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Abstract

This paper studies a new paradigm for improving the attention
span of workers in tasks that heavily rely on user’s atten-
tion to the occurrence of rare events. Such tasks are highly
common, ranging from crime monitoring to controlling au-
tonomous complex machines, and many of them are ideal for
crowdsourcing. The underlying idea in our approach is to
dynamically augment the task with some dummy (artificial)
events at different times throughout the task, rewarding the
worker upon identifying and reporting them. This, as an al-
ternative to the traditional approach of exclusively relying on
rewarding the worker for successfully identifying the event
of interest itself. We propose three methods for timing the
dummy events throughout the task. Two of these methods
are static and determine the timing of the dummy events at
random or uniformly throughout the task. The third method is
dynamic and uses the identification (or misidentification) of
dummy events as a signal for the worker’s attention to the task,
adjusting the rate of dummy events generation accordingly.
We use extensive experimentation to compare the methods
with the traditional approach of inducing attention through
rewarding the identification of the event of interest and within
the three. The analysis of the results indicates that with the
use of dummy events a substantially more favorable tradeoff
between the detection (of the event of interest) probability and
the expected expense can be achieved, and that among the
three proposed method the one that decides on dummy events
on the fly is (by far) the best.

Introduction
In many monitoring tasks, workers are requested to respond
and take action only upon identifying some rare or unusual
events that occur very infrequently (if at all) along the task.
Examples for such tasks include tracking satellite broadcasted
data with the aim of detecting events of satellite malfunction,
watching suitcases passing through an X-ray machine (e.g., at
airports) with the aim of detecting sharp objects or explosives,
network monitoring at a Network Operations Center (NOC)
with the aim of identifying service degradation or failure, and
watching streams arriving from Closed Circuit Televisions
(CCTVs) with the aim of identifying crime. The performance
of a worker in such tasks is critically correlated with the ex-
tent she is tuned to the continuous sequence of events, as even
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with the slightest loss of attention the event of interest may
be missed. Furthermore, common to all the above examples,
that the work is highly monotonous and normally workers’
attention degrade with time (Rahman 2012).

Many of these tasks can potentially be or are already
in the process of being outsourced using crowdsourcing.
This is mostly due to the ability to recruit fast-reacting paid
crowds within seconds upon demand (Bernstein et al. 2012;
Yin, Chen, and Sun 2014; Yin and Chen 2015; Doan, Ra-
makrishnan, and Halevy 2011; Bernstein et al. 2011). One
prominent example for this trend is CCTV surveillance. The
emerging globalized phenomenon of huge urban areas cov-
ered by CCTV surveillance, which initially was used mainly
in the private sector, now appears to be rapidly diffusing into
the public realm resulting in a massive amount of unwatched
or unprocessed videos (Norris, McCahill, and Wood 2004).1
In that sense, citizens monitoring of CCTV feeds is a novel de-
velopment. Trottier (2014) provides an exploratory overview
of crowdsourced surveillance of closed-circuit television
(CCTV) footage over the Internet. He considers four case
studies of UK-based crowdsourced CCTV surveillance on
the Internet, among which the most relevant to our case is In-
ternet Eyes which acts as an intermediary between businesses
that need personnel to sort through their CCTV footage, and
individuals who want to work in this area.

The common and most straightforward method for keeping
workers tuned to their monitoring task, hence increasing the
chance of identifying events of interests is rewarding workers
upon successful identification of such events (Ho et al. 2015;
Yin and Chen 2015; Yin, Chen, and Sun 2014). The proposed
reward creates an incentive to keep focused in the task, re-
gardless of how monotonous it becomes, as missing the event
of interest, e.g., because of switching to another application
while keeping the crowdsourced task in the background, is
now associated with some potential loss. The greater the
proposed reward the greater the potential loss (or “regret”
(Zeelenberg and Beattie 1997; Loomes and Sugden 1982;
Levy and Sarne 2016)) associated with missing the event of
interest and consequently the greater the incentive to keep
focused throughout the task.

1The UK is arguably the most surveilled nation via CCTV-with
approximately 1.85 million private and public cameras (Trottier
2014).
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In this paper we propose an alternative approach for over-
coming the degradation in workers’ attention span over time
in monitoring tasks. Our approach is based on intelligent in-
sertion of artificial (“dummy”) events, rewarding the worker
if successfully identifying them. Namely, the worker is told
that other than the main event of interest, there are some addi-
tional well-defined events that she should identify and report
as these encapsulate additional monetary rewards. While the
underlying idea itself is quite simple the challenging aspect
of the proposed method is the determination of when to in-
troduce dummy events. A frequent introduction of dummy
events will surely keep the worker in focus (assuming a rea-
sonable reward per dummy event identification), however at
the same time will substantial increase the expected expense
over the task overall. We propose and provide a thorough
evaluation of three methods for generating dummy events.
The first two suggest a simple scheme of introducing a pre-
specified number of dummy events either at random times or
uniformly (i.e., at fixed intervals) throughout the task. The ad-
vantage of these schemes is mainly in the bound they put on
the payment to the worker, as the number of dummy events
generated is fixed and pre-determined. The third method we
propose is inherently dynamic. It uses the dummy events
(and their identification and misidentification) for modeling
the worker’s attentional state and makes decisions concerning
the introduction of additional dummy events based on this
measure, on the fly. This way, dummy events are introduced
only when necessary, resulting in lower expected expense
overall.

To test our methods we used an online game designed in
a way that the worker’s attention to what is displayed on the
screen directly reflects on her success to identify the event
of interest. Workers, recruited through Amazon Mechanical
Turk (AMT), received a small fixed payment for participating
in the experiment, a bonus for identifying the principle event
of interest and a smaller bonus for each dummy event they
identified. The results were compared to those obtained
when not using dummy events at all and within the three
proposed methods. Overall, all three methods where found
to perform better than when not using dummy events at all,
in the sense that they provide a better tradeoff between the
expected payment for the task and the chance of identifying
the primary event of interest. Among the three methods, the
one that generates dummy events dynamically was found to
be significantly better than the other two.

Related Work
In the past decade we have witnessed a plethora of crowd-
sourcing systems (also termed collective intelligence, wiki-
nomics, crowd wisdom, human computation and more (Doan,
Ramakrishnan, and Halevy 2011)) from various application
domains (Franklin et al. 2011; Ipeirotis and Gabrilovich 2014;
Gao et al. 2011). The crowdsourcing model (Trottier 2010;
Surowiecki 2004), although novel in some important respects,
encapsulates a key question that has captured the attention
of economists, psychologists, and operations research re-
searchers for a long time—whether and how financial in-
centives can be used to motivate workplace performance
(Mason and Watts 2010; DiPalantino and Vojnovic 2009;

Finnerty et al. 2013; Kittur, Chi, and Suh 2008; Yin, Chen,
and Sun 2014). Indeed, workers sometimes are willing to
work for free, motivated by intrinsic incentive such as en-
joyment, curiosity for new knowledge (Kaufmann, Schulze,
and Veit 2011) or interests in contributing to a certain scien-
tific discipline (Mao et al. 2013). However, in most general
crowd-sourcing platforms such as Amazon Mechanical Turk,
the primary type of incentive remains the extrinsic motiva-
tion of monetary compensation (Yin and Chen 2015). Thus
the key challenge for the crowdsourcing system designer is
whether and when to offer such rewards in a working session
in order to maximize utility.

One important question that was investigated in this con-
text is the correlation (or its absence) between the payment
for a task and the effort workers put in that task. Generously
rewarding workers upon completing the task was found in-
adequate in ensuring that workers will pay much attention
while engaged with the task. In fact it has been shown that
even at low compensation rates, payment levels do not ap-
pear to affect work quality but only the quantity of tasks
workers complete (Mason and Watts 2010). Moreover, it
was shown that financial incentives can be used to trade qual-
ity for speed (Mao et al. 2013). The alternative for a fixed
payment upon completion of a task is rewarding based on
performance, which is also the approach used in this pa-
per. Here, various variants have been studied. For example,
workers can be rewarded based on “relative performance”
(also known as “crowd-sourcing contests” (Gao et al. 2012;
Feng et al. 2014)). Namely only the worker that performed
best receives rewards. Another example is rewarding for
“absolute satisfying performance” based on pre-specified cri-
teria (Ho et al. 2015). According to this method each worker
that meets the pre-specified criteria, receives the reward re-
gardless of the performance of the other workers. Within
this context Yin and Chen (2015) have suggested methods to
intelligently decide whether and when to offer such rewards
to maximize the overall utility. Their claim was that since
the performance-contingent rewards can affect the quality
of the crowd’s work, it is not necessarily always beneficial
to provide such rewards, as the potentially improved quality
comes with an increase in cost.

One important characteristic of the monitoring task con-
sidered in this paper is that it is monotonous and somehow
boring. Yin et al. (2014) dealt with the problem of a task
switching setting within a task series to diversify the work
or to avoid fatigue or boredom within a crowdsourcing plat-
form. They found that their monetary intervention scheme
that rewards a subset of tasks within a series of tasks is effec-
tive in improving work quality by the spillover effect on the
non-intervened tasks in the session, in terms of response time
and accuracy. Their solution, however, is inapplicable in our
case, as we only have a single type task and cannot switch
in-between. Another interesting work dealing with boredom
within a crowdsourcing platform (Dai et al. 2015) suggested
that diversions can help to retain workers attention. However,
the use of diversions was not suggested as a mechanism for
improving the work quality.

Another relevant line of work considers the problem of
monitoring those who monitor using a game-theoretic ap-
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proach. For example, Rahman (2012) suggests adding a
higher level or monitoring task (Rahman 2012). The differ-
ence from our work is that it considers fully rational players,
while we consider human workers that are known to act ir-
rationally (Hajaj, Hazon, and Sarne 2015; 2016; Elmalech,
Sarne, and Agmon 2016; Elmalech, Sarne, and Grosz 2015;
Elmalech et al. 2015).

Finally, some may find some resemblance between our
idea of dynamically generating dummy events in order to in-
centivize workers to focus in the task and the idea of reward
shaping used in reinforcement learning techniques (Laud
2004; Tenorio-Gonzalez, Morales, and Villaseñor-Pineda
2010). Reward shaping technique help the learning agent
or multi-agent system to develop association between an ac-
tion and its effectiveness towards the goal completion. This
way, the learning is achieved in a much faster way than the
classic reinforcement learning that mainly faces the chal-
lenges of navigating in a huge state space with no infor-
mation or using substantially large amount of experience
of the given domain (Devlin, Kudenko, and Grześ 2011;
Babes, De Cote, and Littman 2008). While the use of re-
ward shaping in reinforcement learning techniques is for
accelerating the learning convergence, in our work the use of
the reward scheme is for maintaining the worker’s attention
through the monotonous task she is engaged in.

Model
We consider settings where a monotonous task needs to be
outsourced to workers. The task requires moderate, yet con-
tinuous, attention on the worker’s side, with a very low cog-
nitive load. The measure of success for the worker is fully
based on paying attention to and identifying a well-defined
event of interest. The main characteristics of such an event
are: (i) it is rare, and (ii) it may be clearly defined for a human
but will be very ambiguous for a machine or for a computer
system. Typical tasks of the above nature include monitor-
ing (e.g., keeping track of a child playing in a playground),
surveillance (e.g., monitoring a camera at a public park to
alert in case of a crime) and reading content to ensure it does
not contain offensive words. In all these tasks, there is a very
small probability for the occurrence of one or more events
of a specific type, and the worker’s success in executing the
task exclusively depends on whether the event was identified
(if occurred).

Formally, we define the task as the identification of a well-
defined event E of duration Et starting at time t within time
interval (0, T > t) in which other various events different
than E take place. The worker controls at all times whether
her attention is placed on the outsourced task or other tasks
(that are irrelevant to the outsourced task). The worker is able
to identify the event E only if her attention is placed on the
task within the interval (t, t+ Et).

We emphasize that the above model fits both online and
offline monitoring tasks. Taking the CCTV domain as an
example, here an event can be the appearance of survivors
from a plane crash at sea in aerial videography (offline) or
the identification of theft in a convenience store (online). It is
very difficult to train a computer vision system to distinguish
between an honest buyer who is taking an item from the shelf

for legitimate reasons, and a dishonest customer intending
to steal it, or between airplane and equipment remains and
survivors (at sea).

As with most crowdsourcing platforms, our model assumes
workers can be rewarded based on well-defined criteria (e.g.,
for identifying the event of interest). Therefore, the perfor-
mance measures for mechanism aiming to incentivize work-
ers in applications of the above types is a combination of
the expected expense on a worker and the probability the
worker will identify the event of interest. In particular, we
are interested in the tradeoff between the two, meaning that
one method will be considered better than another if it can
provides a better detection probability for the same expected
expense as the other or, alternatively, if it can achieve the
same detection probability for a lesser expected expense.

Generating Dummy Events
Our proposed method for improving workers’ performance in
tasks that requires the worker’s attention relies on artificially
embedding dummy events along the task, in an intelligent
controlled manner. A dummy event is an event of interest
for which the worker is compensated if identified on time,
despite the fact that its identification is useless for the task
allocator. There are three main motivations for our use of
dummy events. First, dummy events enable the fully attentive
worker to accumulate rewards throughout the task, rather than
waiting for a single meaningful event which identification (or
lack of) completely governs the payment to be received. This
reduces the variance in the payment received and eliminates
the risk of not receiving a payment at all due to a possibly
single occurrence of not paying attention to the task for a
very short period of time. These last two properties are highly
desirable when dealing with human workers(Kahneman and
Tversky 1979). Second, with the introduction of dummy
events the task as a whole becomes more interesting to the
worker. Instead of simply staring at the screen for a relatively
long time, waiting for a meaningful event to occur, the worker
is now more active and vibrant throughout the task. Finally,
and perhaps most important, the worker’s success in spotting
any dummy event can be used as an indication for her atten-
tional state at that specific time. In particular, a failure to
identify a dummy event can indicate that the worker is now
busy doing something else (and any consecutive failure is
likely to strengthen this belief).

The introduction of dummy events throughout a task is
challenging in the sense that there are several parameters
affecting its effectiveness. An intelligent design of a dummy-
events based mechanism should properly determine the num-
ber of dummy events to introduce to workers, the timing of
the insertion of the dummy events along the task, the payment
for each successful identification of a dummy event and the
payment for the primary event of interest. This, as opposed
to only a single parameter that needs to by tuned when not
using dummy events (i.e., the payment for the primary event
of interest). Naturally, the questions relating to the magnitude
of the payment for properly identifying different event types
can be resolved experimentally, i.e., through trying different
combinations of payments, extrapolating the expected accu-
racy in identifying the primary event of interest as a function
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of the payments made. In this paper, we therefore focus on
the mechanisms for timing the insertion of the dummy events.

Two intuitive methods for generating dummy events along
the task are to spread the events evenly (uniformly) along
the task and to randomly draw the timings when such events
should appear. Both methods guarantee that the dummy
events are spread along the task to avoid long periods of
time with no dummy events (that can potentially bore the
worker and push her to abandon the task or temporarily focus
in something else). The uniform spread guarantees a more
steady flow of dummy event, hence has the benefit of con-
vincing the worker that it is beneficial to keep focused in the
task. It does, however, have a drawback in the sense that
the worker may quickly learn the dummy-event generation
pattern and consequently switch to other tasks in-between, as
she knows when the next dummy event will appear. Further-
more, once recognizing the dummy-event generation pattern
the worker will be able to assess the expected payment re-
sulting from detecting the dummy events. Since the goal at
the end of the day is to increase the attention span with a
lower effective payment overall, the worker, realizing it is not
rewarding enough, is likely to become disappointed and aban-
don the task. The second method that uses random timings
resolves this latter problem, however can lead to relatively
long periods of time where no dummy event is presented to
the worker.

In addition to the above methods, we propose a third mech-
anism that does not determine the exact times for introducing
dummy events a priori. Instead it dynamically allocates
dummy events in a way that motivates workers to stay tuned
to the task (hence we refer to it onwards as DDEA - Dy-
namic Dummy-Event Allocation). The decision to introduce
a dummy event at any given time is probabilistic, where the
probability of such event depends on the time elapsed since
the last introduction of a dummy event and to some extent
also on the weighted aggregated prior behaviors exhibited by
the worker, as captured by the results (success or failure in
identification) of formerly introduced dummy events. These
two factors influence the value of an attentiveness measure
that the mechanism maintains, denoted F , aiming to cap-
ture the worker’s attentional state at each time. The value of
F ranges between 0 − 1, where 0 indicates no attention to
the task and 1 represents full attention. Failing to identify
a dummy event will result in a relatively sharp decrease in
the value of F , whereas a correct identification will result
in a sharp increase. Both the increase and the decrease in
the value of F use exponential smoothing techniques such
that the new value depends on all prior values of the measure,
with an exponentially decreasing weight to each prior value
according to the time elapsed since it was determined. Addi-
tional adaptations to the value of F occur based on the time
elapsed since the last evidence of the worker’s attentional
state was received, i.e., based on the time that elapsed since
the last sub-task was introduced, in a way that exhausts the
value of F over time. The decrease of the value of F over
time reflects to some extent typical people’s attention span
model (e.g., Figure 6.4, page 60, in (Aarabi 2007)).

The adaptation process is compactly captured in Algo-
rithm 1. The value of F is first initialized to 1, as it is most

likely that at the beginning of the task the worker is fully
tuned to it. The decision concerning the introduction of a
dummy event takes place every few seconds (modeled us-
ing the parameter DecisionPointsInterval). Ideally the
value of this parameter should be infinitesimal, for reaching
as many dummy event decision points along the task. Still,
in order to avoid a continuously running thread, one may
prefer to use some non-negligible time interval between de-
cision points. Once a new decision point is reached (Step
2), the mechanism reduces F by a factor of δ. This cor-
responds to the probability that the worker is not in fo-
cus (i.e., doing something else), which increases as time
goes by and no other indication of her attentiveness was
received. The choice of the proper δ value depends on the
variableDecisionPointsInterval—the greater the value of
DecisionPointsInterval, i.e., the greater the time elapsed
since the last time the value of F was reduced, the greater the
reduction in F should be. For example, the discounting of F
from 1 to, say, third, whenever discounting every 3 seconds
(DecisionPointsInterval = 3sec) requires δ = 0.99, if
discounting over 5 minutes and δ = 0.997 if discounting
over 20 minutes. These of course refer to the case where the
value is continuously discounted, without receiving any new
information from the introduction of a dummy event.

The F value is then used for deciding whether or not
to introduce a dummy event (Step 4). This is achieved by
comparing F to a random number drawn from a uniform
probability distribution function in the range 0− 1. In case
a dummy event is introduced and identified by the worker
(Step 7), the value of F is increased. The increase has a fixed
component, represented by α and the remaining increase is
positively correlated with the current value of F . Suggested
values for α are thus within the range of 0.80− 0.95,2 repre-
senting a relatively high confidence in having the worker’s
attention fully focused in the task based on a successful iden-
tification of a dummy event. In case the dummy event was
not identified upon its introduction to the worker, the value
of F decreases by a factor of β (Step 10). The value of β
should be substantially smaller than δ (in at least one order
of magnitude), as the events are very different—while β cor-
responds to the event of a dummy event introduced to the
worker and not properly identified, δ corresponds simply to
the increased chance of losing focus as time goes by. Still, the
idea is that the values for β will not be too small (e.g., such
that F will become too close to zero), because it is possible
that the worker is generally tuned to the task, but due to a
temporary disturbance missed the dummy event.

Naturally, we expect the third method to outperform the
first two, as unlike them it correlates the choice of introducing
a dummy event with some prediction of the worker’s current
attentional state. Still, we believe it is important to study the
first two methods due to their simplicity, intuitiveness and
the fact they put a bound on the total expense.

2Using α = 1 is not recommended, as we do not want the mea-
sure F to trivially jump to 1. It is possible that the worker noticed
the dummy event in the corner of her eye or that she accidentally
ran into the application by switching tasks at the time the dummy
event emerged.
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Algorithm 1: Dynamic Dummy-Event Allocation
(DDEA).

input :DecisionPointsInterval
1 initialization:

NextDecisionPoint = CurrentT ime();F = 1; while
TaskIsOn do

2 if CurrentT ime ≥ NextDecisionPoint then
3 F = F ∗ δ;
4 if Random() < F then
5 IntroduceDummyEvent();
6 NextDecisionPoint+=DecisionPointsInterval;
7 if worker identified DummyEvent then
8 F = α+ (1− α)F ;
9 else

10 F = βF ;
11 end
12 end
13 end
14 end

Experimental Infrastructure
For the experiments we used an Internet game called “Find
the Animal”. The game’s GUI is composed of four tiles
visible to the worker, each with a different picture from a
repository of 45 cartoon animals. Figure 1 presents a screen-
shot of this game. Each k second the picture on one of the
tiles is replaced by a different one from the repository, where
both the tile that will be changed and the new picture are
chosen randomly. The worker gains rewards in the game
whenever clicking on a tile that has one of some pre-specified
pictures appearing on it. The worker receives a graphical
indication (a summary of the number of missed pictures of
interest, appearing at the bottom of the screen) for every event
that was not identified on time. The game enables the experi-
ment administrator to set the time or times a specific animal
will appear (with no control over the specific tile it will ap-
pear on) as well as full control over the code deciding when
to introduce a specific animal on a tile. The first functionality
is aimed to support the introduction of the main event/s of in-
terest while the second is used to support the introduction of
dummy events. The game was implemented as a web-based
application that uses a relatively simple graphical interface,
to facilitate interaction with workers using almost any screen
size.

The “Find the animal” game is a good representation of
our problem domain: it contains a stream of various types
of events continuously occurring along the task (represented
by the changes in the pictures on the four tiles), the event
of interest and dummy events can be trivially defined as the
appearance of specific pictures, an event lasts a short period
of time, the task of identifying a specific picture is easy to
understand and execute (if focusing in the task) and does not
require any special skills. A person can succeed in identi-
fying the event of interest, captured by the appearance of a
specific animal picture, only by paying attention to what is
displayed on the tiles. The animal pictures are very different
and therefore if paying attention to the tiles the identification
of the event is immediate. The game is easy to understand

Figure 1: A screen-shot of the game.

and lacks any complexities or external factors that may af-
fect the results (other than the worker’s focus, which is the
investigated parameter) hence enables direct measure of the
effectiveness of the tested methods. In terms of application
domain the game can be mapped to many real-life tasks, e.g.,
the identification of a specific person (or a group of people
or even a specific car) in a crowd (e.g., among pedestrians
passing a street or cars driving in a traffic lane). Indeed there
are some real world tasks that can be considered less or more
tiring (in terms of the cognitive load exerted in our game).
Still, the environment complexity and the cognitive load ex-
erted are secondary in their effect over the workers’ success,
thus the game is a good fit for testing our hypothesis.

Experimental Design
We configured the “Find the Animal” game for our purposes
such that every ∼ 4 seconds a different animal picture was
changed (i.e., k = 4). The length of the game was set to
40 minutes.3 The event-of-interest picture was set to be a
duck (hence the game was named “Find the Duck” when
uploading it to AMT) and the time for the duck to appear in
each game was randomly drawn at the beginning of the game.
In the dummy event configuration of the game, the worker
was credited also for clicking on a tile with a goat picture.

Each participant received thorough instructions of the
game rules and her goal in the game. The instructions empha-
sized that only participants that keep the application running
until the end of the game (i.e., for the entire 40 minutes) will
get paid for the HIT. Participants received an explanation
about the compensation structure, which was composed of
a show-up fee (fixed wage) of 5¢4 and a bonus which de-
pended on whether or not the event of interest was identified
and the number of dummy events spotted by the participant
throughout the experiment. The information regarding the
events that was provided to participants specified that one
duck will appear at some unknown time (equivalent to set-

3Prior work presents general evidence for teenagers and adults
inability to sustain attention on one thing for more than about 40
minutes at a time (David Cornish, Dukette, and others 2009).

4AMT requires that employers pay workers at least 1¢ (basic
payment) for completing a task.
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tings where we know a crime event happened throughout the
task, yet the exact time is unknown) whereas the number of
goats that will appear (for the treatments where the dummy-
event methods were tested) remained unknown. After the
instructions step, participants were asked to answer a short
quiz in order to ensure that they truly understood the game
rules and their goal in the game. Upon completing the 40
minutes task participants were informed of the bonus based
on their performance.

Participants were recruited and interacted through Amazon
Mechanical Turk (AMT) and were assigned to one of 19
game sessions of 4 treatments as specified in the following
table:

Treatment Duck (primary) Goats (dummy)
No dum-
mies (X8)

bonus ∈ {0¢, 10¢,
20¢, 40¢, 60¢, 80¢,
100¢, 200¢}

N/A

Random
(X5)

bonus = 10¢ bonus = 1¢,
# of goats∈
{10, 20, 30, 40, 50}

Uniform
(X5)

bonus = 10¢ bonus = 1¢,
# of goats∈
{10, 20, 30, 40, 50}

DDEA (X1) bonus = 10¢ bonus = 1¢, # of
goats=according to
Algorithm 1

In the first treatment (“No dummies”) we aimed to test the
method of controlling the worker’s attentional state through
the reward she receives for identifying the primary event of
interest. Hence no goats were used and the bonus promised
exclusively depended on whether or not the duck was found.
We had 8 variants of this treatment, differing in the bonus
awarded for finding the duck: 0,10,20,40,60,80, 100 and 200
cents. The other three treatments aim to test the dummy-
events based methods: generating dummy events in uniform
intervals, at random times and using Algorithm 1. In all
three the workers were promised a 10¢ bonus for spotting the
duck and 1¢ for each goat (dummy event). The treatments
“Random” and “Uniform” test generating dummy events at
random and uniform times, respectively. Each such treat-
ment was used with five variants, differing in the number of
goats used (10, 20, 30, 40, 50). The treatment DDEA used
the method of dynamic dummy event augmentation according
to Algorithm 1. The values set for the different parameters
were: δ = 0.999, α = 0.9 and β = 0.4, for the justifications
provided when introducing the algorithm. We note that the
idea was to provide a proof of concept for the effectiveness
of the proposed approach, rather than to find the optimal con-
figuration for the “Find the animal” game. Consequently we
did not check additional configurations, as even with these
(possibly sub-optimal) parameters the method was found to
perform better than all other method, even when the latter
were configured optimally.

Overall, there were 30 different participants for each game
session (570 participants overall), differing in age (21-60)
and gender (51% men and 49% women). In each game
session the maximal gender ratio difference was 6%. We
didnt employ any selection criteria for recruiting Turkers, as
we attempt to emulate a crowdsourcing scenario where you

need to recruit a large pool of workers in a very short time. To
prevent the carryover effect, a “between subjects” design was
used, i.e., for each session a different group of participants
was recruited. For each participant we logged the times that
a duck/goat appeared and if the participant clicked or missed
the goat/duck.

Results
No dummies
Figure 2 depicts the required bonus and the resulting expected
effective payment as a function of the detection probabil-
ity one aims to achieve when not using dummy events (the
“No-dummies” treatment).5 The first curve is based on the
results of the eight “No-dummies” treatment variants. Each
of its data points represents the appropriate percentage of
participants who managed to spot the duck in the appropriate
session (horizontal axis) for a specific value tested as the
bonus for finding the duck (vertical axis). The curve was
smoothed by means of the smoothing spline method,6 result-
ing in f(x) = 1575 ∗ x3 − 1271 ∗ x2 + 401.6 ∗ x − 39.27
(with R2 = 0.992). The second curve which represents
the expected actual payment required for guaranteeing the
detection probability of the horizontal axis is a direct trans-
formation of the latter curve. The transformation is done
by multiplying the proposed bonus by the probability it will
actually be awarded (i.e., the probability on the horizontal
axis) and adding the 5¢ fixed payment for the HIT.

The shape of the curve is quite obvious - as expected, the
probability that a worker will identify the primary event of
interest increases as the reward promised for spotting it in-
creases. The importance of the graph, however, is in enabling
the extraction of a baseline for comparison, as the exact
marginal improvement due to any additional cent promised
as a bonus can only be found through experimentation and
smoothing. The curve given in the figure is concave, indicat-
ing that the bonus increase required to achieve an increase in
the detection probability increases as the detection probabil-
ity increases. Interestingly, a bonus of $2 obtains a detection
probability of 74% and in order to guarantee detection (a 1-ε
detection probability), one needs to offer a bonus of $6.7,
based on the smoothed curve. Note that in this latter case
the offered bonus is also the expected (and actual) effective
bonus, as it is necessarily paid to the worker. This latter
finding makes sense, as the average wage of AMT workers
was reported to be $4.8 (Ipeirotis 2010), hence the typical
worker would expect a payment of slightly more than that in
order to keep focused in our game for 40 minutes.

Based on the tradeoff between the expected payment and
the achieved precision encapsulated in Figure 2 one can

5While flipping the axes may seem more intuitive (as the
promised bonus is the independent variable), we prefer the current
presentation as it better captures the tradeoff between the achieved
detection probability and expense. Furthermore, only this presenta-
tion method supports the inclusion of both parameters (bonus and
expected payment) in one graph.

6The smoothing spline is a method of fitting a smooth curve to a
set of noisy observations using a spline function.
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Figure 2: The correlation between detection percentage, re-
ward promised and effective payment.

choose a preferred working point and set the bonus accord-
ingly. Furthermore, Figure 2 enables designing an even more
cost-effective detection process through employing paral-
lelism in the process. The idea in parallelizing the process
is to recruit several workers for the task, having each work-
ing (and receiving payments) independently of the others
and their performance. While having more workers identify
the event of interest results in redundant bonus payments,
the parallel effort enables offering smaller bonuses in the
first place and with proper design can actually reduce the
overall expected expense required for each pre-defined de-
tection probability set by the system manager. We use P (x)
to denote the detection probability achieved by promising
an event-detection reward x to a random worker. The value
P (x) can be extracted from the extrapolated graph given
in Figure 2, i.e., given by P (x) = f−1(x). The detection
probability when assigning the task to N workers in parallel,
while offering a success-based reward of x, denoted PN (x)
is given by: PN (x) = 1 − (1 − P (x))N and the expected
expense in this case is N · (HIT + b(x)), where HIT is
the base payment (for participating) and b(x) is the effective
bonus payment corresponding to an offered bonus x as given
in Figure 2.

Therefore, based on the effective bonus curve given in
Figure 2 we can find for any requested detection probabil-
ity the expected-expense-minimizing pair (x,N).7 This is
illustrated in Figure 3 which depicts the optimal (expected-
payment-minimizing) number of workers and the bonus that
needs to be offered to them for spotting the primary event, for
each required detection level (horizontal axis), respectively.
Figure 4 summarizes the expected overall effective expense
(including the 5¢ base payment for the HIT) for each required
detection level, for the case of using parallel detection and the
case of using a single worker. The first curve is identical to
the one given in Figure 2, though shifted vertically by the 5¢
fixed payment for the hit (which is a bit difficult to observe
because of the resolution of the figure). The second derives
from Figure 3, taking into consideration both the number of
workers used and the effective payment made to each. Figure
4 demonstrates that the reduction in the expected payment

7We use a fixed bonus for all N workers, since on AMT the
same bonus must be offered for the same task (HIT). Otherwise,
we could have gotten slightly better results by using a mixture of
different bonus offers to different workers.

Figure 3: The optimal number of people the task will be
distributed to and the average bonus promised as a function
of the detection percentage.

Figure 4: The average effective payment for one employee
compared to a number of employees in parallel as a function
of the detection percentage.

that can be achieved through the use of parallel detection
is substantial, and increases as the required detection level
increases. This latter phenomena is explained by the concav-
ity of the curves in Figure 2—the substantial decrease in the
individual effective bonus enables recruiting several workers
for the same amount of expected expense, while the parallel
detection fully outweighs the resulting minor decrease in the
individual detection probability.

Random and uniform dummy events generation
Next, we report the results obtained with the use of dummy
events when using random and uniform generation patterns.
Recall that in the game sessions in which dummy events were
introduced we offered workers a bonus of 10¢ for finding
the duck and 1¢ for each dummy event (goat). The resulted
detection probability and the corresponding effective expense
for each of the uniform and random dummy event generation
method variants are given in Table 1.

From Table 1 we observe that, as expected, the increase in
the number of dummy events introduced into the task results
in an increase in the detection probability, with the cost of an
increase in the effective expense. Neither method (uniform
or random dummy event generation) generally dominates the
other and the detection probability is almost identical with the
two for any number of dummy events tested. Similarly, the
effective expense is somehow similar, with the most notable
difference when having 50 dummy events overall. Here, the
expected expense with the random method is lower, possibly
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random uniform
effective
expense

detection
percentage

effective
expense

detection
percentage

10 goats 17.6 67% 18.4 67%
20 goats 24 70% 27.3 70%
30 goats 39 80% 37 81%
40 goats 49.8 83% 48.3 81%
50 goats 52.9 83% 58.4 83%

Table 1: Detection percentage and effective cost as a function
of number of goats.

explained by people’s ability to learn the pattern of generating
dummy events with the other method. Still, one would expect
a similar learning effect with the 30 and 40 treatment variants,
which is not the case.

In comparison to the “no-dummies” approach, both the
random and uniform dummy event generation methods sug-
gest a substantially more competitive tradeoff—a detection
probability of 67%− 83% is achieved with an effective ex-
pense of 17.6¢ − 49.8¢ and 18.4¢ − 58.4¢ for random and
uniform, respectively, compared to a required effective ex-
pense of 94¢− 269.7¢ with “no dummies” for this interval
of detection probabilities. These differences are statistically
significant using t-test (p < 0.01).8

In an effort to reason about the behavior of workers, and in
particular their attention span throughout the task, we present
Figures 5 and 6. The figures present the distribution of work-
ers in the sampled population according to the percentage of
dummy events they detected out of the total number of such
events that were presented to them (over all 5 treatments in
each method). From the figures we observe that indeed a
large portion of the population found the generation rate of
the 10 and 20 goats treatments unappealing, resulting in a
lower than 50% dummy event detection, which can be inter-
preted (with high level of confidence, due to the nature of
the two methods) as losing focus over a major portion of the
task. With 40 dummy events and more (and in the case of
random allocation with 30 dummy events and more) most
workers stayed focused for almost the entire duration of the
task (80-100% of the time). The relatively higher goat detec-
tion percentage values in the case of the uniform allocation
method compared to the random method can be attributed
to the constant rates that the dummy events appeared in the
first: it is possible that workers managed to learn the pattern
according which dummy events appear and became more
responsive at times they anticipated a dummy event to appear.

Figure 7 presents the correlation between the percentage
of dummy events identified by workers throughout the task
(horizontal axis) and the detection probability achieved by
these workers. Each bar summarizes the results for all five

8In the absence of data related to the exact same detection prob-
ability in all treatments, we compared those treatment variants that
achieved at least the same detection probability as with the com-
pared “no-dummy” treatment variant, in order to carry out the t-test.
The comparisons made were thus between the 10 goats and the 30
goats treatment variants of the uniform and the random treatments to
the 100¢ and 200¢ treatment variants of the “no-dummy” treatment.

Figure 5: Uniform generation: the distribution of the popula-
tion according to the percentage of dummy events identified,
for different number of generated dummy events.

Figure 6: Random generation: the distribution of the popula-
tion according to the percentage of dummy events identified,
for different number of generated dummy events.

treatment variants. As expected, there is a strong correlation
between the percentage of dummy events identified by work-
ers and their detection probability (the calculated correlation
coefficients are 0.93 and 0.97 for the random and uniform
dummy event generation methods, respectively). The corre-
lation between the two variables enables the system owner
some sort of a retrospect validation in case the event of inter-
est is not identified: if the number of dummy events identified
by the worker in the task is high then it is most likely that the
reason for not identifying the event of interest is that it actu-
ally did not occur (e.g., when monitoring a stream of video
offline, attempting to find out if a suspect passed through the
specific location of the camera while escaping). If, on the
other hand, the number of dummy events identified by the
worker in the task is low then it is most likely that the worker
did not pay attention to the task, and an additional worker
should be assigned to it.

DDEA dummy events generation
Finally, our DDEA-based method achieved a detection prob-
ability of 81% with a corresponding effective expense of 24¢.
This result is substantially better than those obtained with the
first two methods—from Table 1 we observe that the effective
expense required for achieving this level of precision dictates
an expected expense of somewhere between 39− 49.8¢ with
the method that generates dummy events at random times and
37¢ with the one that spreads them uniformly.9 The differ-

9Alternatively, for a payment of 24¢ one can achieve a detec-
tion probability of 70% with the random method and somewhere
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Figure 7: The detection probability (of the event of interest)
as a function of the percentage of dummy events detected.

ence in the expected expense is statistically significant using
t-test (taking the 81% detection probability as a baseline).
Compared to the method that relies solely on rewarding the
identification of the event of interest (“no-dummies”), the
performance of DDEA is strikingly better—the correspond-
ing expected expense for assuring a detection probability of
81% is 239¢ (10 times more!) and the detection probabil-
ity achieved in exchange for an effective expense of 24¢ is
49%, according to Figure 2. Furthermore, even compared
to the use of parallel detection, as suggested above, the use
of our intelligent dummy event insertion method achieves
better results (even if used with a single worker) - the 81%
precision detection is achieved with an expected expense of
24¢ compared to 38¢ which is the minimum achievable when
using parallel detection according to Figure 4.

Conclusions
Methods for motivating workers when using crowdsourcing
for application involving the monitoring of rare events are
likely to focus much interest in future years, as these ap-
plications become ubiquitous. The exceptional growth in
deploying CCTV surveillance cameras as well as various
other sensors suggests an increase in the demand for workers
and paves the way for outsourcing monitoring tasks in new
application domains. The recent advances in Internet technol-
ogy as well as the wide spread of mobile technologies suggest
that the pool of potential ad-hoc workers for such tasks is
likely to increase immensely in coming years. The monitor-
ing task is simple and requires only the worker’s attention
rather than any special skill hence ideal for crowdsourcing.

The encouraging results reported in the former section
support our hypothesis that the effective way for increasing
workers’ attention span in such monotonous crowdsourcing
monitoring tasks is the one that uses dummy events rather
than the traditional method of increasing the reward for iden-
tifying the primary event of interest. As discussed throughout
the paper, the benefits of the method are threefold: it enables
workers to accumulate rewards throughout the task, rather
than waiting for a single meaningful event, hence reducing
the variance in the payment received, the task as a whole
may become more interesting to the worker and it enables
indications for the worker’s attentional state throughout the
task. There are many ways for introducing dummy events in

between 67% and 70% when using the uniform method.

various domains. For example using augmented reality tools
(as in www.clandestineanomaly.com). These can be either
domain-related (e.g., introducing virtual penetrators in secu-
rity applications) or unrelated (e.g., inserting goats), as the
purpose is merely to keep workers tuned to the application.
Naturally, the transition to dummy-events-based design calls
for a method for timing the dummy events throughout the
task. In this paper we proposed and evaluated three such
methods. All three were found to be substantially more ef-
fective compared to the traditional method of exclusively
correlating the reward with the identification of the event of
interest, offering a better tradeoff between the detection prob-
ability and the required expected expense. The advantage
of the first two methods is in their simplicity and in the fact
that they bound the number of dummy events to be presented
to the worker (hence also the actual expense). The third
method generates dummy events dynamically. This method
was found to perform best out of the three, demonstrating the
effectiveness of its core algorithm.

We emphasize that the results provided for our methods are
actually lower bounds for the performance one may achieve
if using them properly. The baseline method that relies on
rewarding only based on identifying the event of interest
was evaluated with a wide range of rewards, enabling the
extraction of a curve fully capturing the impact of the pro-
posed reward over the detection probability and the expected
expense. Therefore this method can be fully tuned. Our
two methods that rely on uniform and random generation of
dummy events were evaluated based on varying the number
of dummy events however the reward for correctly identify-
ing the event of interest and dummy events was arbitrarily set.
Finally, for our dynamic method, all parameters (payments
for the primary and dummy events, F ,NextDecisionPoint
and δ) were all arbitrarily set, since this was merely a proof
of concept. Therefore, with the right tuning (possibly with
further experimentation) we expect our methods to perform
even better compared to the baseline, and in particular we
expect the improvement in our dynamic method (DDEA)
compared to the baseline and to the other two methods to be
the greatest.

We see many directions for future research emerging from
this paper, out of which we detail three. First, as mentioned
above, much work is still needed for finding good ways for
tuning the proposed methods. The tuning process, of course,
is application-dependent, and therefore we chose not to in-
clude it within the scope of the paper, especially given that
the results obtained even with the arbitrary parameters that
we used demonstrated a substantial improvement. Still, com-
ing up with general tuning methodologies for such methods
can be highly beneficial. Second, we believe that better per-
formance can be achieved by modeling workers and tailoring
the parameters to each worker individually. One option for
user modeling in this case is based on the signals received
by the identification or misidentification of the initial dummy
events or any governing pattern observed. Finally, we pro-
pose to combine the decisions on generating dummy events
with other measurable factors such as the cursor position
on the screen (e.g., within the application window or not)
and the status of the application window (active or partially
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covered by another window).
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