
Revenue-Maximizing Stable
Pricing in Online Labor Markets

Chaolun Xia, Shan Muthukrishnan
Rutgers University, New Brunswick, NJ, USA

Abstract

In online labor markets, millions of paid tasks are performed
by workers every day. We solve the stable pricing problem,
that is, given the information about tasks and workers, to find
a revenue-maximizing mechanism – pricing and allocation –
that is stable (where no worker or task is treated unfairly),
and truthful (tasks reveal their true needs).
We propose two truthful, stable mechanisms named SMUP
and SMNP. In SMUP, we use randomized uniform pricing,
and prove that it has (1 + log h)-guarantee on revenue where
h is the maximum price of a task. In SMNP, we use random-
ized non-uniform pricing, and prove that it has (3 + 3 log h)-
guarantee on revenue, slightly worse than SMUP analytically.
However our experiments show, SMNP has much less vari-
ance than SMUP. For the online setting when tasks arrive
over time, we present a truthful online stable mechanism with
(2 + 2 log h)-guarantee on revenue.

Introduction
Online labor markets contribute significantly to Inter-
net Economy. For example, in Amazon Mechanical Turk
(AMT) and CrowdFlower, agents are employed for human
intelligence tasks. Workers in TaskRabbit perform daily-
life tasks, e.g. moving, cleaning. In Upwork, specialists are
hired for more professional tasks, e.g. software develop-
ment, translation.

For such markets, it is essential to price transactions and
match tasks with workers suitably. In AMT, tasks are priced
by owners. In Upwork, besides pricing the task, an employer
needs to interview applicants which is burdensome. Re-
cently, automatic pricing and matching is adopted in some
online labor markets. For example, TaskRabbit provides an
option called Quick Assign1. With this option, once the em-
ployer finishes defining the task by specifying requirements
(e.g. in Fig 1), date and location, the system automatically
charges a price 2 and allocates a qualified worker to the task.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://support.taskrabbit.com/hc/en-us/articles/205313120-
What-is-Quick-Assign-

2To our best knowledge, the price only depends on the require-
ments and other facts like time and location. In other words, the
task owner needs to pay the given price for any qualified worker.
For example, $33/hr for any worker with a car, and $71/hr for any
worker with a car.

Figure 1: Specifying the requirement for a moving task

We study this automatic pricing and allocation problem.
The natural goal is to optimize the revenue, but we require
additional properties. In online labor markets, no worker or
task should be treated unfairly by the pricing and allocation.
We formulate this as a form of stability (similar to (Gale and
Shapley 1962)), which is illustrated as follows:
Example 1. We assume that any worker prefers a task with
a higher price 3. There are two workers, w1 and w2, and two
tasks, t1 and t2. Only w1 is qualified for t1. w1 and w2 are
both qualified for t2, but the owner of t2 prefers w1 to w2.
Regardless of the pricing, the matching that {(w1, t1), (w2,
t2)} maximizes the revenue. However, this matching is unfair
to w1 when t1 is priced less than t2: if we announce the
pricing and allow workers and tasks to match independently
at their will, the matching will be {(w1,t2)}.

In this paper, we solve the stable pricing problem. Our
contributions are:

• We design a truthful, stable mechanism with randomized
uniform pricing (SMUP), and prove that it has (1+ log h)
factor approximation guarantee on revenue in expectation,
where h is the maximum price for a task. In uniform pric-
ing, all the tasks are priced equally. Given any uniform
pricing, we show that one can compute the optimal alloca-
tion in polynomial time while preserving the truthfulness.

• We design a truthful stable mechanism with randomized
non-uniform pricing (SMNP). Given an arbitrary non-
uniform pricing, the allocation problem is NP-hard. We
propose a 3

2 -approximation for the allocation problem by
generalizing the (unweighted) maximum stable matching
in (Mcdermid 2009; Király 2013). Therefore we show that
SMUP is (3+3 log h) factor appoximation of the optimal

3For example, the price of a task is the hourly payment from
the task owner, and a worker’s hourly wage is a fixed fraction of
the price of the task assigned to her.

Proceedings of the Fifth Conference on  
Human Computation and Crowdsourcing 

(HCOMP 2017)

216



revenue, which is slightly worse than SMUP above, but
our experiments show that they have similar performance
in practice, and SMNP is more robust.

• We consider online scenario where tasks arrive over
time, and present a truthful online stable mechanism with
randomized uniform pricing. Combined with a greedy
matching strategy, we show that this mechanism is (2 +
2 log h) factor approximation for the optimal revenue.

Our results are obtained by using combinatorial optimiza-
tion techniques suitably with random choice of prices.

Related Work

Stable Matching. The stable matching problem was first in-
troduced in the seminal paper (Gale and Shapley 1962), and
has received much attention, e.g. (Gusfield and Irving 1989;
Irving 1994). Among many variants (Manlove et al. 2002;
Iwama and Miyazaki 2008), finding a maximum stable
matching with ties and incomplete preference lists (MAX
SMTI) (Iwama et al. 1999) is closely related to our work.
This problem is known to be APX-hard (Halldórsson et
al. 2003). (Iwama, Miyazaki, and Yamauchi 2007) gives a
1.875-approximation, and (Mcdermid 2009; Király 2013)
improve the ratio to 1.5. Our allocation problem, which
can be viewed as a weighted version of a special case of
MAX SMTI, has not been addressed yet, despite many
weighted variants were studied (Gusfield and Irving 1989;
Iwama and Miyazaki 2008).

In two-sided markets, (Shapley and Shubik 1971) shows
the equivalence of stable matching and core. In heteroge-
neous and competitive job markets, (Crawford and Knoer
1981; Kelso Jr and Crawford 1982; Hatfield and Milgrom
2005) consider the matching between workers and firms. In
these pricing (and matching) problems, the wages are de-
termined by equilibrium (Demange and Gale 1985). Their
results apply for labor markets where the prices and match-
ing are determined freely by employers and workers, but not
for the market, considered in this paper, where a monopoly
pricing and compelling matching are needed to maximize
the revenue.

Envy-free Pricing Mechanisms. Pricing is a well-
studied area in Economics. In particular, the envy-free pric-
ing (Guruswami et al. 2005; Gul and Stacchetti 1999;
Leonard 1983) in Walrasian Equilibrium (Nisan et al. 2007)
is relevant to our work. In recent years, envy-free pric-
ing is studied in various settings (Balcan, Blum, and Man-
sour 2008; Cheung and Swamy 2008; Feldman et al. 2012;
Hartline and Yan 2011). (Guruswami et al. 2005) first ad-
dresses the computational issue of envy-free pricing. They
show that the problem is NP-hard even for the two special
cases where the buyers are either unit-demand or single-
minded. However, the envy-free pricing they discussed is
different from our stable pricing because in our market, not
only the buyer, i.e. the task, will envy, but the item, i.e. the
worker, will also envy.

Crowdsourcing Markets. In crowdsourcing markets,
(Singer and Mittal 2011; 2013; Goel, Nikzad, and Singla
2014) consider online budget feasible mechanisms for a sin-
gle employer with a budget and multiple workers. When the

skill levels of workers are unknown, (Ho and Vaughan 2012;
Ho, Jabbari, and Vaughan 2013) provide learning methods
for online task assignment. (Yin, Chen, and Sun 2013) dis-
cusses that during a work session, additional rewards lead
to higher effort of workers. (Yin and Chen 2015) presents
an algorithm to decide when to offer bonuses to workers to
improve the overall utility of the employer.

Preliminary
[k] denotes the integer set {1, . . . , k}. There are {1, . . . , S}
skills, a set W of workers and a set T of tasks. We define
W � |W | and T � |T |. A worker is denoted by a vector
w = (w1, . . . , wS) where ws ∈ N is her level of skill s ∈
[S]. For example, when S = 3, w = (4, 5, 0) denotes that
this worker has skill 1 at level 4 and skill 2 at level 5. We
use superscript to denote the index of a worker, e.g. wi is
the i-th worker where i ∈ [W]. Task j is denoted by a triplet
(sj , lj , cj) where sj ∈ [S] is the required skill, lj ∈ Z+ is
the minimum level of the required skill, and cj ∈ R+ is the
maximum cost that the task is willing to pay. For example,
(1, 2, $5) denotes a task that is willing to pay at most $5
for hiring a worker whose level of skill 1 is at least 2. We
assume that 0 is the lowest level and a larger integer denotes
a higher level, so worker w is said to be qualified for task j
if wsj ≥ lj .

An allocation (or matching) A is the set of worker-task
pairs. For any (w, j) ∈ W × T , w and j4 are said to be
matched with each other if (w, j) ∈ A. |A| denotes the
matching size.
Definition 2. A is feasible if (1) ∀(w, j) ∈ A, w is qualified
for j, i.e. wsj ≥ lj and (2) any task (or worker) can be
matched up to one worker (or task).

P is the pricing function where p(s, l) ∈ R+ is the price
of any task that requires skill s with minimum level l. Given
s, it is natural to require the pricing to be non-decreasing
over levels, i.e. p(s, l) ≥ p(s, l′), ∀l ≥ l′. Note that, the
payment of a task only depends on what the task reports,
i.e. task j pays p(sj , lj) if it is matched with any qualified
worker, otherwise 0. When the context is clear, we use pj to
denote p(sj , lj). By default, the pricing-allocation pair (P,
A) is required to be feasible that A is feasible and ∀(w, j) ∈
A, pj ≤ cj .

We assume that any worker prefers a task with the higher
price, and any task prefers a qualified worker with the higher
level of the required skill. Based on this assumption, we can
formulate unfairness as the existence of blocking pairs.
Definition 3 (Blocking Pair). Given W , T , P and A, a pair
(w, j) ∈ W × T is blocking if both are true:
• w is unmatched or matched with j′ that pj′ < pj
• j is unmatched or matched with w′ that w′

sj < wsj .
In other words, (w, j) is blocking if w and j both prefer

each other. We next define stability in our market.
Definition 4 (Stability). (P, A) is stable5 w.r.t. W and T if
∀(w, j) ∈ W × T , (w, j) is not blocking.

4When the context is clear, we use j to denote task j.
5The stability in this paper is equivalent to the weak stability in

(Irving 1994).

217



Let R(P, A) �
∑

(w,j)∈A pj be the revenue. We next
define the pricing problem and allocation problem.
Definition 5 (Stable Pricing Problem). Given W and T ,
to compute the revenue-maximizing pricing-allocation pair
(P, A) subject to that (P, A) is stable.
Definition 6 (Allocation Problem). Given W , T and P,
to compute the revenue-maximizing allocation A subject to
that (P, A) is stable.

We focus on the stable pricing problem, and in particular,
we consider mechanism design approaches. A mechanism
consists of a pricing and an allocation, but will have addi-
tional truthfulness as we describe below.
Definition 7 (Stable Mechanism). Let Φ(P, A) be a mecha-
nism with P and A. Φ(P, A) is a stable mechanism if (P, A)
is stable.

A randomized (offline or online) mechanism Φ(P, A) is
said to have α-guarantee on revenue if α · E[R(P, A)] ≥
R(P∗, A∗). (P∗, A∗) is the optimal solution to the offline
stable pricing problem in Definition 5 where the true infor-
mation of all the workers and tasks is assumed to be known
by the market. In mechanism design, any task may not nec-
essarily report its true information to the market if misre-
porting can increase its utility. Therefore, we consider truth-
ful mechanisms, in which the dominant strategy of any task
is to report all its private parameters truthfully6 regardless
whether other tasks report their parameters truthfully (Nisan
et al. 2007). A mechanism is individual-rational (IR) if the
utility of every task is non-negative. Next, we define the util-
ity of a task.

Let φ = (sj , lj , cj) be the parameters reported by j, while
φ = (sj , lj , vj ,) be the private parameters owned by j,
where vj is the true valuation if j is matched with any qual-
ified worker w that wsj

≥ lj . Given A and P, we consider
the following utility function uj for j:

uj =

{
0 j is unmatched
vj · 1(wsj ≥ lj)− p(sj , lj) j is matched with w

1(wsj
≥ lj) is the indicator function returning 1 if wsj

≥
lj , otherwise 0.

Truthful Stable Mechanism

In this section, we design two offline truthful stable mecha-
nisms. To warm up, we show the existence of feasible stable
mechanisms. We first define monotone allocation.
Definition 8 (Monotone Allocation). A is monotone if:
�(w′,w, j) ∈ W × W × T that (w, j) ∈ A, w′ is un-
matched and w′

sj > wsj . A monotone allocation is maximal
if �(w, j) ∈ W × T that w and j could be matched but not.

A pricing is called uniform if all its entries are equal, oth-
erwise non-uniform. When the context is clear, we use p to
denote a uniform pricing.

6We do not consider truthfulness from the side of workers, i.e.
whether workers report their skill/levels truthfully, because in many
online labor markets, workers’ proficiency in skills is publicly ac-
cessible, e.g. in term of ratings, reviews, certificates or experience.

Proposition 1. If A is not monotone, �P such that (P, A) is
stable. For any uniform pricing p, (p, A) is stable if A is a
maximal monotone allocation.

Proof. The first claim is obvious, so we only prove the sec-
ond one. Given a uniform pricing p and a maximal mono-
tone allocation A, suppose (w, j) is a blocking pair. First,
it is impossible that w is matched because of the uniform
pricing. w and j cannot be both unmatched because A is
maximal. The remaining case is that w is unmatched but j
is matched with some w′ that w′

sj < wsj , contradicting to
Definition 8.

Since it is straightforward to construct a maximal mono-
tone allocation and generate a uniform pricing, we omit the
proof for Corollary 2.
Corollary 2. A stable mechanism always exists.

Uniform Pricing

In this part, we present a truthful stable mechanism with (1+
log h)-guarantee on revenue based on randomized uniform
pricing where h is the maximum price we can set for a task.
We first solve the allocation problem for uniform pricing.
Theorem 3. Given a uniform pricing, the allocation
problem can be solved in polynomial time O(S2W +
min{W, T }(SW + T )).

To prove Theorem 3, we first prove Lemma 4 and 5.
Lemma 4 shows that for any uniform pricing p, we can com-
pute its revenue-maximizing allocation Ã∗

p (but (p, Ã∗
p) is

not necessarily stable) in polynomial time. Lemma 5 shows
that given Ã∗

p, we can construct the optimal allocation A∗
p

in polynomial time that (p, A∗
p) is stable and |Ã∗

p| = |A∗
p|.

Lemma 4. Given uniform pricing p, the revenue maximiz-
ing allocation Ã∗

p (but (p, Ã∗
p) is not necessarily stable) can

be computed in polynomial time O(min{W, T }(SW+T )).

Proof. Let p be the uniform price. After removing any task
j that cj < p, we model this problem as a maxflow instance.
Besides the source and sink, we create three types of nodes,
corresponding to workers (x-type), skills/levels (y-type) and
tasks (z-type) respectively. For each remaining task j, we
introduce two nodes zj and ysj ,lj (do not introduce ysj ,lj
again if it exists); then introduce two directed edges with
capacity 1, from ysj ,lj to zj and from zj to the sink. For
each pair ys,l and ys,l′ , if l′ < l and � ys,l̂ such that l′ < l̂ <

l, introduce a directed edge from ys,l to ys,l′ with infinite
capacity. This means that a skill at level l can be used as
the same skill at a lower level l′. Finally, for each worker
wi, introduce a node xi and a directed edge with capacity 1
from the source to xi. For every skill wi

s > 0 that she has,
introduce a directed edge with capacity 1 from xi to ys,l if all
the three conditions are true: (1) l ≤ wi

s, (2) ys,l exists and
(3) any node ys,l′ such that l < l′ ≤ wi

s does not exist. We
remove any xi from the network if she has no edge incident
to y-type nodes.

Let f∗ denote the maximum flow from the source to
sink. It is easy to verify that |Ã∗

p| = f∗. Thus the optimal

218



revenue is f∗ · p. The number of nodes corresponding to
workers is O(W), to skills/levels is O(T ), and to tasks is
O(T ). Therefore, the total number of nodes is O(W + T ).
The number of edges from x-type nodes to y-type nodes
is O(SW), among y-type nodes is O(T ), and from y-type
nodes to z-type nodes is O(T ). Thus, the total number
of edges is O(SW + T ). Since Ford-Fulkerson algorithm
is O(|E| · f∗) and we have f∗ = O(min{W, T }), the
time complexity to run Ford-Fulkerson on this network is
O(min{W, T }(SW + T )).

If we directly compute Ã∗
p as maximum bipartite match-

ing, i.e. without the y-type nodes, the time complexity in-
creases to O(W2T + WT 2) because the total number of
nodes is still O(W + T ) while the total number of edges
is up to O(WT ). It is much worse because in practice,
S � min{W, T }.

However, Ã∗
p is not necessarily monotone. For example,

it is possible that the maxflow algorithm assigns a worker
with skill s at level 1 to the task requiring s at level 1 but
leaves a worker with s at level 2 unmatched. Thus, according
to Proposition 1, (p, Ã∗

p) is not necessarily stable. In order
to guarantee stability, intuitively, one may model the allo-
cation problem as a minimum cost maxflow rather than the
maxflow by additionally introducing costs on the edges from
x-type nodes to y-type nodes. However, solving a mincost
maxflow is much more expensive (see the survey (Kovács
2015)) than the efficient maxflow we proposed in Lemma 4.

Algorithm 1 Stability Adjustment

Input: W , T and Ã
Output: a monotone allocation A
1: W ′ ← the set of all the unmatched workers
2: A ← Ã
3: Let g(A, s) be the index of any s-marginal worker in A
4: while W ′ �= ∅ do
5: Arbitrarily select and remove w from W ′

6: for s ∈ [S] do

7: if g(A, s) exists and ws > w
g(A,s)
s then

8: Update A by matching w with the task assigned to
wg(A,s)

9: W ′ ← W ′ ∪ {wg(A,s)}
10: break
11: end if
12: end for
13: end while
14: return A.

Therefore, we propose stable-adjustment in Algorithm 1,
and prove in Lemma 5 that it can construct A∗

p from Ã∗
p

efficiently. To present it, we first define skill-marginal.

Definition 9 (s-Marginal). In an allocation, we call a
worker s-marginal if she is matched with a task requiring
skill s and her level of s is no higher than all the other work-
ers matched with tasks requiring s. If w is s-marginal, we
call ws the marginal-level of s.

Lemma 5. Given Ã which is not necessarily monotone, Al-
gorithm 1 computes a monotone allocation A in polynomial

time O(S2W + SW logmin{W, T }) that |A| = |Ã|.

Proof. It is obvious that the adjustment will finally con-
verge. W.l.o.g., we assume that after M > 0 iterations, the
while-loop (lines 4-13) stops. Let Am be the allocation at
iteration m ∈ {0, . . . ,M}, e.g. A0 = Ã and AM = A.
Let g(Am, s) be the index of any s-marginal worker in Am.
Let Ls = (w

g(A0,s)
s , . . . , w

g(AM ,s)
s ) be the sequence of the

marginal-levels of skill s during the while-loop (lines 4-
13). It true that ∀s, Ls is non-decreasing because the while-
loop keeps replacing the s-marginal worker wg(A,s) with a
worker w that ws > w

g(A,s)
s .

So once an s-marginal worker becomes unmatched, she
will never be matched with any task requiring skill s be-
cause her level of s cannot exceed the marginal level of s.
This means, for any skill s, every worker can be matched
and unmatched with a task requiring s at most once respec-
tively. So a worker will get matched and unmatched for at
most S times, implying M = O(SW). In each iteration
(lines 5-12), the algorithm sends at most S queries to get
the marginal workers of all the skills, and makes at most
one update in g(A, s) for some s. If we implement g(A, s)
by a min-heap, a single query is O(1) and a single update
is O(log |A|) = O(logmin{W, T }). Therefore, the overall
time complexity is O(S2W + SW logmin{W, T }). Note
that, the time complexity for preprocessing S min-heaps is
dominated.

After the algorithm stops, it is true that for any unmatched
w and skill s, ws ≤ w

g(A,s)
s . Therefore, A is monotone ac-

cording to Definition 8. From the algorithm, it is true that
|A|=|Ã|, thus proving the Lemma.

To compute A∗
p, we run the stable-adjustment with Ã∗

p
as the input allocation, which is output by the maxflow
in Lemma 4. The stable-adjustment only introduces an ex-
tra additive term O(S2W) to the time complexity of the
maxflow. In practice, S � min(W, T ), so it is efficient.

We next present the Stable Mechanism with Uniform
Pricing (SMUP) as follows.

Stable Mechanism with Uniform Pricing (SMUP)
Input T , W and h

1. Randomly pick up an integer k from {0, . . . , 	log h
}, and set
every entry of p to 2k;

2. Run the maxflow algorithm in Lemma 4 to get Ã∗
p;

3. Run the stable-adjustment in Algorithm 1 to get A∗
p.

Output: p and A∗
p;

Theorem 6. SMUP is polynomial, truthful and IR. SMUP
has (1 + log h)-guarantee on revenue if vj ∈ [1, h], ∀j ∈
[T ].

Proof. It is trivial to verify individual rationality (IR) be-
cause any task j that cj < 2k is removed according to
Lemma 4. From Theorem 3, we know that the mechanism
is polynomial time, and (p, A∗

p) is stable. We will prove
truthfulness in Lemma 7 and the (1 + log h)-guarantee on
revenue in Lemma 8.

219



Lemma 7. Reporting (sj , lj , vj) truthfully is the dominant
strategy of task j.

Proof. We will show that j can never improve its utility by
reporting some parameters (sj , lj , cj) other than its private
parameters (sj , lj , vj). First, it is obvious that reporting sj �=
sj cannot help, so the task will always report sj . We assume
that j will only consider to report lj > lj because matching
with w that wsj < lj yields negative utility.

We next show that, for any v > 0, reporting (sj , lj , v)
cannot derive more utility than reporting (sj , lj , v) when
lj > lj . There are two cases. First, if reporting lj and lj both
make j matched, it is obvious that reporting lj derives no
more utility than reporting lj because p(sj , lj) = p(sj , lj).
Next, we only need to prove that if reporting lj fails to make
j matched, reporting lj also fails. There are two cases when
reporting (sj , lj , v) fails. First, v < 2k, so reporting (sj , lj ,
v) fails too. Second, v ≥ 2k but there is no more qualified
worker w that wsj

≥ lj . So there is no w that wsj
≥ lj , and

reporting (sj , lj , v) also fails in the second case.
We finally show that reporting (sj , lj , cj) derives no more

utility than reporting (sj , lj , vj) for any cj �= vj . There are
two cases. First, if reporting cj and vj both make j matched,
it is true that these two strategies derive the same utility for
j because p(sj , lj) = 2k is independent of cj . Next, we only
need to prove that if reporting vj fails to make j matched,
reporting cj also fails. There are two cases when reporting
vj fails. First, vj < 2k. In such cases, if reporting cj ∈
(0, 2k), j still fails to match; if reporting cj ≥ 2k, j might
be matched, however, uj = vj − 2k < 0. The second case
is when vj ≥ 2k. In such cases, j participates the allocation
algorithm without being precluded. However, the allocation
algorithm, i.e. the maxflow described in Lemma 4 and the
stable-adjustment in Algorithm 1, is independent of cj , so
reporting any cj will not change the final allocation.

Lemma 8. SMUP has (1 + log h)-guarantee on revenue if
vj ∈ [1, h], ∀j ∈ [T ].

Proof. Let P∗ and A∗ be the optimal solution to the pric-
ing problem, and n(s, l) be the number of matched tasks
requiring skill s at minimum level l in A∗. Thus, the optimal
revenue R(P∗, A∗) =

∑S
s=1

∑L
l=1 p

∗(s, l) · n(s, l) where
L � max{lj |j ∈ [T ]}. Let p be the uniform pricing with
every entry as 2k where k is sampled from {0, . . . , �log h	}.
From P∗ and A∗ (but in fact we do not know P∗ or A∗), we
could construct an allocation Ã such that (p, Ã) is feasible
as follows: (1) discard any task j that cj < 2k; (2) for all the
remaining matched tasks in A∗, match them with the same
workers as A∗ does. Next, we show the lower bound of the
expectation of R(p, Ã):

E[R(p, Ã)] =

�log h�∑
k=0

1

1 + 	log h


S∑
s=1

2k ·ms(2
k)

=
1

1 + 	log h


S∑
s=1

�log h�∑
k=0

2k ·
L∑

l=l(s,k)

n(s, l)

=
1

1 + 	log h


S∑
s=1

L∑
l=1

n(s, l) · (2k(s,l)+1 − 1)

≥ 1

1 + 	log h


S∑
s=1

L∑
l=1

n(s, l) · p∗(s, l)

=
R(P∗, A∗)
1 + 	log h


ms(2
k) is the total number of matched tasks (in A∗) that

requires skill s and is priced no less than 2k. l(s, k) is the
lowest level satisfying p∗(s, l(s, k)) ≥ 2k. Similarly, k(s, l)
is the integer satisfying 2k(s,l) ≤ p∗(s, l) < 2k(s,l)+1.

However, (p, Ã) is not necessarily stable. We observe
that if (w, j) is a blocking pair, w must be unmatched due
to the uniform pricing. Therefore, there exists A′ such that
|A′| ≥ |Ã| and (p, A′) is stable and feasible. Let A∗

p be the
optimal allocation given uniform pricing p. It is obvious that
E[R(p, A∗

p)] ≥ E[R(p, A′)]. Although we cannot compute
A′ because we do not know P∗ or A∗, we can compute A∗

p
in polynomial time according to Theorem 3, thus completing
the proof.

Nonuniform Pricing

Although SMUP provides an efficient solution with revenue
guarantee, non-uniform pricing is usually more desirable to
real markets. Therefore in this part, we consider a truthful
stable mechanism with non-uniform pricing. For truthful-
ness, we still use randomized techniques to generate a non-
uniform pricing. The allocation problem for non-uniform
pricing has a close connection to the generalized stable
matching where the preference lists not only contain ties
but are also incomplete (Manlove et al. 2002). Although the
existence of a generalized stable matching is NP-complete
(Iwama et al. 1999), later we will show that it is polyno-
mial to find an allocation A for any non-uniform pricing P
that (P, A) is stable. Maximum generalized stable matching
(Max SMTI) is NP-hard (Manlove et al. 2002), and our al-
location problem can be viewed as a weighted version of a
special case (where the preferences lists of all the workers
are the same) of Max SMTI. So the NP-hardness of Max
SMTI cannot imply the NP-hardness of our allocation prob-
lem for non-uniform pricing, which we independently prove
in Theorem 9.
Theorem 9. 7 The allocation problem is NP-hard even if the
pricing only contains two distinct values.

We then propropose a 3
2 -approximation, in Algorithm 2,

to the allocation problem by generalizing the state-of-arts
(Mcdermid 2009; Király 2013) which both provide a 3

2 -
approximation for (unweighted) maximum general stable
matching. We first define the notion of substitutable.
Definition 10 (Substitutable). A matched (e.g. with task
j) worker w is substitutable if there exists an unmatched
worker w′ that wsj = w′

sj .

7 Due to space limit, all the missing proofs are available in
the technical report (http://paul.rutgers.edu/∼cx28/papers/stable
pricing.pdf).

220



Then we define select(j,Ψ), a function returning the
worker in the worker set Ψ who is most preferred by task
j. Let w be the worker returned by select(j,Ψ), so w =
argmaxw′∈Ψ w′

sj . We define how select(j,Ψ) deals with
ties as follows: (1) it prefers the worker with the highest level
of sj ; (2) among workers with the same level, it prefers un-
matched to matched workers; (3) among matched workers
with the same level, it prefers substitutable workers. In other
cases, select(j,Ψ) breaks the tie arbitrarily.
Ψj is initialized as the set of all the workers qualified

for task j. We present the approximation in Algorithm 2. In
each iteration, it picks an unmatched task j∗ with the highest
price (breaking ties arbitrarily), and tries to match j∗ with
workers in Ψj∗ . For every selected worker w returned by
select(j∗,Ψj∗ ), it will match w with j∗ if one of the three
cases is true: (1) w is unmatched; or (2) w is substitutable;
or (3) j∗ has the same price with j (which is now matched
with w), and j∗ has selected all its qualified workers once
(i.e. rj∗ = 1) but j has not (i.e. rj = 0). Otherwise the al-
gorithm will not match w with j∗. If a task has selected all
its qualified workers but remains unmatched, we give it one
more chance, i.e. set rj from 0 to 1. If the task fails to match
again, i.e. rj = 1, it will never be considered. We will show
that if we combine all these design together, this approxima-
tion will have 3

2 -guarantee, and with any one missing, the
guarantee drops to 2.

We first prove the stability and analyze time complexity
in Lemma 10, and then show its performance guarantee in
Theorem 11.

Lemma 10. Given any P, Algorithm 2 outputs Â in polyno-
mial time O(W2T + T log T ) that (P, Â) is stable.

Theorem 11. Algorithm 2 is a 3
2 -approximation to the allo-

cation problem.

Proof. The proof contains two parts, Lemma 12 as the first
part and the remaining part based on Lemma 12.

Lemma 12. For any pricing P, Algorithm 2 outputs Â such
that 3

2 |Â| ≥ |A∗| where A∗ is the optimal allocation.

Proof. Assuming we know A∗. Construct a graph as fol-
lows. For each task that is matched in either A∗ or Â, create
a task node, and similarly for each worker who is matched in
either A∗ or Â, create a worker node. For any pair of a task
node and a worker node, if they are matched in A∗, introduce
an undirected edge between them, and similarly, if they are
matched in Â, also introduce an undirected edge between
them. In the graph, there are at most two edges between two
nodes. If we consider a component with exactly two nodes
and two edges as a 2-cycle, each connected component in
the graph is either a cycle or path.

It is obvious that in any cycle, any task matched in A∗

is also matched in Â, so there is no revenue loss in cycles.
Also, in any path with even number of edges, the number of
tasks matched in A∗ is the same with the number of tasks
matched in A (but there might be some revenue loss). We
call a path with odd number of edges as an augmenting path.
It is obvious that in any augmenting path, there is at least

Algorithm 2 Allocation for Non-uniform Pricing
Input: T , W and P

Output: Â
1: T ′ ← {j|cj ≥ p(sj , lj), j ∈ [T ]}
2: ∀j ∈ T ′, Ψj ← {w|wsj ≥ lj ,w ∈ W}
3: ∀j ∈ T ′, rj ← 0

4: Â ← ∅
5: t ← 0 � Only for indexing iterations
6: while T ′ �= ∅ do
7: t ← t+ 1
8: j∗ ← argmaxj∈T ′ p(sj , lj)
9: while Ψj∗ �= ∅ and task j∗ is unmatched do

10: w ← select(j∗,Ψj∗)
11: if w is unmatched then
12: Let w match with task j∗ in Â
13: T ′ ← T ′ − {j∗}
14: else (assume w is matched with task j)
15: if w is substitutable then
16: Let w re-match with task j∗ in Â
17: T ′ ← T ′ ∪ {j} − {j∗}
18: else if pj∗ = pj and rj∗ > rj then

19: Let w re-match with task j∗ in Â
20: T ′ ← T ′ ∪ {j} − {j∗}
21: Ψj ← Ψj − {w}
22: else
23: Ψj∗ ← Ψj∗ − {w}
24: end if
25: end if
26: end while
27: if task j∗ is unmatched then
28: if rj∗ = 0 then
29: rj∗ = 1
30: Ψj∗ ← {w|wsj∗ ≥ lj∗ ,w ∈ W}
31: else
32: T ′ ← T ′ − {j∗}
33: end if
34: end if
35: end while
36: return Â.

one task matched in A∗ but not matched in Â. Clearly, in an
augmenting path with 2k + 1 edges (k ∈ N), the number of
task nodes and worker nodes are both k + 1, and there are
exactly k tasks matched in Â and k+1 tasks matched in A∗.
It is enough to prove this lemma by showing that the graph
does not contain any augmenting path with 1 or 3 edges.

First, it is obvious that an augmenting path with 1 edge
cannot exist. If there was, the worker node and task node
would have formed a blocking pair in Â, contradicting with
that (P, Â) is stable.

Suppose that there is an augmenting path with 3 edges.
As shown in Fig 2, the solid line denotes that w and j are
matched in Â, while (w, j′) and (w′, j), represented by
dashed lines, are matched respectively in A∗ (but neither w′

nor j′ is matched in Â).
We first show wsj > w′

sj . If wsj < w′
sj , (w′, j) is a

blocking pair in Â, which is a contradiction. If wsj = w′
sj ,

w is finally substitutable. However, j′ has selected w twice,
according to Claim 12.1, which is a contradiction. We next

221



Figure 2: An augmenting path with 3 edges.

show pj > pj′ . It is trivial to see that pj < pj′ is impossible.
If pj = p′j , it is true that rj = 1, otherwise j′ would have
been matched with w. However, this contradicts with Claim
12.2 because w′ is finally unmatched. Since we have wsj >
w′

sj and pj > pj′ , (w, j) is a blocking pair in A∗, which is a
contradiction. Therefore, any augmenting path with 3 edges
cannot exist.

Claim 12.1. A worker is not substitutable after she is se-
lected (line 10) twice by the algorithm.

Claim 12.2. ∀j, if ∃w such that (1) w is substitutable or
unmatched and (2) wsj ≥ lj , we have rj = 0.

Now we show the second part based on Lemma 12. Sup-
pose there are K ≤ T unique values (i.e. prices) in P,
namely π1 ≥ . . . ≥ πK . Let Âk (or A∗

k) be the partial ap-
proximate (or optimal) allocation which only includes all
the matched worker-task pairs (w, j) that pj ≥ πk. Let
Â(k) (or A∗(k)) be the approximate (or optimal) allocation
if the input task set only includes all the tasks priced no less
than πk in T . Since the order for each task being chosen
(line 8) for the first time depends on its price, it is true that
|Âk| = |Â(k)|, according to Claim 12.3.

Claim 12.3. ∀pj′ > pj , if task j′ is matched (or unmatched)
at the moment when task j is chosen by the algorithm (line 8)
for the first time, task j′ will still be matched (or unmatched)
when the algorithm finishes.

Proof of Claim. It is easy to see that task j cannot affect j′
if pj′ > pj , except that w who is matched with j′ is substi-
tutable. In such a case, w will be re-matched with j, how-
ever, there is at least one unmatched worker available for j′,
so j′ will still be matched.

With Lemma 12, it is true that ∀k ∈ [K], 3
2 |Âk| =

3
2 |Â(k)| ≥ |A∗(k)| ≥ |A∗

k|. Introducing a dummy price
πK+1 = 0, we have that ∀k ∈ [K],

3

2
(πk − πk+1) · |Âk| ≥ (πk − πk+1) · |A∗

k|

Summing over all the K inequalities, we have:

R(P, Â) = π1 · |Â1|+
K∑

k=2

πk · (|Âk| − |Âk−1|)

≥ 2

3

(
π1 · |A∗

1|+
K∑

k=2

πk · (|A∗
k| − |A∗

k−1|)
)

=
2

3
R(P, A∗)

Proposition 13. The ratio 3
2 is tight for Algorithm 2.

Based on the approximation, we present the Stable
Mechanism with Nnon-uniform Pricing (SMNP) as follows.

Stable Mechanism with Non-uniform Pricing (SMNP)
Input T , W and h

1. ∀s ∈ [S]: (1) pick up an integer ks uniformly and indepen-
dently sampled from {0, . . . , 	log h
}, and (2) ∀l: p(s, l) ←
2ks ;

2. Run Algorithm 2 to compute Â;

Output: P and Â.

Theorem 14. SMNP is polynomial, truthful and IR. SMNP
has (3 + 3 log h)-guarantee on revenue if vj ∈ [1, h], ∀j ∈
[T ].

Proof. According to Lemma 10, (P, Â) is stable, and Â can
be computed in polynomial time. SMNP is IR since task j
will never be charged more than cj (line 1 in Algorithm 2).
The proof of truthfulness is similar to the proof that SMUP
is truthful in Lemma 7, thus we omit it.

We next prove the (3 + 3 log h)-guarantee on revenue in
two steps. In the first step, we show that if we knew (but in
fact we do not know) the optimal stable pricing-allocation
pair (P∗, A∗), we could have constructed Ã satisfying that:
given any P chosen at random (as SMNP does), (1) (P, Ã )
is feasible but not necessarily stable and (2) E[R(P, Ã)] ≥
R(P∗,A∗)
2+2 log h . In the second step, we show that we could con-

struct A′ from Ã such that (P, A′) is stable and R(P, A′) ≥
R(P,Ã)

2 . Let A∗
P be the optimal solution to the allocation

problem given P, so we have R(P, A∗
P) ≥ R(P, A′). Ac-

cording to Theorem 11, we have 3
2R(P, Â) ≥ R(P, A∗

P),
so we have E[R(P, Â)] ≥ R(P∗,A∗)

3+3 log h . Since according to

Lemma 10, we can compute Â in polynomial time, the proof
is completed. Next, we show the proof for the two steps.

In the first step, we show that given P, we could construct
Ã from A∗ as follows: (1) discard any task j that cj < pj ;
(2) for all the remaining matched tasks in A∗, match them
with the same workers as A∗ does.

Claim 14.1. E[R(P, Ã)] ≥ R(P∗,A∗)
1+log h .

Proof of Claim. Let Rs(P, Ã) denote the revenue con-
tributed by all the tasks requiring skill s, i.e. R(P, Ã) =
∑S

s=1 Rs(P, Ã). Since for any s, ks is sampled indepen-
dently, E[R(P, Ã)] =

∑S
s=1 E[Rs(P, Ã)]. The proof that

∀s, E[Rs(P, Ã)] ≥ Rs(P
∗,A∗)

1+log h is similar to the proof for the
lower bound of expected revenue of the randomized uniform
pricing in Lemma 8, thus omitted.

However, (P, Ã) is not necessarily stable because Ã is not
necessarily monotone. In the second step, we show that Al-
gorithm 3 uses a simple greedy method to construct A′ from
Ã and P such that (1) (P, A′) is stable; and (2) R(P, A′) ≥

222



R(P,Ã)
2 . Note that, this method is merely for proving the ex-

istence of A′, so instead of analyzing time complexity, we
only need to prove that it will always halt in Claim 14.2.

Algorithm 3 Stability Adjustment 2

Input: T , W , P and Ã
Output: A′

1: A′ ← Ã
2: while there is a blocking pair (w, j) in (P, A′) do
3: Update A′ by matching w with j
4: end while
5: return A′.

Claim 14.2. Algorithm 3 always halts in finite iterations.

Claim 14.3. R(P, A′) ≥ R(P,Ã)
2 , and (P, A′) is stable

Proof of Claim. Since the algorithm always halts accord-
ing to Claim 14.2, (P, A′) is stable. We next show that
R(P, A′) > R(P,Ã))

2 . The loss of revenue might occur only
when we re-match w and j (line 3) in A′ if w and j were
both matched (with others) before this re-match. In the worst
case, w was matched with j′ and j was matched with w′ in
Ã, but after the re-match, j′ is finally matched in A′. In such
a case, we lose the revenue pj′ but guarantee the revenue pj .

Since pj′ < pj , the total loss of revenue is less than R(P,Ã))
2 ,

thus proving the claim.

In this section, we presented SMUP and SMNP. Due to
the NP-hardness of allocation problem for non-uniform pric-
ing, the revenue guarantee of SMNP is slightly worse than
SMUP. As we show through experiments, SMNP and SMUP
generate nearly the same revenue but SMNP is more robust.
We also tried to assign different prices over different levels
of a skill, however, this strategy makes the guarantee worse,
which is omitted here.

Online Truthful Mechanism

In this section, we present an online truthful stable mecha-
nism. We assume that the market runs in M rounds, and the
pricing and the allocation are static. That is, if we fix the
price p(s, l) in round m, we cannot change it in later rounds.
Similarly, if we match a worker and a task in round m, we
cannot re-match or unmatch them in later rounds. We require
global stability. Let P be the pricing. Let Am be the alloca-
tion in round m and A be the global allocation during all
the M rounds, i.e. A =

⋃M
m=1 Am. We require not only (P,

Am) to be stable ∀m ∈ [M ], but also (P, A) to be stable.
Under these constraints, it is easy to see that if workers

arrive online, there is no stable mechanism. So we study
the case where all the workers are present in the first round
but tasks arrive online. In this setting, task j needs to re-
port two additional parameters aj and dj where aj ≤ dj ∈
[M ] to the market. They denote the arrival and departure
time respectively, i.e. the market can match j in any round
m ∈ {aj , . . . , dj}. Let mj be the round that j gets matched,

aj and dj be the private time parameters owned by j. The
utility function becomes: uj = vj · 1(wsj

≥ lj ∧ mj ∈
{aj , . . . , dj}) − p(sj , lj) if j is matched with w; otherwise
uj = 0. Besides misreporting sj , lj and vj , task j can strate-
gically choose the time to appear in the market. As it is
natural in online mechanism design, we adopt a restricted
misreporting model where we assume no early arrival but
unrestricted departure, i.e. j may report any aj ≥ aj . This
assumption is practical because aj can be viewed as the ear-
liest time that the employer realizes he needs to solve a task.

We have not found any mechanism with non-uniform
pricing that is simultaneously stable, truthful and with non-
trivial revenue guarantee. So we present the Online Stable
Mechanism with Uniform Pricing (OSMUP) as follows.
Let MaxFlow(W , T , p) denote the maxflow algorithm in
Lemma 4 with inputs W as the worker set, T as the task set
and p as the uniform pricing respectively. Let StableAdjust-
ment(W , T , Ã) denote the stable-adjustment in Algorithm 1
with W , T and Ã as input. Let Tm be the set of tasks that
arrive in round m (i.e. aj = m).

Algorithm 4 OSMUP
Input: W and T1, . . . , TM in sequence
Output: p and A1, . . . , AM

1: W1 ← W
2: Sample k from {0, . . . , 	log h
} and ∀s, l, p(s, l) ← 2k

3: for m ∈ [M ] do

4: Ãm ← MaxFlow(Wm, Tm, p)
5: Am ← StableAdjustment(Wm, Tm, Ãm)
6: Wm+1 ← Wm − {w|w is matched in Am}
7: end for
8: return p and A1, . . . , AM

Theorem 15. OSMUP is polynomial, truthful and IR.
OSMUP has (2+2 log h)-guarantee on revenue if ∀j ∈ [T ],
vj ∈ [1, h].

OSMUP is obviously polynomial and IR. We prove the
stability in Lemma 16, the (2+2 log h)-guarantee on revenue
in Lemma 17 and the truthfulness in Lemma 18 respectively.

Lemma 16. (p, A) is stable where p is the uniform pricing
of 2k where k is sampled from {0, . . . , �log h	}.

Proof. Let T (m) be the set of all the tasks that aj ∈ [m],
i.e. T (m) =

⋃m
i=1 Ti. Let A(m) be the union of allocations

for the first m rounds, i.e. A(m) =
⋃m

i=1 Ai.
To prove the lemma, it is enough to prove the claim that

∀m ∈ [M ], (p, A(m)) is stable w.r.t. W and T (m). Accord-
ing to Theorem 3, it is true that ∀m ∈ [M ], (p, Am) is stable
w.r.t. Wm and Tm, which immediately implies the case when
m = 1, i.e. (p, A(1)) is stable w.r.t. W and T (1) . We next
prove that for any m = 1, . . . ,M − 1, if (p, A(m)) is stable
w.r.t. W and T (m), (p, A(m+1)) is also stable w.r.t. W and
T (m+ 1). For any (w, j) that w ∈ W and aj ≤ m, it can-
not be a blocking pair. For any (w, j) that w ∈ Wm+1 and
aj = m+ 1, it cannot be a blocking pair. It is only possible
that there exists a blocking pair (w, j) that w ∈ W \Wm+1

and aj = m+1. However, ∀w ∈ W \Wm+1, w is matched

223



in Am, so she cannot prefer a different task because of the
uniform pricing, thus completing the proof.

Lemma 17. OSMUP has (2+2 log h)-guarantee on revenue
if ∀j ∈ [T ], vj ∈ [1, h].

Proof. Assuming that we have randomly generated the uni-
form pricing p. Let A∗

p be the optimal allocatio given p if
all the tasks are present in the first round. So (p, A∗

p) is ex-
actly the offline mechanism (SMUP), which has (1+ log h)-
gurantee on revenue according to Lemma 8. It is enough
to prove this lemma by showing that |A| ≥ 1

2 |A∗
p| where

A =
⋃M

m=1 Am, which is implied by the following claim
(which is proved as Theorem 2.5 in (Manlove et al. 2002)).

Claim 17.1. (Manlove et al. 2002) For any stable matching
problem, the size of the largest matching is at most twice the
size of the smallest.

Since (p, A) and (p, A∗
p) are both stable w.r.t. W and T ,

according to Claim 17.1, we have |A| ≥ 1
2 |A∗

p|.

Lemma 18. Reporting (aj , dj , sj , lj , vj) truthfully is the
dominant strategy for task j.

Proof. The proof of the truthfulness of sj , lj and vj is sim-
ilar to the proof for Lemma 7, thus omitted here. We show
the proof of the truthfulness of aj and dj . First, reporting
dj truthfully cannot make the task worse off because the
pricing and allocation are independent of dj . Due to the
assumption of no early arrival, we only consider reporting
aj ∈ {aj+1, . . . , dj}. Since the pricing is uniform, we only
need to show that if reporting aj cannot make j matched,
reporting aj cannot either, which is proved by the follow-
ing arguments. Since j is not matched in round aj , it is true
that in Waj

, there is no worker qualified for j. Since Wm is
non-increasing over all the M rounds, there is no qualified
worker in Waj+1, . . . ,WM either. So reporting aj cannot
make j matched if reporting aj cannot.

Experiments

In this section, we use real price data from Amazon Mechan-
ical Turk and synthetic skill data to evaluate the two offline
stable mechanisms SMUP and SMNP, and the online stable
mechanism OSMUP.

Dataset. We use the API8 (Ipeirotis 2010) to crawl 46309
tasks from Amazon Mechanical Turk (HIT) and their prices.
We discard the long tail (< 5%), i.e. any task priced no less
than 1000 cents. Let D be the price pool containing all the
remaining 44043 tasks priced between 1 and 999 cents. We
plot the price distribution of D in Fig 3a where (x, y) de-
notes that y is the accumulated percentage of tasks priced no
more than x cents.

8http://www.mturk-tracker.com/#/general

(a) (b)

Figure 3: (a) Distribution of task prices; (b) Distributions of
revenue ratios

However, the tasks from AMT do not contain skill or level
information. So we create synthetic skills and levels. To ran-
domly generate input instances of the pricing problem, we
set h to 999, S to 100, and L to 10 where L is the maximum
level of a skill. For each task j, we uniformly and indepen-
dently sample sj from [S], lj from [L] and cj from the price
pool D with replacement. For each worker, we randomly as-
sign her k ∈ {1, . . . , 5} skills, each of which is at the level
sampled independently from [L]. We generate two types of
instances, the instance of small size where W = T = 1000,
and the instance of large size where W = T = 100000.

SMUP vs SMNP. In this part, we evaluate how the choice
of pricing, i.e. uniform and non-uniform, impacts the rev-
enue. In fact, we have not found any polynomial time so-
lution to the pricing problem (i.e. the offline optimization
problem without truthfulness). But we find that computing
the optimal uniform pricing and its corresponding allocation
is an O(logmin{W, T })-approximation. Clearly, it is not
truthful, but produces a revenue no less than the revenue of
SMUP which uses randomized uniform pricing. However,
this method, as an approximately optimal baseline, needs to
run the maxflow in Lemma 4 and the stable-adjustment in
Algorithm 1 by O(T ) times. So we generate 10000 instances
of small size for evaluations.

For each case, we use R∗, Ru and Rn to denote the rev-
enue generated by the baseline, SMUP and SMNP respec-
tively. Let ru = Ru

R∗ , and rn = Rn

R∗ be the revenue ratios
of SMUP and SMNP respectively. We plot the CDFs of the
two revenue ratios in Fig 3b where (x, y) denotes that there
are y percentages of instances that ru ≤ x (or rn ≤ x).
The mean values of ru and rn over the 10000 cases are very
close, i.e. μ(ru) = 0.435 and μ(rn) = 0.431, while their
standard deviations differ significantly, i.e. σ(ru) = 0.31
and σ(rn) = 0.06. This means that, although theoretically
SMUP has (1 + log h)-guarantee on revenue while SMNP
only has (3 + 3 log h)-guarantee, in practice, they produce
nearly the same revenue. However, SMNP is more robust
than SMUP. So we recommend SMNP.

Besides revenues, we also analyze matching size, i.e. the
number of matched worker-tasks pairs. We have highly sim-
ilar observations. Let mu and mn be the number of matched
worker-task pairs in SMUP and SMNP respectively. We
have μ(mu) = 457, μ(mn) = 445, σ(mu) = 382.3 and
σ(mn) = 39.2, which again shows that they have similar
performance in practice, but SMNP is more robust.

224



We also analyze the revenue and matching size over 1000
input instances of large size. In such cases, R∗ is not able to
compute, so we directly compare Ru and Rn. We observe
nearly the same patterns: (1) the mean of revenue of SMNP,
i.e. μ(Rn), is slightly (≈ 0.8%) higher than that of SMUP,
i.e. μ(Ru); and (2) the standard deviation of Ru is 9.7 times
as the standard deviation of Rn.

SMUP vs OSMUP. In this part, we evaluate the online
stable mechanism OSMUP. We use SMUP as the baseline.
We consider 1000 instances of large size. Within each in-
stance: we randomly generate the same uniform pricing for
both OSMUP and SMUP; we assume that the market runs in
100 rounds, and randomly assign the arrival time aj ∈ [100]
to each task j. Let Ro denote the revenue produced by
OSMUP, and we are particularly interested in the relative ra-
tio Ro

Ru
where Ru is revenue of SMUP. Among all the 1000

cases, the least revenue ratio is 0.733; there are 75.0% cases
with the ratio at least 0.95; the average ratio is 0.948, much
larger than the theoretical guarantee which is 0.5 according
to Claim 17.1.

Conclusions

We addressed the pricing problem, in particular, revenue
maximizing stable pricing in online labor markets. We pre-
sented three efficient truthful stable mechanism with prov-
able guarantees on revenue. We believe that there is a real
need to further study and improve mechanisms for pricing
and allocation of workers and tasks based on fairness since
many online labor markets rely on such mechanisms.

References

Balcan, M.-F.; Blum, A.; and Mansour, Y. 2008. Item pricing
for revenue maximization. In EC.
Cheung, M., and Swamy, C. 2008. Approximation al-
gorithms for single-minded envy-free profit-maximization
problems with limited supply. In FOCS.
Crawford, V. P., and Knoer, E. M. 1981. Job matching with
heterogeneous firms and workers. Econometrica.
Demange, G., and Gale, D. 1985. The strategy structure of
two-sided matching markets. Econometrica.
Feldman, M.; Fiat, A.; Leonardi, S.; and Sankowski, P. 2012.
Revenue maximizing envy-free multi-unit auctions with bud-
gets. In EC.
Gale, D., and Shapley, L. S. 1962. College admissions
and the stability of marriage. The American Mathematical
Monthly.
Goel, G.; Nikzad, A.; and Singla, A. 2014. Mechanism de-
sign for crowdsourcing markets with heterogeneous tasks. In
HCOMP.
Gul, F., and Stacchetti, E. 1999. Walrasian equilibrium with
gross substitutes. Journal of Economic theory.
Guruswami, V.; Hartline, J. D.; Karlin, A. R.; Kempe,
D.; Kenyon, C.; and McSherry, F. 2005. On profit-
maximizinhard variants of stable marriageg envy-free pric-
ing. In SODA.

Gusfield, D., and Irving, R. W. 1989. The Stable Marriage
Problem: Structure and Algorithms.
Halldórsson, M. M.; Irving, R. W.; Iwama, K.; Manlove,
D. F.; Miyazaki, S.; Morita, Y.; and Scott, S. 2003. Ap-
proximability results for stable marriage problems with ties.
Theoretical Computer Science.
Hartline, J., and Yan, Q. 2011. Envy, truth, and profit. In EC.
Hatfield, J. W., and Milgrom, P. R. 2005. Matching with
contracts. The American Economic Review.
Ho, C.-J., and Vaughan, J. W. 2012. Online task assignment
in crowdsourcing markets. In AAAI.
Ho, C.-J.; Jabbari, S.; and Vaughan, J. W. 2013. Adaptive
task assignment for crowdsourced classification. In ICML.
Ipeirotis, P. G. 2010. Analyzing the amazon mechanical
turk marketplace. XRDS: Crossroads, The ACM Magazine
for Students.
Irving, R. W. 1994. Stable marriage and indifference. Dis-
crete Applied Mathematics.
Iwama, K., and Miyazaki, S. 2008. A survey of the stable
marriage problem and its variants. In ICKS.
Iwama, K.; Miyazaki, S.; Morita, Y.; and Manlove, D. 1999.
Stable marriage with incomplete lists and ties. In ICALP.
Iwama, K.; Miyazaki, S.; and Yamauchi, N. 2007. A 1.875:
approximation algorithm for the stable marriage problem. In
SODA.
Kelso Jr, A. S., and Crawford, V. P. 1982. Job matching,
coalition formation, and gross substitutes. Econometrica.
Király, Z. 2013. Linear time local approximation algorithm
for maximum stable marriage. Algorithms.
Kovács, P. 2015. Minimum-cost flow algorithms: an experi-
mental evaluation. Optimization Methods and Software.
Leonard, H. B. 1983. Elicitation of honest preferences for
the assignment of individuals to positions. The Journal of
Political Economy.
Manlove, D. F.; Irving, R. W.; Iwama, K.; Miyazaki, S.; and
Morita, Y. 2002. Hard variants of stable marriage. Theoreti-
cal Computer Science.
Mcdermid, E. 2009. A 3/2-approximation algorithm for gen-
eral stable marriage. In ICALP.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V.
2007. Algorithmic game theory, volume 1. Cambridge Uni-
versity Press Cambridge.
Shapley, L. S., and Shubik, M. 1971. The assignment game
i: The core. International Journal of game theory.
Singer, Y., and Mittal, M. 2011. Pricing tasks in online labor
markets. In HCOMP.
Singer, Y., and Mittal, M. 2013. Pricing mechanisms for
crowdsourcing markets. In WWW.
Yin, M., and Chen, Y. 2015. Bonus or not? learn to reward
in crowdsourcing. In IJCAI.
Yin, M.; Chen, Y.; and Sun, Y.-A. 2013. The effects of
performance-contingent financial incentives in online labor
markets. In AAAI.

225


