 4: The manager’s expected profit as a function of the
portion of the second prize out of the total prize budget (α).
Here the improvement is attributed to the ability to incen-
tivize one of the agents to drop from the contest through
prize splitting. See main text for the parameters of the set-
ting used.

test.
Finally, we provide an example where the benefit from

offering a greater second prize derives from the ability to
deliberately incentivize one of the players to drop from the
contest. This is illustrated in Figure 4. In this setting one
of the agents’ performance is drawn from a uniform distri-
bution over the interval (0, 1) and its participation cost is
c1 = 0.01 and the other agent uses a uniform distribution
over (0, 1.3) and its participation cost is c2 = 0.22. For a rel-
atively small second prize the equilibrium is based on having
both agents participate. However, when the second prize is
greater than 0.28 of the total prize budget the equilibrium
changes to having only the first agent participate. Here, the
expected profit of the manager increases as α increases, as
it only pays the first prize, and reaches its peak at α = 0.97
(i.e., allocating 97% of the total prizes to second prize and
only 3% to first prize).

The above illustrated phenomena are not limited to cases
of two agents. In fact, these occur to a greater extent in set-
tings with more agents. Consider for example the follow-
ing five-agents setting that uses a two-prize scheme. Out of
the five agents, one (denoted ”strong”) uses a uniform dis-
tribution function over the interval (0, 2) and its participa-

0 1.13 .45

No one 
participates

4 weak

Strong + 2 weakstrong + 1 
weak

.61

Strong + 3 weak

.80
.57

Strong works + weak mix

All Agents 
Mix

Blue: Pure
Green: One type mix
Red: All Mix

����

Figure 5: Different equilibria that hold for different prize al-
locations. See main text for setting parameters.

tion cost is 0.32. The others (denoted ”weak”) use a uni-
form distribution function over the interval (0, 1) and their
participation cost is 0.2. The total prize budget is M = 1.
Figure 5 illustrates the changes in the equilibrium obtained
in this setting as a function of α, the portion allocated for
second prize out of the total prize budget M . Pure-strategy
based equilibria hold along the the entire α interval, differ-
ing in the type of agents participating in the contest (see
blue arrows). As α increases, we observe a transition from
equilibria where only the strong and one weak agent partic-
ipate in the contest (for α < 0.13) to ones where the strong
and two weak agents participate (for 0.13 ≤ α ≤ 0.45),
to ones where the strong and three weak agents participate
(for 0.45 ≤ α ≤ 0.61), to one where only the four weak
agents participate (for 0.57 ≤ α, overlapping the former
ones within 0.57 ≤ α ≤ 0.61) and finally one where none
of the agents participate (for 0.8 ≤ α, overlapping the for-
mer one). A mixed equilibrium according to which th strong
agent participates and all others mix holds within α < 0.59
(where the participation probability p of the weak agents in-
creases as α increases. Another mixed equilibrium, this time
however where all agents mix, is obtained within the inter-
val 0.57 ≤ α ≤ 0.61. In this equilibrium the participation
probability ps of the strong agent increases as α increases,
whereas the participation probability pw of the weak agents
decreases as a function of α.

Figure 6 depicts the manager’s expected profit as a func-
tion of α taking the equilibrium that provides the highest
expected profit. For α < 0.03 this is the pure equilibrium
where only the strong agent and one of the other agents par-
ticipate. For α < 0.59 it is the mixed equilibrium. Then,
for 0.59 < α < 0.61 it is the pure equilibrium where
only the strong agent and three weak agents participate. For
0.61 < α < 0.8 it is the equilibrium where the four weak
agents participate and finally for 0.8 < α the one where
none of the agents participate. As can be observed from the
figure, the expected profit of the manager is indeed maxi-
mized at a ratio α > 0.5. Note that even if taking the other
equilibria in cases where the pure strategy equilibria are used
in the graph (i.e., always preferring the symmetric equilibria
according to which all weak agents use the same strategy)
this latter result does not change and the expected-profit-
maximizing α is still greater than 0.5.
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Figure 6: The expected profit of the manager for different
prize allocations. See main text for setting parameters.

Taking a close view at the dynamics that lead to a prefer-
ence for prize-splitting, in this case it is the ability to leave
the strong player in the game (using a pure-participation
strategy, while increasing the participation probability of the
other agents through allocating a greater amount to second
prize at the expense of first prize). Interestingly, here with
α = 0 (i.e., without prize-splitting) the mixed equilibrium
is dominated by the pure equilibrium according to which
only the strong agent and one of the weak agents partic-
ipate. It is the prize splitting that accounts for the change
in the dominance relationship between the two, providing a
greater profit through the mixed equilibrium.

The Homogeneous Case

In many real-life contest settings agents are a priori ho-
mogeneous in the sense that they are all characterized by
a similar participation cost (ci = c, ∀i) and the quality
of their submissions derives from a similar probability dis-
tribution function (fi(x) = f(x), ∀i). This is very com-
mon whenever the differences in competence are minor
thus their performance at the time of contest is mostly in-
fluenced by some probabilistic factors (e.g., luck, referee-
ing and weather conditions) or whenever contributions are
evaluated subjectively by a referee whose taste cannot be
a priori predicted. In fact, the majority of prior work on
crowdsourcing contests, and in particular work that used
its auction-mapping (either all-pay or winner-pay), as well
as general contest-theory literature, has considered contes-
tants to be homogeneous in the sense that they are either
ex post (i.e., have exactly the same type) or ex ante (i.e.,
their types follow the same probabilistic distribution) iden-
tical (Koutsopoulos 2013; Luo, Tan, and Xia 2014; Chawla,
Hartline, and Sivan 2012; DiPalantino and Vojnovic 2009;
Archak and Sundararajan 2009; Moldovanu and Sela 2001;
Cohen, Kaplan, and Sela 2008; Kaplan et al. 2002; Levy,
Sarne, and Rochlin 2017). Interestingly, we find that with
the homogeneous variant of the model studied in this paper,
the manager always maximizes its expected profit by allo-
cating its entire prize budget to the first prize (i.e., winner-
takes-all).

When the agents are homogeneous a natural mixed equi-
librium that holds (in the absence of equilibria in which all

agents participate or do not participate) is the symmetric
equilibrium by which all agents use the same participation
probability p. This equilibrium can coexist alongside pure-
strategy equilibria in which some of the agents participate,
however since the agents are a priori homogeneous it is the
most appealing and fair one, and therefore the one we relate
to.

Assume we have k agents and we divide M into n prizes.
The expected profit of each agent if participating is given by:

B(P ) =

k−1∑
i=n−1

M

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1+ (5)

n−2∑
i=0

∑i+1
w=1 Mw

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1

The first term relates to the case where there are i ≥ n −
1 other agents competing, therefore the entire prize budget
M is awarded, with an equal chance for any of the i + 1
competing agents to receive any prize Mw (w ≤ n). The
second term relates to the case where we have i < n−1 other
agents competing, therefore a prize budget of

∑i+1
w=1 Mw is

awarded. Based on B(P ) = B(¬P ) = 0 we can extract the
equilibrium p.

We first prove that in the homogeneous case, with a single
prize (winner-takes-all) the agents will choose to participate
in the contest at least to the extent of participation achieved
through splitting the prize budget.

Proposition 1. When switching from a multi-prize to a sin-
gle prize in the homogeneous case, the equilibrium value of
p (i.e., the participation probability) cannot decrease.

Proof. If the equilibrium with the optimal multi-prize case
is having all agents opt not to participate then necessarily
c > M1. Therefore using a single prize M > M1 will either
result in a similar equilibrium (if c > M ) or with one where
p > 0 (otherwise). Similarly, if the equilibrium with the op-
timal multi-prize case is to have all agents participate then
necessarily c <

∑
Mi/k = M/k and therefore the same

equilibrium holds using a single prize M . Therefore all that
is left to prove is that when the equilibrium with the optimal
multi-prize case is to use 0 < p < 1 then switching to a
single prize M results in an equilibrium characterized by at
least the same p value.
From (5) we obtain:

B(P ) =

k−1∑
i=0

M

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1+ (6)

n−2∑
i=0

(
∑i+1

w=1 Mw −M)

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1

Note that (
∑i+1

w=1 Mw −M) is negative. Therefore since
we require B(P ) = B(¬P ) = 0 in equilibrium, we need
the term

∑k−1
i=0

M
i+1

(
k−1
i

)
pi(1 − p)k−i−1 to be greater than

zero. With a single prize M we obtain an equilibrium p = p∗
value such that the latter term equals zero as it captures
B(P ) and we require B(P ) = B(¬P ) = 0. Therefore, we
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need to prove that
∑k−1

i=0
M
i+1

(
k−1
i

)
pi(1 − p)k−i−1 can be

positive only by using p < p∗, meaning that the term in-
creases as p decreases. Using some standard algebraic ma-
nipulations obtains:3

k−1∑
i=0

1

i + 1

(k − 1

i

)
p
i
(1 − p)

k−1−i
=

1

k

k−1∑
i=0

( k

i + 1

)
p
i
(1 − p)

k−1−i

=
1

k

k∑
i=1

(k
i

)
p
i−1

(1 − p)
k−i

=
1

kp

k∑
i=1

(k
i

)
p
i
(1 − p)

k−i

=
1

kp
(1 − (1 − p)

k
)

Now taking the derivative with respect to p we get:

− 1

kp2
+

kp(1− p)k−1 + (1− p)k

kp2
(7)

We want to show that it is less than or equal to 0. With further
algebraic manipulations we get:

(1− p)k−1((k − 1)p+ 1) ≤ 1

But: 1 + (k − 1)p ≤ (1 + p)k−1, so:

(1− p)k−1((k − 1)p+ 1) ≤ (1− p)k−1(1 + p)k−1

= (1− p2)k−1 ≤ 1

The intuition behind Proposition 1 derives directly from
Equation 5 - in the multi-prize case there is a chance that a
portion of the prize budget is not awarded (whenever there
are less participating agents than prizes), therefore there is a
lesser incentive to participate overall.

Proposition 1 by itself does not guarantee that the man-
ager’s expected profit cannot improve by using more than
a single prize. Indeed with the decreased p the expected
contribution of each agent decreases, however at the same
time the decrease in p results in awarding a smaller expected
prize. Theorem 1 suggests that even when weighing in the
tradeoff between the decrease in p and the decrease in the
expected prize awarded, the expected profit of the manager
always decreases due to splitting the prize.
Theorem 1. In the homogeneous case the expected profit
of the contest manager cannot be improved by splitting the
prize budget into two or more prizes, i.e., winner-takes-all is
the dominating prize scheme.

Proof. Consider the single prize m′ in the winner-takes-all
case that results in the same p as when using the optimal n-
prize scheme. Since in both cases B(P ) = B(¬P ) = 0, we
obtain (using (6)):

k−1∑
i=0

M

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1+ (8)

n−2∑
i=0

(
∑i+1

w=1 Mw −M)

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1

3The first step uses the identity
(

k
i+1

)
= k

i+1

(
k−1
i

)
, and the last

uses the binomial theorem.

=
k−1∑
i=0

m′

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1

Resulting in:
k−1∑
i=0

M −m′

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1+ (9)

n−2∑
i=0

(
∑i+1

w=1 Mw −M)

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1 = 0

And since
∑k−1

i=0
M−m′
i+1

(
k−1
i

)
pi(1 − p)k−i−1 =

(1−(1−p)k)(M−m′)
kp :

(1− (1− p)k)(M −m′)
kp

(10)

=

n−2∑
i=0

(M −∑i+1
w=1 Mw)

i+ 1

(
k − 1

i

)
pi(1− p)k−i−1

Now from the contest manager’s point of view the ex-
pected best contribution in the contest is the same (because
the agents are using the same p both when using the prizes
M1, ...,Mn and when using the single prize m′). However
with the single-prize contest the manager needs to award an
expected prize of m′(1 − (1 − p)k) and with the n-rewards
it awards M − ∑n−1

i=0

∑n
w=i+1 Mw

(
k
i

)
pi(1 − p)k−i. Sub-

tracting the amount the manager pays in the two cases we
obtain:

M −
n−1∑
i=0

n∑
w=i+1

Mw

(
k

i

)
p
i
(1− p)

k−i −m
′
(1− (1− p)

k
) = (11)

M(1− (1− p)
k
)−

n−1∑
i=1

n∑
w=i+1

Mw

(
k

i

)
p
i
(1− p)

k−i −m
′
(1− (1− p)

k
)

= (M −m
′
)(1− (1− p)

k
)−

n−1∑
i=1

n∑
w=i+1

Mw

(
k

i

)
p
i
(1− p)

k−i

Notice that
∑n−1

i=1

∑n
w=i+1 Mw

(
k
i

)
pi(1 − p)k−i =

pk
∑n−2

i=0
(M−∑i+1

w=1 Mw)
i+1

(
k−1
i

)
pi(1 − p)k−i−1.

And also (1 − (1 − p)k)(M − m′) =

kp
∑n−2

i=0
(M−∑i+1

w=1 Mw)
i+1

(
k−1
i

)
pi(1 − p)k−i−1 (according

to (10)). Therefore the difference captured by (11) above
is zero. Meaning that using m′ such that it provides the
same p as with the optimal n-prize contest will get us
the exact same expected profit (as with using the optimal
n-prize contest). And since m′ is not the optimal prize to
use with the single prize contest, the optimal single prize
will result in an even greater expected profit. Therefore,
winner-takes-all dominates any multi-prize scheme when
the agents are a priori homogeneous.

We emphasize that the winner-takes-all scheme was found
to be the dominating one in several other contest mod-
els with homogeneous contestants studied in prior litera-
ture (Taylor 1995; Ghosh and McAfee 2012; Liu et al.
2014), whereas in others it has been shown that such domi-
nance does not necessarily hold (Moldovanu and Sela 2001;
Archak and Sundararajan 2009; Kaplan et al. 2002).
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Interestingly, in Ghosh and Kleinberg (2016) that use a
similar model as ours, except that a contestant realizes the
value of her contribution before making her participation de-
cision, the optimal prize structure is awarding equal prizes to
the top j contestants. This is very different from the winner-
takes-all dominance we prove for our model, which assumes
the value of contribution is realized only after making the
participation decision.

Optimal Prize Structure

In order to determine the optimal prize budget M to be set
and its division into prizes, the manager needs to solve a
complex optimization problem which essentially attempts to
maximize Bmanager according to (4) by controlling the pa-
rameters {M1, ...,Mk} (where in case it is optimal to use
n < k prizes we get Mj = 0 ∀j > n). The complexity of
the optimization derives from the fact that, as demonstrated
in the analysis section, even the slightest change in the prize
structure may result in substantial changes in the resulting
equilibria and consequently in the participation scheme of
the different agents, the expected performance and the ex-
pected prize awarded, all affecting the manager’s expected
profit.

Fortunately, in some cases, the multi-prize model en-
ables reaching an equilibrium solution which is identical
to the fully cooperative solution, in which case the de-
termination of the optimal prize scheme (both M and its
division into prizes) can be substantially simplified. The
fully cooperative solution is the one where the manager
can fully control which of the agents will take part in the
contest, attempting to maximize the expected net benefit
when taking into consideration the value distributions and
costs. Given a subset A′ ⊆ A of agents taking part in
the contest, the expected net profit, denoted Bcooperative,

is Bcooperative =
∞∫

y=−∞
y d(FM (y))

dy dy − ∑
Ai∈A ci, where

FM (x) =
∏

Aj∈A′
Fj(x).4 The optimal cooperative solution

is to have all agents in A∗ ⊆ A participate, where A∗ is
the subset for which Bcooperative is maximized. This re-
quires considering all subsets of A, which is combinatorial
however of a lesser concern given the relatively moderate
number of contestants in most crowdsourcing contest plat-
forms.5 The maximum expected profit in the fully coopera-
tive case is an upper bound for the manager’s expected profit
in a contest, as any non-cooperative equilibrium solution is
dominated (from the manager’s point of view) by a similar
cooperative solution in which the agents’ profit is zero (i.e.,
the expected award to each participating agent merely cov-
ers its participation cost). Therefore if a prize scheme can
constructed such that it results in the optimal fully coopera-
tive solution, then it is necessarily the optimal one. A prize

4A solution to the fully cooperative problem can be extracted by
mapping the process into a cooperative exploration problem, e.g.,
as in (Rochlin, Sarne, and Mash 2014).

5The median number of users competing over a task is 2 in
TopCoder and 4-15 (depending on the task type) in Taskcn (see
Table 1.1 in Vojnovic 2016).

scheme {M1, ...,M|A∗|} will result in an equilibrium solu-
tion identical to the fully cooperative one if: (a) for each
agent Ai ∈ A∗ (i.e., participating according to the fully
cooperative solution) Bi(P ) = 0; and (b) for each agent
Ai /∈ A∗ Bi(P ) ≤ 0. In both cases Bi(P ) is calculated ac-
cording to (2), substituting pj = 1 in (1) for each Aj ∈ A∗.

Therefore, one should first solve the set of |A∗| linear
equations of type Bi(P ) = 0 (each being an instance of
(2), representing a different agent Ai ∈ A∗, where the prize
allocation is the set of variables). If the solution is a set
{M1, ...,M|A∗|} such that Mj ≥ 0 ∀j ≤ |A∗| and satisfies
Bi(P ) ≤ 0 for each Ai /∈ A∗ then this is the optimal prize
scheme for the multi-prize case and the expected profit is
equal to the theoretical-optimal fully-cooperative case. Note
that having an equilibrium solution of the latter type does
not preclude the existence of additional equilibrium solu-
tions with the same prize scheme, though as discussed above
the determination of which of these will hold in such cases
is beyond the scope of the paper.

Consider for example the setting used for Figure 3.
Here, the optimal fully cooperative solution is to have
both agents participate. The solution to the set of equa-
tions of type (a) above for this case yields a prize scheme
(0.10175, 0.28325), which is optimal for the contest, as it
is equal to the optimal fully cooperative solution. In this ex-
ample the equilibrium of having both agents participate with
this prize scheme is unique so it is necessarily the one to be
used. We emphasize that this solution could not have been
achieved with a single prize—it is the division into several
prizes that enables the necessary additional flexibility in the
design of the mechanism.

Related Work

Contest design in general (Riley and Samuelson 1981;
Myerson 1981; Morgan, Orzen, and Sefton 2012; Liu et al.
2013; Siegel 2009) and particularly crowdsourcing contest
design (Glazer and Hassin 1988; Ghosh and McAfee 2012;
DiPalantino and Vojnovic 2009; Archak and Sundararajan
2009) has attracted much attention in research over the past
decades, mostly due to the applicability of the mechanism
(Taylor 1995; Vojnovi 2016; Liu et al. 2014) and its ef-
fectiveness in eliciting effort (Ghosh and Kleinberg 2016;
Glazer and Hassin 1988; Green and Stokey 1983). Along
the rich theoretical work there is also much empirical work
aiming to understand the mechanics and dynamics of con-
tests by analyzing contest data from web-sites such as 99de-
signs and Taskcn (de Araújo 2013; Liu et al. 2014). Com-
mon to all contest models, that contestants need to spend
costly efforts (e.g., time, resources) in order to become eli-
gible to win or to increase the chance of winning one or more
prizes (Dechenaux, Kovenock, and Sheremeta 2014). In that
sense, many have used all-pay auction models, which have
similar characteristics, as a framework for analyzing con-
tests (Chawla, Hartline, and Sivan 2012; Kaplan et al. 2002;
Luo et al. 2016).

The model analyzed in this paper differs from most mod-
els used in contest literature primarily in the sense that it
considers a “simple” contest, i.e., one where participants’
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sole decision is whether or not to participate in the con-
test. This, as opposed to enabling participants full control
over the amount of effort they exert which in turn influ-
ences their chance of winning in the contest (i.e., an “effort-
based” contest) (Nti 1999; Moldovanu and Sela 2006;
Cavallo and Jain 2013; Cohen, Kaplan, and Sela 2008;
Liu et al. 2014). Studies that consider a model similar to
ours include those of Ghosh et al (2016) and Levy et al
(2017). Ghosh et al assume contestants learn about their per-
formance measure in the contest prior to having to decide
on participation, whereas in our model there is no certainty
concerning performance at the time the participation deci-
sion is made. For that model, they found that whenever the
agents are homogeneous and the manager’s profit is taken
to be the sum of performance obtained throughout the con-
test it is always optimal to award equal prizes to a subset
of “best” contestants. For the heterogeneous case where the
goal is to maximize the performance of the best-performer
they find that the winner-takes-all scheme is not necessar-
ily the optimal one. Levy et al (2017) use a model identical
to ours, except that they only consider the winner-takes-all
prize scheme. The locus of their work is a comparison of a
parallel contest to a sequential one, pointing to the transition
in preference between the two as a function of the setting
parameter.

Prize splitting has been extensively studied for models of
effort-based contests, yielding a plethora of results. For ex-
ample Archak et al. (2009) found that when contestants are
risk-neutral, the manager should optimally allocate all of its
budget to the top prize even if it values multiple submis-
sions. In contrast, if contestants are sufficiently risk-averse,
the manager may optimally offer more prizes than the num-
ber of submissions it desires. Chawla et al (2012) found that
winner-takes-all is the optimal choice, whenever prize divi-
sion is determined prior to the contest itself, for a specific
model where the manager only benefits from the highest
submission and contestants’ probability of winning the prize
depends on the effort they exert. They also compare crowd-
sourcing contests with more conventional means of procure-
ment such as simple highest-bid auctions. Luo et al (2015)
studied a contribution-dependent prize function in Tullock
contests (in which the winning probability is the ratio of the
contestants effort and the total effort exerted by all contes-
tants), deriving the optimal prize function that induces the
maximum profit for the contest manager. Moldovanu et al
(2001) studied the effect of contestants’ cost function over
the managers’ profit, when the latter is taken to be the sum
of efforts. Their main result is that in case of linear or con-
vex cost functions a winner-takes-all contest is optimal. In
case of convex functions they provide a necessary and suf-
ficient condition for the optimality of a multi-prize scheme.
DiPalantino et al (2009) studied the essential features of a
crowdsourcing system, demonstrating the relationship be-
tween incentives and participation in such systems. They
found that rewards yield logarithmically diminishing returns
with respect to participation levels.

All the above, however, do not apply to our model due
to the inherent difference in the modeling choice made con-
cerning the ability of contestants to control the effort they

exert and consequently their chances of winning the contest.
Furthermore, none of the above work has demonstrated the
preference of a multi-prize scheme where the first prize is
smaller than other prizes offered.

Discussion, Conclusions and Future Research

Like with some of the contest models studied in prior work,
we find that in the contest model analyzed in this paper
switching from the winner-takes-all to a multi-prize scheme
can be highly beneficial for the contest manager. In contrast
to all prior work in this area, however, in our model it is pos-
sible that the optimal prize allocation results in awarding the
contributor associated with the highest quality contribution
(which accounts entirely to the manager’s profit) a prize that
is smaller than the prizes awarded to those with contribu-
tions of lesser quality (of which the manager has no benefit
whatsoever), leaving the winner envy in those ranked below
her.

For the homogeneous case we prove that the winner-
takes-all scheme dominates the multi-prize one. The impor-
tance of this finding is twofold: First, it provides the manager
with the preferred scheme for this important class of settings
(which other than being quite common in contest literature,
as discussed in the relevant section, is also quite common
in real life). Second, it directly points to the sole source of
improvement the multi-prize model achieves—it is the con-
testants’ heterogeneity that accounts to the improvement in
the expected profit, as with the additional flexibility enabled
by the division into multiple prizes the manager can offer
finer participation incentives. This is illustrated in the nu-
merical examples provided along the analysis, pointing to
several different sets of dynamics, of different natures, en-
abling the improvement achieved.

As demonstrated, in some cases the multi-prize contest
scheme can even lead to the performance of the fully coop-
erative model, which is the upper bound for the manager’s
expected profit when running a contest. Both the identifica-
tion of those settings and the extraction of the optimal prize
allocation for them is simple and only requires solving a set
of linear equations.

The analysis provided in the paper, much like most of the
work on crowdsourcing contests (and on contests in gen-
eral), is applicable to settings where both the agent initiating
the contest (the manager) and the prospective participants
are fully rational and aim to maximize their expected profit.
Motivations for such theoretical work and arguments for its
importance are abundant in prior work cited throughout the
paper, hence we do not see a need to repeat those. Having
said that, we do acknowledge the importance of empirical
research in this application domain, and plan to study hu-
man behavior in the model analyzed under this framework.
In that sense, the results reported in the paper provide the
basis for rational decision making and a benchmark for com-
parison in any future empirical work aiming to study simple
crowdsourcing multi-prize contests carried out with people.
An additional direction for future research on the theoretical
side is the analysis of social welfare and price of anarchy un-
der a multi-prize mechanism compared to winner-takes-all.
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