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Abstract

The cost of data acquisition limits the amount of labeled data
available for machine learning algorithms, both at the train-
ing and the testing phase. This problem is further exacer-
bated in real-world crowdsourcing applications where labels
are aggregated from multiple noisy answers. We tackle clas-
sification problems where the underlying feature labels are
unknown to the algorithm and a (noisy) label of the desired
feature can be acquired at a fixed cost. This problem has two
types of budget constraints — the total cost of feature labels
available for learning at the training phase, and the cost of
features to use during the testing phase for classification. We
propose a novel budgeted learning and feature selection al-
gorithm, B-LEAFS, for jointly tackling this problem in the
presence of noise. Experimental evaluation on synthetic and
real-world crowdsourcing data demonstrate the practical ap-
plicability of our approach.

Introduction
Data acquisition is a costly and time-consuming process
in many real-world applications including crowdsourcing,
medical diagnosis, and sensor data aggregation. Further-
more, the acquired labels can be noisy due to imperfect
answers from the crowd or noisy sensor measurements. In
these applications, the performance of machine learning al-
gorithms depends crucially on acquiring the most informa-
tive data in a cost-effective way. This motivates the need for
designing algorithms that can satisfy budget constraints on
the cost of data acquisition and are robust to noisy labels at
the same time.
Budget constraints at training phase. We study feature-
based classification problems for which the feature labels
are unknown in the training phase, which is a commonly en-
countered setting in crowdsourcing (Welinder et al. 2010b).
The algorithm can acquire the label of a desired feature for
an instance and each such label has a fixed cost. However,
there is a budget constraint for the training phase that limits
the total cost of data acquisition by the algorithm. The end
goal is to acquire the most informative labels to learn a clas-
sifier with low generalization error. This notion of budget
constraint is different the one usually considered in active
learning (Settles 2012). In active learning, the feature labels
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for all training instances are known and the budget constraint
bounds the cost of acquiring class labels. Also, the data ac-
quisition is more fine-grained in our settings since the al-
gorithm can pick any specific training instance and acquire
only a desired set of features. In practical terms, the bud-
get constraints at the training phase map to the amount of
budget that can be used in order to train a classifier before
employing it to classify new instances.
Budget constraints at testing phase. To perform classifi-
cation at the testing phase, the algorithm again needs to ac-
quire the feature labels for the test instance. This is often
the case in many classification problems where the feature
values need to be collected at a given cost for every new in-
stance and can not be computed automatically. For example,
in crowdsourcing prediction markets, medical diagnosis, and
sensor data aggregation, new predictions in the testing phase
are mostly based on newly acquired data for the specific in-
stance that needs to be classified.

This naturally leads to a budget constraint at the testing
phase, which in practice bounds the cost of making a pre-
diction, often tackled implicitly via feature selection tech-
niques. However, current techniques for budgeted learning
and feature selection (as well as the respective budget con-
straints) have been studied and designed independently from
each other. Several methods apply feature selection strate-
gies only after the labels have been collected for all features
during the training phase, which can be prohibitively expen-
sive especially if the number of initial candidate features is
high. Then, after learning the predictive parameters of all the
features, the least informative features are discarded to re-
duce the cost of predictions at the testing phase (Hall 2000;
Guyon and Elisseeff 2003; Veeramachaneni, Olivetti, and
Avesani 2006). In this work, we consider both the con-
straints simultaneously while learning a classifier.
Noisy labels. The problem of learning with budget con-
straints at the training phase has been formerly studied in a
noise free setting for learning Naı̈ve Bayes classifiers (Deng
et al. 2013; Kapoor and Greiner 2005; Lizotte, Madani, and
Greiner 2003). However, the proposed algorithms assume
that the feature labels are noise-free, which is an unrealistic
assumption for real-world applications. Hence, it is necces-
sary to support more robust learning models for handling
noise, which further exacerbates the challenges arising from
the above mentioned budget constraints.
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Figure 1: Example of feature-based crowdsourced predic-
tions.

Figure 1 shows an example of making predictions from
crowdsourced feature labels under budget constraints.
Example 1. FEATURE-BASED CROWDSOURCED PREDICTIONS

Imagine a company that produces various types of cam-
eras and wants to implement a new strategy for predict-
ing the overall success of its new products based on the
customer evaluation of different product features: price for
value, menu usability etc. The sales team collects this data
via (paid) customer surveys on specific features. However,
long surveys are cumbersome and time-consuming for the
customers to complete. Moreover, some of the candidate fea-
tures may be redundant / uninformative, and the evaluation
from the customers may be noisy due to subjectivity or hu-
man error.

Given that there is no previous data available, the com-
pany: (i) has a limited budget for collecting data to train
a model from its current products (i.e. training budget con-
straint), and (ii) prefers to have only a limited number of
features in the surveys for the future products (i.e. testing
budget constraint). Therefore, the questions of the sales team
for this problem are:
Q1. What data should be collected in order to build a good
training model?
Q2. Which features should be included in the final survey
for predicting the customer satisfaction from new products.
Similar questions arise in numerous other problems of mak-
ing predictions based on crowdsourced feature labels. Anal-
ogous applications include medical diagnosis and sensor
data aggregation, where the budget constraints respectively
relate to the cost of medical tests or sensor measurements.
Our contributions are as follows:
• We propose a novel learning algorithm, B-LEAFS, to

jointly tackle the problems of Budgeted Learning and
Feature Selection for training and testing classifiers that
are robust to noisy feature labels.
• B-LEAFS operates in a Bayesian framework, and main-

tains posterior distributions over all model parameters,
thereby enabling us to capture the uncertainty in the
model parameters about individual features. The algo-
rithm makes greedy decisions for selecting the next fea-
ture label to acquire by exploiting the submodularity of
information gain from a feature, conditioned on the cur-
rent state of learning. In addition, it effectively balances
exploration and exploitation by employing Thompson
sampling (Thompson 1933).
• We perform extensive experiments, both on synthetic as

α θy y xi θyi βyi

i ∈ [1, . . . , N ] features

Figure 2: Naı̈ve Bayes model.

well as real-world crowdsourcing data, and compare it
with state-of-the-art baselines.

Learning Models and Problem Statement
The problem of budgeted learning and feature selecion is
tied to the specific classification model that needs to be
trained. The goal is to learn a good classifier on a given
budget. This section introduces the two models based on
which we build our algorithm: Naı̈ve Bayes model (Lowd
and Domingos 2005), and Access Path model (Nushi et al.
2015) as a representative of models that handle crowdsourc-
ing errors. Later, we formally define our problem in the con-
text of these two models.

Feature-based classification models
Naı̈ve Bayes model. Figure 2 shows the plate representa-
tion of a Naı̈ve Bayes classifier. Each training instance in the
Naı̈ve Bayes model is characterized by a class / task variable
Y taking values in the domain Y , and a set ofN feature vari-
ables X = {X1, . . . , XN}. The Naı̈ve Bayes model consid-
ers a noise-free setting, where each feature label is observed
exactly once and its value is considered to be correct.
θy and θyi denote the underlying probability distributions

for the task variable and the feature variables respectively.
In this work, we will deal with categorical tasks and fea-
tures. Therefore, θy and θyi are both modeled as Dirichlet
distributions, where α and βyi are the corresponding hyper-
parameters. We assume uniform hyperparameters on all the
variables. The goal of training in this model is to learn the
conditional probabilities of each feature given the task, i.e.
p(Xi|Y = y, βyi, D) where D is the set of feature labels
that have been collected so far. These probabilities corre-
spond to the maximum a posteriori (MAP) estimates (Lowd
and Domingos 2005) and can be computed exactly when Y
is also fully observable (i.e. there exists a ground truth for the
final task). Otherwise, alternative expectation-maximization
(EM) techniques (Dempster, Laird, and Rubin 1977) can be
employed to estimate parameters. Predictions are then per-
formed via Bayesian Inference.

The main assumption in this model is the conditional in-
dependence of the feature variables given the task. The as-
sumption may not always hold true due to possible correla-
tions between features. This can lead to Naı̈ve Bayes pre-
dictions being overconfident when features are not carefully
engineered beforehand which further motivates the need for
feature selection.
Access Path model. As mentioned earlier, the Naı̈ve Bayes
model handles a single label per feature for a given instance
which is considered to be correct. In crowdsourcing set-
tings where the labels acquired from the workers may be

160



α

θy y zi

θyi βyi

xij θzij γzij

j ∈ [1, . . . ,W ] workers

i ∈ [1, . . . , N ] features

Figure 3: Access Path model.

noisy, it is common to ask the same question / label to mul-
tiple workers to ensure quality. In order to support such
noisy labels, we adapt the Access Path model from Nushi
et. al (2015) as shown in Figure 3 — a natural extension
to Naı̈ve Bayes while being able to handle multiple (possi-
bly noisy) labels per feature. The main benefit of this model
is that it decouples the noise / information that inherently
comes with the features (i.e. p(Zi|Y = y, βyi, D)) from the
noise / information that is further introduced by the work-
ers (i.e. p(Xij |Zi = z, γzij , D)) by introducing a middle
layer of latent variables Zi for i ∈ 1 . . . N . Similar to Dawid
and Skene (2015), learning is performed via an expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin
1977), while inference during the prediction step marginal-
izes over the latent feature variables. Due to the high sparsity
of worker participation, this model shares the parameters for
the workers within the same feature, which was shown to
improve the accuracy of predictions. We follow the same
guideline in our experiments as our algorithm runs in train-
ing time where the data sparsity is even higher. Neverthe-
less, if it is known that some of the workers have a sufficient
participation to accurately estimate their quality, the model
could be further extended to differentiate such workers from
the rest by not sharing the θzij parameters.

This design was originally proposed to represent groups
of correlated worker answers (i.e. access paths), with the
goal of optimizing the prediction costs. In our work, we
leverage this model by adapting the notion of worker groups
to represent classification features.

Problem statement
We study feature-based classification problems for which
the task label Y = y is known during the training phase, and
needs to be predicted by the classifier at the testing phase.
The feature labels are unknown for both the training and test-
ing instances and can be acquired at a given cost. In practice,
there are various problems for which this assumption holds.
In Example 1 for instance, the company may already know
the success rate of previous products but it may not know the
values of individual features and which ones are most infor-
mative for predicting the success of new products. Another
example is animal species recognition in images as we show
in our experiments. For this problem, one can bootstrap a
classifier with training examples for which the species in the
image is already known but the visual feature labels need to
be determined.

Consider a Naı̈ve Bayes model withN conditionally inde-
pendent feature variables X = {X1, . . . , XN} as presented
in Figure 2. At the beginning, the classifier has no knowl-
edge about the underlying parameters of θyi, and we initial-
ize them from the hyperparameters βyi. At a given time, a
new feature label is acquired (Y = y,Xi = xi) for the
feature Xi on a task with label Y = y. Based on this la-
beled instance, the algorithm can update the distributions
θyi. For illustration purposes, let us consider the following
example: Suppose Xi is a feature variable that takes values
in the domain {a, b, c} while the task variable Y takes bi-
nary values {yes, no}. The current state of the model has
θyes,i ∼ Dir(3, 2, 5). After observing a new labeled in-
stance (y = yes,Xi = b) the posterior distribution will
shift to the new state θyes,i ∼ Dir(3, 3, 5).

In the context of the Access Path model shown in Fig-
ure 3, the algorithm acquires labels to learn the distributions
of both the features (θyi) and the crowd workers (θzij) at
the same time. As it is usually the case in crowdsourcing, on
each feature observation we ask a total number of W differ-
ent crowd workers. This will lead to a cost reduction of W
from the available budget B.
Budget B at the training phase. First, the goal of budgeted
learning is to learn the model parameters during the training
phase under a given budget constraint B, with the goal of
minimizing the classification error during the testing phase.
The budget here limits the number of acquired labels repre-
sented by the labeled set D such that |D| ≤ B. In crowd-
sourcing applications, this maps to the number of times the
learner accesses the crowd. In Example 1, B is the number
of times the algorithm asks a customer to evaluate a cam-
era feature. While the learning problem is well understood
for infinite budget, the budgeted version is known to be NP-
HARD even for simplified variants when a feature is allowed
to be queried only once (Lizotte, Madani, and Greiner 2003).
Budget K at the testing phase. Second, the goal of fea-
ture selection is to select a set of the best K features for
classification in the testing phase where K ≤ N . Hence,
K is a budget constraint applicable to the testing phase. In
Example 1, K corresponds to the number of camera fea-
tures that will be included in the final survey design. For
the Naı̈ve Bayes model, the feature selection problem is also
NP-HARD (Feige 1998), with viable approximation guaran-
tees possible through greedy selection approaches (Krause
and Guestrin 2005b; Sviridenko 2004). To the best of our
knowledge, this is the first work that considers both chal-
lenges while learning a classifier, in both the noise-free and
noisy setting.

Budgeted Learning and Feature Selection
Existing approaches. The purpose of any budget allocation
strategy for training is to produce a classifier that in the fu-
ture is going to make good predictions. The trivial approach
would be to uniformly allocate the budget among all features
without distinguishing the good features from the bad ones.
This is also known as the ROUNDROBIN algorithm, and as
shown in our experimental evaluation and previous work, is
generally inferior to other schemes as some of the features
are more informative than others. Other strategies continue
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allocating budget to the same feature as long as this reduces
the loss on the task variable (i.e., the conditional entropy
H(Y |Xi)) after this i-th feature is observed in isolation
to the others. BIASEDROBIN (Lizotte, Madani, and Greiner
2003) is one representative algorithm in this spectrum and
was shown to be competitive (Deng et al. 2013) when there
exists only a relatively small number of candidate features.
However, for a larger number of candidates this algorithm (i)
fails to deal with correlated features, and (ii) delays the se-
lection of the best candidates. These issues are then handled
by another group of GREEDY selection methods which se-
lect in each iteration the i-th feature that reduces the overall
loss of the whole model when added to the currently selected
feature set XS (i.e., the conditional entropy H(Y |XS∪{i})).
These methods are known to be efficient with strong the-
oretical guarantees (Krause and Guestrin 2005a) for fixed
and known feature parameters learned from sufficient his-
torical data. Our work is inspired from similar greedy se-
lection techniques but adapted for the case of unknown fea-
ture parameters that are updated as the data is collected. A
closely related approach, referred to as TSGREEDY in our ex-
periments, proposed in (Schnitzler, Yu, and Mannor 2015),
employs Thompson Sampling by greedily selecting in each
iteration a whole set ofK features from a sampled model. As
discussed further during our experimental evaluation, this
approach has a high exploration cost when feature labels are
noisy and is applicable only to the Naı̈ve Bayes model.
Limitations and challenges. The fundamental issue with
the aforementioned techniques is related to the fact that the
decision-making on which feature to observe next is based
on the point estimates of the feature parameters for the fea-
ture variables Xi. If the collected data for the feature is not
sufficient, these estimates might not be good representatives
of the underlying parameter distribution. If so, the observed
value of the feature may be far away from its expected value
which can then lead to selecting non-informative features
and making wrong classifications in the testing phase.

B-LEAFS for Naı̈ve Bayes
Our approach. The key idea of our approach is to use the
posterior distributions over the parameters (e.g. θy and θyi
for Naı̈ve Bayes) in order to encode the uncertainty about the
true parameter value. Based on this Bayesian framework, we
design the B-LEAFS algorithm inspired by Thompson Sam-
pling (Thompson 1933; Agrawal and Goyal 2012), which
is a natural way to balance exploration and exploitation for
comparing various probability distributions. Next, we de-
scribe how we apply these ideas for Naı̈ve Bayes and the
Access Path model.

The B-LEAFS strategy (Algorithm 1) performs one itera-
tion per feature selection / search (Lines 10-19). The k-the
iteration is allowed to spend a maximum budget of bk = B

2k

when k − 1 number of features have already been added to
the best set. The reasoning behind this allocation is based on
the experimental observation that the early iterations of the
algorithm explore more and require more budget than the
later ones. This iteration-based constraint ensures that each
feature search does not spend more than a maximum amount
of budget before including a new item in the best set even if

ALGORITHM 1. B-LEAFS

1 Input: feature variables X = {X1, . . . , XN}
2 training budget constraint B
3 testing constraint K features
4 credibility constraint δ
5 Output: parameters θ̃ = {θ̃y, θ̃yi ∀y ∈ Y, i ∈ [1, . . . , N ]}
6 best feature set S s.t. |S| = K
7 Initialize: S = ∅, D = ∅
8 uniform priors α, β = {βyi ∀y ∈ Y, i ∈ [1, . . . , N ]}
9 for (k = 1; k ≤ K; k ++) do

10 bk =
⌊
B
2k

⌋
// B

2k−1 for k = K
11 i∗ = null
12 while (( ¬ISCREDIBLE(i∗, D, β, δ)) and (bk > 0)) do
13 θ̃ = SAMPLEMODEL(D,α, β)

14 i∗ = argmaxi∈[1,...,N ]\S IG(Y ;XS∪{i}|θ̃)
15 Draw y ∼ P (Y )
16 Observe xi∗ for a task s.t. Y = y
17 D = D ∪ {(y, xi∗)}
18 bk = bk − 1 , B = B − 1

19 S = S ∪ {i∗}
20 θ̃ = MAP(D,α, β)
21 return θ̃, S

ALGORITHM 2. SAMPLEMODEL- Naı̈ve Bayes

1 Input: collected data D, priors α, β
2 Output: parameters θ̃ = {θ̃y, θ̃yi ∀y ∈ Y, i ∈ [1, . . . , N ]}
3 Sample θ̃ ∼ P (θ|D,α, β)
4 return θ̃

the feature is not sufficiently credible. Every iteration per-
forms the following steps:
Model sampling. (Line 13) On each feature label acquisi-
tion, B-LEAFS samples a set of parameters from the current
posterior parameter distribution θ. Model sampling is essen-
tial for our method as it helps to balance exploration vs. ex-
ploitation trade-offs. The more data we observe from a cer-
tain feature, the more likely it is for the sampled parameter
to be close to its mean value. Consequently, the early deci-
sions of B-LEAFS will tend to explore more features while
the later decisions will mostly focus on exploiting the cur-
rent best ones. This is the reason why the initial iterations
require more budget than the others. For Naı̈ve Bayes, sam-
pling is trivial and is performed as in Algorithm 2. First, we
compute the Dirichlet posterior distributions θ from the fea-
ture value counts in the current dataset D, and then sample
a model θ̃ from the resulting distributions.
Submodular feature selection. (Line 14) Similar to the
Thompson Sampling algorithm, we decide on which fea-
tures to observe next based on the sampled model parame-
ters θ̃. More precisely, we select the feature i∗ that brings the
most information in addition to what the current best set S
already provides, which prevents the algorithm from includ-
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Figure 4: Example of binary parameter distributions

ing correlated features. Note that we use information gain
as a decision-theoretic objective function which has been
shown to be submodular for both the models described in the
previous section due to the feature conditional independence
assumption. The benefit of using a submodular set function
is that it enables the application of efficient greedy approx-
imation schemes (Sviridenko 2004). Moreover, information
gain can be approximately computed via sampling from the
model network as shown in (Krause and Guestrin 2005a).
Parameter credibility check. (Line 12) Before adding a
feature to the best set, B-LEAFS checks whether: (i) enough
budget has been invested for the feature search, and (ii) the
posterior distributions of this feature, θyi∗ , are sufficiently
credible and concentrated around the mean. For instance,
imagine two binary features whose conditional distribution
P (Xi|Y ) follows a Bernoulli distribution. Suppose also that
the conjugate priors for these features are Beta distributions
as shown in Figure 4. Both these distributions have a mean
value of µ = 0.5. However, Beta1 has only a few observa-
tions and the mass of distribution within a credible interval
[µ− ε;µ+ ε] as shown in the shaded area is smaller than for
Beta2. Formally, we define the credibility of a feature Xi to
be within a 2ε credibility interval around its mean as follows:

qi =
∑
y∈Y

P (Y = y)

|Xi|
∑
x∈Xi

∫ µ+ε

µ−ε
Beta(axyi, a

0
yi − axyi)dθxyi

(1)

Here, axyi is the number of times value x ∈ Xi has been ob-
served when Y = y, and a0yi is the total number of examples
for which Y = y. Note that axyi represents concentration
parameters of the Dirichlet distribution for θyi. The normal-
ization by P (Y=y)

|Xi| ensures that the credibility of the whole
feature is weighed according to the distribution of Y and the
feature variable cardinality. The function ISCREDIBLE re-
turns true if qi ≥ 1− δ, and false otherwise. The function is
generic and can use other notions of parameter concentration
such as variance.

In our implementation, we fix ε = 0.05 while varying the
credibility parameter δ according to the budget constraints.
Our initial guideline with this respect is that the algorithm
should spend more than B

N budget units on the selected fea-
tures which is the amount of budget that ROUNDROBIN would
use. Without making any assumptions on the conditional dis-
tribution of P (Xi|Y ), one can compute a corresponding δL
value for this guideline. Furthermore, one can also compute

k #observations per feature Selected features (S)

1 4 5 7 5 3 6 2 28 {X8}

2 20 34 14 14 13 10 12 28 {X2, X8}

3 36 34 16 19 16 13 15 28 {X1, X2, X8}

4 36 34 19 32 20 13 18 28 {X1, X2, X4, X8}

Table 1: Example of running B-LEAFS on the nursery
dataset for B = 200 and K = 4. The optimal set
of features without training phase budget constraints is
{X1, X2, X4, X8}.

a corresponding δU value for the ideal case when the algo-
rithm would spend on average a budget of B

K on each se-
lected feature. The closer δ is to δU , the tighter the credibility
requirements are. As the algorithm also requires budget for
exploration, δU is an unrealistic requirement. In our experi-
ments, we observe that δ = δU−δL

2 is sufficiently stringent
to detect informative features.

Discussion. The B-LEAFS algorithm is based on a generic
class of greedy selection algorithms for maximizing mono-
tone submodular set functions (Sviridenko 2004; Feige
1998). The crucial difference here is that the objective func-
tion (i.e. information gain in our case) is computed on the
sampled model for balancing exploration and exploitation.
The data collection then (Line 17) follows a traditional
greedy selection, while the feature selection (Line 19) in-
stead appends new features only when they are sufficiently
credible, which is the major distinction of B-LEAFS from the
traditional Thompson Sampling algorithm. Both decisions
are guided by the marginal increase of information gain af-
ter observing one additional feature value.

Example 2. In Table 1 we show an example of running
B-LEAFS on the nursery dataset from the UCI repository
(Blake and Merz 1998). In this example we required the
algorithm to spend a maximum budget of B = 200 while
selectingK = 4 (out of 8) features. Each element in the col-
lected data vector represents the number of times a feature
has been observed. The algorithm adds one feature per iter-
ation (marked in gray) in the set S and most of the budget
is spent in the first two iterations of the algorithm. After the
last iteration, the algorithm manages to recover the optimal
set of features {X1, X2, X4, X8}which is the set of features
that would have been selected from a model trained with all
the available data in the dataset. Note that the amount of data
assigned to the algorithm in this case (B = 200) is only 2%
of the overall data available in nursery.

B-LEAFS does not spend more budget on a feature once
the feature has been added to S. One could observe that the
final model θ could still benefit from reaccessing such fea-
tures for further improving their parameters. However, once
the best set of features is known, such refinements can be
achieved in a more cost-efficient way by periodically retrain-
ing the model with new instances in the testing phase.
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ALGORITHM 3. SAMPLEMODEL- Access Path model
1 Input: collected data D, priors α, β, γ
2 Output: parameters θ̃ = {θ̃y, θ̃yi, θ̃zij ∀y, z, i, j}
3 for (t = 1; t ≤ T ; t++) do
4 θ

(t)
y ∼ P (θ(t−1)y |α,D)

5 for (i = 1; i ≤ N ; i++) do
6 foreach d ∈ D do
7 z

(t)
i [d] ∼ P (Zi|θ(t−1)yi , D) //update Zi for instance d

8 θ
(t)
yi ∼ P (θyi|z

(t)
i [1 . . . |D|], βyi, D)

9 for (j = 1; j ≤W ; j ++) do
10 θ

(t)
zij ∼ P (θzij |z

(t)
i [1 . . . |D|], γzij , D)

11 return θ(t)

B-LEAFS for the Access Path model
B-LEAFS for the Access Path model follows the same struc-
ture as Algorithm 1. However, due to the introduction of the
feature layer with latent variables Zi, model sampling and
the parameter credibility check are accordingly adjusted.
Model sampling. Sampling from the Access Path model pa-
rameters entails sampling from θy , as well as θyi and θzij .
In contrast to the Naı̈ve Bayes model, here the actual counts
that involve the Zi variables cannot be observed. We over-
come this problem by applying Gibbs sampling (Geman and
Geman 1984) as a Markov Chain Monte Carlo algorithm for
computing approximate observations from a joint distribu-
tion of random variables. Gibbs sampling is a suitable choice
for the Access Path model given that the hidden variables θy ,
θyi, and Zi are characterized by conditional probability dis-
tributions as depicted in Figure 3.

As shown in Algorithm 3, we implement these ideas for
alternatively sampling: (i) the value of the latent feature vari-
ables Zi (Line 7), and (ii) the model parameters θyi and θzij
(Line 8 and 10). Each iteration samples one latent variable
at a time given the state of the rest of the other variables
present in the model. Note that the Zi feature variables need
to be sampled for all the data that has been collected so far
which requires multiple passes through the data. However,
for more practical applications, the algorithm can still bene-
fit from parallelizing sampling across features thanks to the
conditional independence assumption.
Parameter credibility check. Similar to what we discussed
earlier, B-LEAFS checks the credibility of the feature param-
eters by using the definition in Equation 1. For the Access
Path Model we ensure that both the feature and crowd pa-
rameters (θyi and θzij) satisfy this condition. Depending on
the amount of crowdsourcing redundancy W and noise, one
may also enforce different δ-credibility requirements for θyi
and θzij . For simplicity, in all our experiments we apply the
same δ to both the parameters.

Experimental Evaluation
Datasets. In this section, we show experimental results
on two types of open and publicly available data sources:

datasets from the UCI Machine Learning Repository (Blake
and Merz 1998) and the CUB-200 birds classification
dataset (Welinder et al. 2010a). Both datasets consist of cat-
egorical features and tasks. UCI datasets are labeled by do-
main experts and contain a single expert label per feature.

CUB-200 instead, was created as part of a large-scale
crowdsourced data collection for bird species recognition.
The dataset contains 6,033 images allocated over 200 differ-
ent species. There are 288 candidate binary features in to-
tal, and the authors collected 5-10 crowdsourcing labels per
feature per image. Therefore, for this task workers solved
tasks with image-related questions like: “Is the color of the
bird’s beak yellow?”. The collected answers then are used
as labels for the corresponding features. The dataset does
not have any ground truth on the true feature values. How-
ever, one can measure the amount of disagreement which is
on average 3%-10% per image. Some features have a higher
disagreement than others which can reach up to 50% for fea-
tures that are hard to distinguish.

Baselines
We compare our approach with the following three different
baselines from related work:
ROUNDROBIN (Lizotte, Madani, and Greiner 2003) uni-
formly allocates the budget across features in a round-robin
fashion, applying thereby the pure-exploration strategy.
BIASEDROBIN (Lizotte, Madani, and Greiner 2003) contin-
ues observing the same feature as long as this action reduces
the expected value of loss on the task variable, e.g. the con-
ditional entropyH(Y |Xi). Note that this notion of loss does
not take into account sets of features but only the current
feature in isolation. This may lead to selecting redundant
features that are correlated with each other. Once the ex-
pected value of the loss does not decrease anymore, the al-
gorithm starts exploring other features. Based on this design,
the approach tends to quickly exploit features that seem to be
more informative without exploring the whole candidate set.
However, this optimistic behavior may prevent the algorithm
from exploiting features that have not been encountered yet
before the budget is exhausted.
TSGREEDY (Schnitzler, Yu, and Mannor 2015) is the closest
approach to our work although it is applicable only for the
Naı̈ve Bayes model. It applies a traditional Thompson Sam-
pling algorithm which runs T = B

K iterations. Each iteration
involves three main steps: (1) model sampling (2) submod-
ular selection of K features via the GREEDY algorithm (3)
observing the K features and updating the current model. In
contrast to our approach, this algorithm selects K features
at a time and does not check the credibility of feature pa-
rameters before including them in the best set. As a result,
the algorithm has a higher exploration cost especially in the
presence of noise. For comparison purposes, we adapted TS-
GREEDY for the Access Path model by employing the same
Gibbs Sampling algorithm as in Algorithm 3.

Since none of these algorithms involve explicit feature se-
lection, for a fair comparison, we first learn a model from
the collected data and then run a submodular GREEDY fea-
ture selection scheme on the resulting model (Krause and
Guestrin 2005a) similar to the feature observation step in B-
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Algorithm #observations per feature Selected features (S) Error

ROUNDROBIN 12 11 11 11 11 11 11 11 11 {X2, X6} 0.10

BIASEDROBIN 18 10 7 16 6 15 7 18 3 {X1, X8} 0.11

TSGREEDY 6 17 13 12 2 15 4 16 15 {X2, X8} 0.08

B-LEAFS 1 45 10 0 2 38 2 1 0 {X2, X6} 0.05

Table 2: Example of running all the algorithms on the breast-cancer dataset for B = 100 and K = 2. For the same dataset,
the optimal set of features without training phase budget constraints is {X2, X3} and results to a 0.04 prediction error.

Figure 5: Budgeted learning and feature selection on Naı̈ve Bayes. B-LEAFS can make better predictions and is able to distin-
guish the most informative features. All techniques are most beneficial for tighter test budget constraint (i.e. lower K).

Figure 6: Budgeted learning and feature selection on the Access Path model. B-LEAFS outperforms the other strategies on both
synthetic and real-world crowdsourcing data. All strategies are comparable for high budget except TSGREEDY which spends a
high budget on exploration.

LEAFS (Line 14). In every step, the greedy algorithm selects
the feature i that maximizes the marginal increase in infor-
mation gain IG(Y ;XS∪{i}) after adding this feature to the
current best set.

For all experiments, we keep 80% of the data for train-
ing and 20% for testing. All methods select feature labels
from the training set and the resulting model with only the
selected features is then evaluated on the testing set. This
process is repeated 16 times for each experiment.
Example 3. To illustrate the differences between the differ-
ent approaches, in Table 2 we show an example of running
all approaches on the breast-cancer UCI dataset by as-
signing a budget constraint of B = 100 and K = 2. The op-

timal set of features for this dataset is {X2, X3}. Although
none of the methods is able to recover the full best set, the
differences between the various algorithms can be observed
in the final set of selected features S and the amount of
budget that is spent to learn each of these features in the
collected data vector. BIASEDROBIN misses the selection of
X2 as it quickly decides to exploit the previous feature. TS-
GREEDY is able to identify X2 as one of the best features but
does not spend sufficient budget on it which leads to a higher
error. In fact, the budget in TSGREEDY is more uniformly
distributed. B-LEAFS instead manages to have a lower error
rate given that it is able to better refine the parameters of the
features in S by investing more budget in them and spending
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significantly less budget in less informative features (e.g.X9

is the least informative feature here).
Evaluation on the Naı̈ve Bayes model. We first show re-
sults on the Naı̈ve Bayes model. In Figures 5(a) and 5(b)
we show the error rate of the resulting classifiers in testing
phase on two different UCI datasets while varying the train-
ing budget constraint B. The nursery dataset has N = 8
categorical features while the breast-cancer dataset has
N = 10 categorical features. B-LEAFS is able to make more
accurate predictions at a lower cost. More interestingly, for
the breast-cancer dataset it is able to identify the top
most informative features even though the best features of
this dataset are comparably informative. BIASEDROBIN in-
stead quickly overexploits some features and fails to select
the best set. Finally, TSGREEDY is slower in identifying the
best features due its longer explorative behavior.

In the experiment in Figure 5(c), we vary the testing phase
constraint K, i.e. the number of features that can be used for
prediction. In the nursery dataset, only two of the features
are informative for classification which explains why the er-
ror improvement saturates for all algorithms when K > 2.
In general, we also observe that our approach (as well as
BIASEDROBIN and TSGREEDY) are more beneficial when it
is required to select a small number of features. Otherwise,
if K is comparable to the size of the candidate set N , their
performance converges to the simplistic ROUNDROBIN.
Evaluation on the Access Path model. To evaluate our ap-
proach in a crowdsourcing setting, we initially add synthetic
noise of 30% to the UCI datasets. In the experiment shown
in Figure 6(a), for instance, we synthetically generate 5 fea-
ture labels based on the actual feature label in the dataset. In
70% of the cases, the label will correspond to the true value.
The rest of the labels, are uniformly picked from the rest
of the possible feature values. Multiclass datasets with non-
binary features like nursery are highly sensitive to such
noise. The interesting observation here is that, TSGREEDY’s
performance significantly deteriorates in noisy settings, al-
though it is fairly comparable to other baselines for noise-
free observations. B-LEAFS then is more beneficial for lower
rather than higher training budget constraints.

Figures 6(b) and 6(c) show results on the CUB-200
datasets. For brevity, we include evaluation outcomes on two
different bird species. These experiments involve one-vs-all
classification tasks for birds that belong to the same category
(e.g. different kinds of sparrows) which is a more challeng-
ing task than classifying birds that belong to different cate-
gories. For each species, we include in the candidate feature
set the top K most informative features and N − K other
randomly selected ones (N = 20). Results show that B-
LEAFS outperforms the prediction error of BIASEDROBIN. All
strategies are comparable for high budget except TSGREEDY,
which again has a long exploration phase.
Noise impact. Finally, in the experiments in Figure 11, we
study the behavior of both learning models under two dif-
ferent noise regimes: uniform noise and biased noise. For
both regimes we synthetically generate 5 feature labels for
both the training and the testing splits of the dataset. In the
uniform noise case, the label either replicates the true fea-
ture value or is uniformly picked with a varying probability

(horizontal axis) from the possible feature values different
from the true value. This simulates random but non-biased
worker mistakes. The biased noise regime instead imitates
situations when workers could have a strong bias in consis-
tently confusing the true value for another erroneous fea-
ture value. Note that, both noise regimes are present in real-
world crowdsourcing platforms. Moreover, in these experi-
ments we also show the discrepancy of the prediction error
of models trained with all the available data in the dataset
(ALL DATA) and the models trained with only the data col-
lected by B-LEAFS with a a budget constraint of B = 1000.
In both settings, we select K = 2 best features.

Figure 11(a) shows that in the uniform noise regime both
learning models have comparable accuracy when noise is
lower than 0.65. However, for higher levels of noise, the Ac-
cess Path model is able to better recover from the uniform
noise mistakes by inversely interpreting the feature labels.
Also, the B-LEAFS algorithm is able to construct a better
model if applied together with the Access Path model for
noisy feature labels. Similar observations are also depicted
in Figure 11(b) for biased noise. However, these results also
show that biased mistakes are more difficult to recover as the
biased noise may lead to the selection of a non-optimal set of
features. This explains the discrepancy between the models
built from B-LEAFS and the ALL DATA setting.

Related Work
Learning under budget constraints. Budgeted learning
has previously been studied in the context of Naı̈ve Bayes
classifiers (Deng et al. 2013; 2007; Lizotte, Madani, and
Greiner 2003). The problem is however discussed orthogo-
nal to feature selection and assumes accurate feature labels.
(Kapoor and Greiner 2005) formally define the joint prob-
lem but the proposed algorithms first learn the parameters of
the whole candidate set and then adaptively select features
via a bounded decision tree. While this adaptive approach
improves the classification accuracy, it requires a significant
amount of data for building a plausible decision tree. Re-
cently, (Kusner et al. 2014) study the optimization of the
computation time of feature extraction during training.

Another line of research is related to best-arm identifica-
tion under budget constraints (Lin, Li, and Chen 2015; Ding
et al. 2013). Nevertheless, these methods are not designed
for learning classifiers but rather for making a bounded se-
lection of actions that maximize the joint reward. Bandit al-
gorithms have been lately applied in the crowdsourcing set-
ting (Biswas et al. 2015; Zhou, Chen, and Li 2014; Tran-
Thanh et al. 2014; 2013; Abraham et al. 2013) for worker
selection purposes in the context of expert crowdsourcing.
Our work addresses similar exploration-exploitation trade-
offs related to feature selection rather than worker selection
for training and testing classifiers in a cost-efficient way. The
main difference between the two problems is the fact that
for the same example a worker can be accessed only once
while a feature can be labeled multiple times from various
workers. Both problems are however complementary to each
other and integrating both into a single framework is an im-
portant avenue for future work.

166



Yet another optimization aspect relevant to crowdsourc-
ing is related to applications where the task label is un-
known both at training and testing time and is acquired at a
given cost. Although the key ideas of B-LEAFS (i.e. model
sampling, credibility check, greedy feature selection) are
valid even for these applications, the algorithm still needs
to consider an additional cost-quality trade-off between la-
beling features for a new instance or labeling features for
instances that are already in the dataset. This problem has
been studied in recent work (Lin, Mausam, and Weld 2016;
2014) in the context of (re)active learning in crowdsourc-
ing where the task labels are unknown but the feature labels
are cost-free. Balancing this trade-off for the generic case
of unknown task and feature labels would combine related
aspects of active learning and budgeted learning.
Learning from crowdsourced data. The rapid advances
in crowdsourcing applications created new opportunities
for the community to collect and annotate data. However,
crowdsourcing processes for large-scale data acquisition
are expensive and prone to noisy annotations. This moti-
vated the need for applying active learning techniques (Lin,
Mausam, and Weld 2016; Mozafari et al. 2014; Zheng,
Scott, and Deng 2010) for reducing the cost of data col-
lection. These approaches mainly focus on actively select-
ing tasks and workers and assume that feature labels are
cost-free. The closest study to our method is presented by
(Schnitzler, Yu, and Mannor 2015). The authors propose a
traditional Thompson Sampling algorithm for selecting ob-
servations from noisy sensors. As we show in the experi-
mental section, the algorithm requires a longer exploration
phase, which increases the cost of selecting the best features.

In this work, we use the Access Path model for learning
from crowdsourced data. Similar approaches group work-
ers (Venanzi et al. 2014) and tasks (Kamar, Kapoor, and
Horvitz 2015) to overcome the challenges of data sparsity
and task-dependent biases. Furthermore, other worker se-
lection and crowd access optimization strategies (Ho, Jab-
bari, and Vaughan 2013; Karger, Oh, and Shah 2011) can be
leveraged to achieve a fine-grained optimization customized
to the pool of crowd workers.

Finally, recent work has focused on crowdsourcing fea-
ture engineering and discovery for machine learning classi-
fiers (Zou, Chaudhuri, and Kalai 2015; Cheng and Bernstein
2015; Singla, Tschiatschek, and Krause 2016). Our ideas are

complementary to feature discovery as they can be applied
to refine the learning model after obtaining a viable candi-
date feature set from the crowd.

Conclusion
In this work, we studied the problem of building machine
learning models from crowdsourced data under training
and testing budget constraints. In particular, we focused on
feature-based classification models and proposed a novel
budgeted learning and feature selection algorithm which nat-
urally balances exploration-exploitation trade-offs. This ap-
proach adaptively acquires crowdsourced feature labels for
learning classifiers that can make accurate predictions at a
lower cost. In the future, we plan to integrate these ideas
with further optimization strategies related to worker / task
selection, and provide end-to-end guidelines to the process
of learning in crowdsourcing applications.
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