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Abstract

With the massive prevalence of smartphones, mobile so-
cial sensing systems in which humans acting as social
sensors respond to geo-located crowdsourcing tasks, be-
came extremely popular. Such systems can provide sig-
nificant benefits particularly during crisis management
and emergency situations. However, not only querying
users can be extremely costly but also human sensors
are mobile, subjective and their response delays can
highly vary. In this paper we develop a social sensing
system that performs sampling on mobile social sensors
to achieve accurate and real-time detection of the state
of emergency events. Our contributions are two-fold:
(i) our approach can capture well emergencies even in
large geographical regions, and (ii) our sampling ap-
proach considers the individual characteristics of the so-
cial sensors to maximize the probability of receiving ac-
curate responses in a timely manner. We provide com-
prehensive experiments that indicate that our approach
accurately identifies critical real-world events, has low
overhead and reduces the classification error up to 90%
compared to traditional approaches.

Introduction

The recent massive prevalence of smartphone devices has
established “Social Sensing” as an integral tool for author-
ities to identify and supervise real-world events in a cost-
effective manner. Social Sensing refers to the process of
soliciting input from ubiquitous human users who perform
crowdsourcing tasks which vary from simple observations
to complex tasks that require human intelligence. Extracting
information from human sensors can provide great insights
to authorities regarding ongoing events, often complement-
ing information received from the static sensor infrastruc-
tures (Gu et al. 2014). Several social sensing applications
have recently emerged to monitor emergency events in the
real world, such as the Disaster Reporter in the FEMA ap-
plication!, the Ushahidi application for crisis events?, and
the Waze® application for traffic monitoring.
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The importance of social sensing in emergency scenar-
ios has been emphasized in various scenarios such as the
post-election violence events that took place in Kenya in
2008. These events created a need to human users to re-
port the places where violent acts took place. This led to
the development of the Ushahidi app that collected eyewit-
ness reports through crowdsourcing and placed them on a
map. Obviously, even though such information is critical,
it cannot be captured by traditional sensor infrastructures.
Similar needs are found in many scenarios including terror-
ist attacks, earthquakes, etc., and the developed maps can
be used both by citizens to avoid locations under emergency
and by authorities that analyze them to react in a timely man-
ner (e.g., by sending rescue teams or evacuating areas).

Motivated by the above scenario, the problem that we ad-
dress in this paper is how to use human social sensors to de-
tect the extent and severity of a major emergency event as it
unfolds. The problem is challenging as: (1) Asking feedback
from every individual human sensor is prohibited due to the
volume and costs of crowdsourcing (i.e., rewards for the
participating human sensors, communication costs, etc). (2)
Querying only a small set of users may not suffice to iden-
tify effectively all affected sub-regions is large geograph-
ical areas. (3) Human sensors have different perspectives,
objectiveness and response delays as their answers depend
not only on the human factor but also on their geographical
location (in the case of location-based events). Thus, a key
aspect is to identify human sensors who will provide useful,
timely and relevant information for authorities.

This leads to the following question: Is it possible to use
samples from human social sensors to effectively determine
the state of the emergency event? Sampling is a well-known
method that has been used in a variety of distributed system
settings. For instance it has been employed to approximate
aggregates in sensor networks (Lin et al. 2008), and to re-
duce produced social sensing data (Qi et al. 2013). Sampling
can reduce the size of the problem by determining a subset
of the data to be processed. However, the sample needs to
be decided with respect to the available input data and the
selection criteria to provide accurate results. Thus, defining
the selection criteria is a fundamental task.

In this work we assume emergency scenarios that cover
a large geographical area such as a city or a country.
Our approach partitions the geographical area into a set of



non-overlapping regions and performs systematic sampling
within the regions from social sensors that observe the situ-
ation and provide feedback from their respective locations.
We develop a sampling plan that considers both human fac-
tors (e.g., user subjectiveness) as well as the users’ geo-
graphical location to maximize both the spatial coverage and
the knowledge extracted from the samples.

The research in the area involving the problem of sam-
pling is very rich (Cochran 1953; Kong 2008). Stratified
sampling (Chaudhuri, Das, and Narasayya 2007) is the clos-
est approach to our scenario. It groups members of the
population into homogeneous subgroups and performs ran-
dom sampling from each subgroup. However, stratified sam-
pling does not consider the individual user characteristics
and might select inappropriate users (e.g., spammers). Sim-
ilarly, sampling approaches that consider traditional sensors
instead of social sensors, such as region sampling (Lin et
al. 2008) are limited since they do not take human factors
into account. Sampling approaches have also been proposed
recently to reduce the data produced from the social sen-
sors (Qi et al. 2013; Thejaswini, Rajalakshmi, and Desai
2015). Our work is orthogonal to such approaches since we
aim to select a sample out of the available social sensors.
Finally, several approaches have also been proposed to de-
termine the users that should respond to a crowdsourcing
task (Roy et al. 2015; Ho and Vaughan 2012). However, they
either focus on human factors (Boutsis and Kalogeraki 2014;
Karger, Oh, and Shah 2011) without considering the spatial
dimension of the users or they take user locations into ac-
count without considering human factors (Zhang et al. 2014)
and typically assign tasks to nearby workers (Kazemi, Sha-
habi, and Chen 2013).

In this work we propose EVIDENCE (EVent DEtectioN
using soCial sEnsors), a social sensing system that aims to
exploit the collective intelligence of the human crowd to
identify the state of a major emergency event. We summa-
rize our contributions below:

o We present EVIDENCE, our system that determines the
affected regions and their severity during major emer-
gencies. EVIDENCE partitions the geographical area into
non-overlapping regions and performs sampling to deter-
mine the severity of a given event in each region.

e We formulate our sampling problem in order to con-
sider user location, subjectiveness and response times. We
prove that the problem is NP-hard and we develop a novel
algorithm to solve it in polynomial time. We also show
that our algorithm selects users that minimize the error
when computing the state of the event.

e We perform extensive experiments using two real world
emergency events: (a) the “Winter Snow Thor” snow-
storm that took place in the USA on March 5, 2015, and
(b) the “German Floods” that occurred in Germany in the
period May 1 - July 31, 2013. We validate the benefit
of exploiting human social sensors and demonstrate the
performance and efficiency of EVIDENCE using both a
multiple-choice classification of weather conditions, and
a numerical value response set where users estimate the
precipitation in mm using numerical values.

System Model

We now formalize our problem. We focus on major emer-
gency events such as natural disasters, terrorist attacks and
air pollution which constitute a key challenge in modern so-
cieties. Such emergency events have the following proper-
ties: (i) they cover large spatial regions, (ii) they are expe-
rienced by large populations and, (iii) although they occur
sporadically, they require fast and accurate tackling.

An event e in our system is represented by its state, de-
fined as the distribution of a data value x € R in a spa-
tial region A. This distribution reveals both the existence of
the event, when x exceeds the normal values, as well as the
intensity of the event, determined by the distribution of the
values of . We denote the state of the event e for each geo-
graphical region \ € A as state); this is computed by aggre-
gating the social sensors’ feedback in location (lat;, lon; €
A). The distribution of the values state’e\7 VA € A illustrates
the distribution of the target event in the evaluated region.

To receive social sensing tasks, human sensors register
with the EVIDENCE server, thus, the pool of social sen-
sors changes dynamically. We denote each social sensor as
s; € S and we associate s; with the following tuple: (lat;,
long;, bias;, previous_tasks;[|), where lat;,long; repre-
sent the current location (latitude, longitude) of the social
sensor. Since we deal with tasks that assume subjective re-
sponses, the variation of the responses depends on the hu-
man factor, since users make specific types of errors for a
specific type of task. Hence, we capture the user bias, that
we will also refer simply as bias for the rest of the paper, that
represents the expected percentage difference of each user
responses for the emergency events compared to the real
(i.e., objective) values. We denote this metric as bias; and
we update it dynamically based on the user responses as ex-
plained in the following section. Finally, we maintain statis-
tics related to the completed tasks in previous_tasks;||.

The EVIDENCE system issues tasks to identify the
state and intensity of an event that occurs. Tasks vary
in complexity and users can get compensated for the re-
sponses they provide (e.g., through a monetary reward).
Each task ¢; € T is associated with the following set
of attributes: (description;, reward;, area;, amount;,
timewindow;), where description; describes the task that
should be performed by the user (e.g., “Provide an esti-
mate for the precipitation of rain in mm in your location”),
reward; refers to the monetary or other form of compen-
sation received by the user that processed the task, which
is typically predetermined by the task requester. The area;
defines the geographical area that the task refers to in the
form of a polygon, while amount; represents the maximum
amount of human sensors requested to process the task. Ev-
ery t; is also characterized by a time interval timewindow;
defined by the task requester; this is the time within which
the task responses should be returned.

For each task t;, we seek to identify a subset of the
social sensors, denoted as sampling set Sety;, g C S.

Each sensor s; € Sety; will be asked to process task

. lat,lon
t; and provide a response, denoted as resp;; , coupled

with her current location (lat,lon) so that the system can



compute the state of the event state, at this location. We
consider as valid responses the ones received within the
task’s timewindow;. User responses are quantitative and
heavily depend on user perspective; that is, typically hu-
mans can confidently respond whether it is raining but they
will be subjective when asked to estimate the precipitation
of rain (Kerman et al. 2009). Thus, estimating the state
of an event is considerably more difficult than traditional
approaches that provide binary choices (Gu et al. 2014;
Hu et al. 2015) or multiple choices from a predefined list
of answers (Boutsis and Kalogeraki 2014; Cao et al. 2012),
which are known in advance.

We denote as erroré‘, the relative error of the event state
state) that we estimate using the sensors’ sample, compared
to the real state value in that geographical region, denoted as
7"2‘. We focus on the relative instead of the absolute error, as
the former is usually a fairer measure, defined as:
|stated — 1|

A

— 3 €
error, = min(

X 1) ey
We formulate the error metric based on the difference of
the aggregated samples compared to the real value, rather
than the value we would receive from all users. This is be-
cause EVIDENCE aims to maximize the accuracy and hu-
man users do not always provide accurate responses (e.g.,
spammers). Finally, we bound the error within [0, 1].

Problem Description. Our problem is defined as follows:
Assume a set of human sensors S in location A. Let sen-
sor s; in location lat;,lon; € A be capable of providing
response respé?t’lon when queried for task t;. The problem
we address is how to identify a sample from a subset of the
available set of sensors (Sety;, g C S) so that the total error

> sen ETTOTY is minimized.

The EVIDENCE Approach

In this section we first give an overview of our sampling
approach, then we present our method for selecting the sam-
ples from the available social sensors per region, and finally
we illustrate how we evaluate the received samples to esti-
mate the state of the event.

EVIiDENCE Overview

The problem of efficient event detection comes up in sev-
eral application domains, where statistical, probabilistic,
machine learning, or composite techniques can be applied
to detect events (Kerman et al. 2009). Several techniques
have been proposed in the literature to detect events includ-
ing particle filtering (Sakaki, Okazaki, and Matsuo 2010;
Boutsis and Kalogeraki 2016) and kernel density estima-
tors (Subramaniam, Kalogeraki, and Palpanas 2006). How-
ever, existing approaches have two important limitations: (i)
they do not focus on human social sensors and, thus, they
do not take into account the characteristics of individual hu-
man sensors, (ii) the majority of the existing works focus
on detecting the location of an event, while we focus on de-
termining not only all locations but also the intensity of the
event for all affected regions.

One major challenge to address is the limited amount of
social sensors that we can query due to budget constraints,
communication costs and potential user denial to respond
frequently. To overcome this, we propose a sampling ap-
proach, based on previous work on sensor networks (Lin
et al. 2008; Willett, Martin, and Nowak 2004), where sam-
pling has been widely used to extract important informa-
tion with a reduced size of data. However, our sampling
plan considers both human characteristics (Roy et al. 2015;
Ho and Vaughan 2012) and the location of the social sen-
sors (Zhang et al. 2014) as these factors can highly improve
the obtained knowledge for the target event.

Hence, we develop a novel adaptive sampling approach to
detect the state of the target event. Since the locations where
the emergency takes place is unknown, we systematically in-
vestigate the entire and, potentially large, geographical area
to detect all locations where the event occurs. We achieve
that using an iterative approach as follows:

o Step 1: We segment the spatial region into P non-
overlapping regions (A = 1,..., P), whose amount and
size can be tuned based on application-specific criteria.

e Step 2: We perform sampling in each region A, as ex-
plained in the next section, considering both spatial and
human factors to detect the affected regions.

e Step 3: For each region A which is determined to be un-
der emergency, we further segment it into smaller non-
overlapping regions. In our experiments we divide each
region to four equal regions. However, different types of
segmentation can be incorporated depending on the appli-
cation scenario.

e Step 4: We iterate through steps 2 and 3 until the size of
the regions becomes small enough to represent its state.
That way we can use the available resources to focus on
areas under emergency.

Step 1: Segmenting Spatial Space

In the first step, we segment the spatial space into P non-
overlapping regions, similar to previous works that consider
event detection in sensor network environments (Lin et al.
2008). This allows us to concentrate on the individual re-
gions during the sampling process, to more efficiently deter-
mine the state of the event. In the following steps we explain
how the regions are further divided to provide an accurate
representation of the state of the event for each location.

Step 2: Sampling within Regions

The objective of our sampling algorithm is to determine the
set of social sensors Sety; that will be asked to provide
samples for task ¢; for each region (although humans might
refuse to respond), so that the sampling error is minimized.
We achieve that by selecting the set of sensors that (i) will
cover well the entire spatial region, since the potential loca-
tions of the event is unknown beforehand, and (ii) are able
to provide objective responses in a timely manner. Thus, our
problem can be defined as an optimization problem that:



e Maximizes both (1) the spatial coverage of the region, de-
noted as C'ovy;, and (2) the probability of providing an
unbiased response;, denoted as P(Objg;).

e Sets a constraint for the second objective to ensure that the
received responses will fulfill at least a predefined level of
objectiveness, denoted as B, as: P(Obj4;) > B.

e Ensures that the selected individuals will execute the task
t; within a timewindow; (this is expressed by setting a
lower bound threshold 7 on the probability of providing a
timely response: P(exec;;) > T,Vs; € Setgy;).

The problem is that the number of combinations Set;

can be very large (there are (amloiln " ) possible combinations
J

to select amount; sensors from the set of available sensors
S). Solving the problem naively by examining all feasible
solutions is computationally infeasible for an online system
for emergencies that requires fast responses.

In the following we present our approach for estimating
the spatial coverage and computing the bias for each set of
users, we then prove that the defined optimization problem
is NP-hard and finally we present an efficient sampling al-
gorithm that solves the optimization problem.

Estimating Spatial Coverage. The challenge is, that,
there is no necessarily a priori knowledge regarding the loca-
tion where an event might occur. In order to cover the entire
region, and given that its size can be large, our goal is to re-
trieve samples evenly from all locations within the region
and then try to focus on the sub-regions where the event
occurs. Thus, we develop a grid structure, similar to (Van
Dyke Parunak and Brueckner 2001), by dividing the region
A into a number of smaller locations A1, As, ..., A\ € A\, and
we exploit the Entropy (Shannon 2001) to evaluate the dis-
tribution of the amount of selected sensors in each location.

We compute the entropy for the group of sensors Setg;
as follows: for each location A1, Aa,..., A\x € A we com-

pute the probability Pr(A;) = *Zia -, as the number of the
sensors from Setgj located in Ak, denoted as sely, , over the
amount of sensors in Sety; in the entire region (total). Thus,
we denote the entropy H for the set of sensors Set; as:

H(Sety;) = Z Pr(Ag) log(Pr(\g)) )

ALEA

Entropy provides a measure of the information contained
in that distribution. Intuitively, the Entropy increases when
the amount of the evaluated items becomes more simi-
lar, thus, selecting the same amount of sensors from ev-
ery location for Set,; will maximize H(Set,;). Our goal
is to choose sensors that maximize the spatial coverage by
tuning the number of sensors selected for each location
A1, A2, ..., Ag. The maximum entropy for a given set of lo-
cations \; can be computed by the logarithm of the number
of locations as MaxH () = log(|\x|), where |\;| denotes
the amount of locations Ay in region A. Thus, we compute
the spatial coverage for which we acquire information as:

H(Sety;)

MazH (\e) )

Covgj =

Lemma 1 The function Qovgj for a.speaﬁc amount of se-
lected sensors amount; increases, if we replace a sensor
from location \j, that contains x sensors for a sensor from a
location that contains y sensors, if y < .

Proof. Since the total amount; of sensors remains the same
and thus the maximum entropy MaxH ()\;) remains the
same, it is sufficient to show that H (Set,;) increases when
we perform that change. Since all the terms from other lo-
cations in — >y, Pr(Ag)log(Pr(A;)) remain the same
we need to show that altering the number of sensors in
these locations increases the entropy, and so: — ¢ log (%) —

Llog () < —= L log (271) — Lt log (L). ThlS can be
(@/F)¢ /”*(y/k)(”/“ ) >0
_1)/]@)((171)/16)*((y+1)/k)((y+1)/k)
and using the properties of the k-th root we need to show
() @/ F) 4 () v/ ) . .
that (2= 1)@= D 7Ry (y41)(@FD /R > 1, which is equal to
pa(E)T 2 (1)« ()
since we assume that y < x.

expressed as: log (((

Y. This is always true

Estimating User Bias. Our second goal is to select sen-
sors that are able to provide objective responses since users
have bias when responding to crowdsourcing tasks (Ouyang
et al. 2015). Several approaches have been proposed re-
cently to eliminate user bias from the respective responses
but these approaches have several limitations: (i) they focus
on the simplest case of using only binary responses (Zhuang
et al. 2015; Zhuang and Young 2015) instead of numerical
responses, (ii) they use active learning approaches (Ouyang
et al. 2015) requiring too many iterations to converge, while
they do not consider the fact that in crowdsourcing users typ-
ically answer sparsely, or (iii) they use hybrid models to re-
solve the issue of the large amount of iterations by using a
population-wide representation when the user has not pro-
vided enough responses (Kamar, Kapoo, and Horvitz 2015).

In EVIiDENCE we update the user bias; adaptively, when-
ever a human sensor has been selected from the sampling
approach and has successfully performed the task. As men-
tioned above, bias; refers to the percentage difference that
we expect to retrieve from a sensor s;, compared to the real
(i.e., objective) value when providing an answer for ¢;. We
infer the user bias using an online Expectation Maximiza-
tion algorithm that alternates between computing an expec-
tation of the parameters’ values, by taking into account the
observations and the current estimates, and updates the val-
ues by maximizing this expectation. We use a variable b; to
estimate the user bias as follows. We update b; whenever
the system retrieves an answer from s; as follows: For each

lat,l -
response resp;; " retrieved for ¢;, we evaluate the per-

centage bias mJected in the response by the user, denoted

as B(respi“t fomy To compute B(respi“t fomy " since the real

value of the location is unknown, we retrieve all responses

within a spatial distance r from the location of the sensor
lat,lon

that provided resp;; and we compare the percentage

lat,lon

difference of the response compared to the median g /5o



to exclude outliers:

‘Tesplat,lon _ Iulat,lonl

lat,lony __ ij 1/2

B(Tespij ) - lat,lon (4)
1/2

Then, we update b; for each participant s; using a variable
v;, which is assigned with a small value as:

b; = (]. — ’yl)lh + v (ﬂ(respi‘;t,lon)) (5)

Thus, b; will converge to the expected user bias. However,
in order to be able to consider the variations in terms of sub-
jectiveness, we compute bias; by adding to b; the standard
deviation o2 of the percentage bias injected in the responses

of the specific user 3 (respi?’lon):

bias; = b; + o*(B(respli'"), V) (©)

This allow us to bound user subjectiveness as the user will
typically respond more objectively than her bias;:

|(T€8pli¢;t,lon _ Tleat,lon)/rleat,lonl < bias; (7

Finally, we compute the probability that the sampling
set Sety; will provide an objective response, denoted as
(P(Objg;)), as the product of the objectiveness of the se-
lected sensors, where objectiveness is defined as 1 — bias;,
that we bound in the [0, 1] region:

P(Objg;) =[] (1—min(bias;, 1)) (8)

si€Sety;

Lemma 2 The objective P(Objy;) is a monotonic and in-
creasing function of 1 — min(bias;, 1).

Proof. The function P(Obj,;) depends on the product of the
worst case probability to provide an objective response for
each individual sensor (1 — min(bias;, 1)) which is bounded
in the [0, 1] range. Thus, selecting a sensor &k with individual
probability 1 — min(biasg, 1) € g, instead of a sensor &’
with individual probability 1 — min(biasy,1) € g, where
1 — min(biasg, 1) > 1 — min(biasy,1) and g \ {k} =
g' \ {K'}, results in P(Obj,,) > P(Objy ;). A

Sampling with EVIDENCE. Next, we prove that the
problem of sampling within regions is difficult as it can be
reduced from the Knapsack problem and we present an ef-
ficient polynomial algorithm that is able to maximize both
objectives to select the best set of users to perform sampling.

Lemma 3 Our sampling problem is NP-hard since it can be
reduced from the Knapsack problem.

Proof. The Knapsack problem states, that, given a set of ob-
jects with utility z; and cost ¢;, and a bound C, the goal
is to find a set of x objects that maximizes Z'Z;l z;, while
Zle ¢; < C. Assuming an instance of the Knapsack prob-
lem we can create an instance of our problem. Let us con-
sider a simplified version of our problem, where we aim
at optimizing the objective C'ovg;, subject to the constraint
P(Objz;) > B. We create an instance of our problem
where for each object we have a s; whose utility depends on
the sensor’s spatial location with a respective objectiveness

1 — min(bias;, 1). Compared to the original problem, our
objective function C'ovy; is more complex than the summa-
tion of values of the selected items. Our defined constraint
P(Objg;) = [, eset,, (1 — min(bias;, 1)) > B is equiv-
alentto } . g, (—log(l —min(bias;, 1)) < —log(B)
and so the cost for each s; is —log (1 — min(bias;, 1)) and
the bound C' = —log (B). Thus, we reduce the Knapsack
problem to our problem, and so, our problem is NP-hard.ll

To solve the NP-hard problem, we propose a polynomial
algorithm to identify the sensors that maximize both objec-
tives and fulfill the constraints. To achieve that we deter-
mine the solution that maximizes P(Obj,;) and we traverse
through the set of feasible solutions, to determine the solu-
tion that maximizes Covg; for the defined constraints.

Our algorithm is summarized in Algorithm 1. To deter-
mine the Sety; of sensors that will process t; we first ex-
tract the list of available sensors £ that reside in the area of
the task (boundingbox;) and we filter out the sensors with
low probability to provide an answer within timewindow;
(P(exec;;j) < 7). This can be estimated by the Cumulative
Distribution Function of the Power Law distribution based
on the sensor’s profile (we follow the observation that in
social sensing systems the execution times of the sensors
follow a Power Law distribution (Ipeirotis 2010)). Next, we
sort the list £, based on the sensor objectiveness and we add
the top amount; sensors from the sorted list £. This en-
sures that we will retrieve a feasible solution, if it exists, that
maximizes P(Obj,;), due to Lemma 2 and the sorting.

Then, we continue iterating through the sorted list £ to
evaluate all sensors that have not been selected in Setg;:
L\ Set,y;. Foreach s; € L\ Set,;, we investigate if we can
substitute the sensor for another sensor in Set,; to provide a
feasible solution that increases the spatial coverage. We only
consider a substitution with the sensor determined from the
function senToRepl(Set,;). This function returns the most
subjective sensor in Set,y; from the location with the max-
imum amount of sensors. We choose this approach that ex-
ploits Lemma 1 since computing the entropy has a high com-
plexity. If such a substitution increases the spatial coverage
and provides a feasible solution we accept it. We stop the
iterations when the spatial coverage Cov,; has converged to
one, or when the evaluated sensor produces a group reliabil-
ity (P(Objy;)) which is less than the predefined bound. In
both cases, due to the sorting we would not be able to find a
feasible solution that increases one of the objectives.

Algorithm 1 Sampling Algorithm

L= available sensors in boundingboz; with P(exec;;) >
Sort(L£) by (bias;) in ascending order
for (s; € L) do
if (Sety;.amount < amount;) then
Setgj = Setgj U {SZ}
else
Sety; = (Setg; U{si}) \ {senToRepl(Sety;)}
if (Cov,; > Covg; && P(Obj,;) > B)) then
Sety; = Set,

93>

Lemma 4 In every iteration, the sampling process produces



a solution that improves Covgy; and ensures that no other
solution can improve P(Obj,;) for the sensors considered.

Proof. For each s; that we evaluate, the sensor’s objective-
ness is worse or equal to the ones in Set,; due to the sorting.
However, we choose to substitute s; with another sensor to
maximize the spatial coverage, while still providing a solu-
tion in the feasible region. Thus, we ensure that for the set of
sensors Sety; U {s;} there is no other feasible solution with
amount; sensors and highest Covy;.l

Minimizing sampling error. We argue that EVIDENCE ef-
fectively provides an approach to minimize the sampling er-
ror for each individual region A. Assume that objective users
exist in each location A1, As, ..., \x € . EVIDENCE will
maximize the spatial coverage and will select the most ob-
jective users in each of these locations. Due to equations
(1), (7), the expectation for the erroré‘ will be minimized
for the available set of users. On the other hand, in the
case that users exist in a subset of these locations but all of
them are too subjective to be considered, due to the bound
(P(Objy;) > B), then we expect that these users would
only inject noise to the aggregation of the result for the
state’e\. However, EVIDENCE is flexible enough to consider
these users as well by setting B = 0.

Worst-Case Complexity. Assuming n sensors, we first it-
erate through the list of sensors to exclude the ones who
will fail to provide an answer within ¢timewindow; or be-
long outside boundingbox ;, that costs O(n). Then we sort
the sensors which costs O(nlogn). In order to compute
the entropy, we iterate through the selected group of sen-
sors that costs O(amount;) and compute the frequency
of each location. However, we can do this only once, and
then update the respective counters when a sensor is added
or removed. Finally, we iterate through the list of avail-
able sensors, which costs O(n), and each of the opera-
tions to decide whether to accept the sensor costs O(1).
Thus the worst case complexity of EVIDENCE is O(n) +
O(nlogn)+O(amount;)+O(n)=0(nlogn).

Step 3: Evaluating Sensor Responses

In this section we present how EViIiDENCE evaluates the
samples retrieved from the sensors, selected by our sampling
plan and continues with the iterations to divide the regions.

Eliminating Outliers. Although we have selected objective
users to sample from, we evaluate their responses and we
eliminate the user responses which are far off their neigh-
bors as outliers. To achieve that we use the Gaussian distri-
bution function for the responses provided by other sensors,

within a spatial distance  and we compare each response

respé?t’l"” provided by s; compared to the mean. Assum-

ing that there exist at least k responses by sensors within r,
we set a threshold p for bounding the probability of accept-

) . lat,l
ing responses to a specific level and we accept resp;; """,

only if e~ (respij—m)?/(20%) p. Thus, we only eliminate
responses when their values are distant from the rest of the
sensors’ responses in that location, to ensure that this would
not result on failing to capture an emergency event.

Segmenting Regions. In order to decide whether a region
should be segmented into smaller regions we use the most

extreme response, that has not been eliminated as an out-
lier, among the ones provided by the sensors in all itera-
tions. Although we assume that this is the highest reported
value our formulation can easily be transformed to support
applications where the lowest value should be used (i.e.,
food shortage scenario). Thus, if the most extreme response

lat,lon .
max (resp;; ") sets the region under emergency we fur-
ther divide it into smaller regions to perform sampling.

This approach enables us to further investigate the pos-
sibility that an emergency event occurs and accurately de-
termine all locations involved in the event. Assuming that
an outlier falsely reports a high value and there are several
sensors nearby that truthfully report the opposite, the false
report would not be considered. However, if there are no
nearby sensors the location will be considered as being in an
emergency, which will trigger in retrieving more data in that
region as the iterations continue. This enables us to either
determine that the report was false or to accurately define
the sub-locations affected by the event.

Step 4: Determining the State of the Event

After the defined amount of iterations of EVIDENCE has
been reached we can compute the state of the event stateg)‘),
for every location A. Hence, we extract the set of accepted
responses in each region and we compute the median to de-
termine the most probable answer, so as to exclude outliers:

on

statetN) = pl/g(respé‘;t’l ),Vrespé‘;t’lon ex 9
The benefit is that the regions are constantly divided into
smaller areas, we fine-tune the sizes of these areas and de-
termine their data values. This way we can better capture an
event even when the data values change (e.g., water levels).

Tracking events over time

Tracking events over time can be achieved easily by: (i) up-
dating the values in the defined affected locations, and (ii)
updating the boundaries of the affected spatial region when
nearby locations get affected. Given that we have identi-
fied a closed shaped spatial area A, where all locations A
within that area are affected by an event e, captured from

the stateg)‘), we can track the event as follows: We develop
anew spatial area A’ where its boundaries are extended with
a distance v, which depends on the possible spatial evolution
of the event: dist(p,p’) < v, Vp € A and Vp’' € A’. For this
area (A’) we perform sampling and re-evaluate the state us-
ing the data retrieved within a time window, to determine the
updated borders and state of the evolving event.

Real-world Applicability

EVIDENCE has already been employed in our real-world
urban monitoring system (Panagiotou et al. 2016). It is trig-
gered when an emergency event occurs to obtain additional
information by querying citizens to extract real-time feed-
back about the event. EVIDENCE can easily be incorpo-
rated in existing social sensing systems, such as Waze and
Ushahidi that typically rely on reports provided voluntarily
by the users. This would allow them to extract information
from the ubiquitous users dynamically to determine the state
of events in large geographical regions in real-time.



Experiments

We run experiments using a real-world dataset (obtained
from WUnderground)* that represents the weather condi-
tions for two major events: (i) the “Winter Storm Thor” that
occurred in the South, Midwest and East USA, focusing on
March 5, 2015, which was one of the most severe days, and
(i1) the “2013 German Floods” during the period of major
European floods between May 1 - July 31, 2013.

Winter Storm Thor

The first scenario enables us to understand how humans,
acting as social sensors, contribute data during emergency
events, and also evaluate the accuracy of the data they re-
port. In this scenario we extracted human responses from
the mPING app® that includes approximately 5,000 weather
reports from users provided on March 5, 2015. Users re-
port weather conditions (e.g., rain, fog, drizzle) by selecting
among multiple choices, but are not able to provide a numer-
ical quantification about the amount of rain. In this scenario,
human reports are obtained from the mPING app and there
is no way to control the sampling process, as there is no user
identification in the reporting app.

Figure 1a illustrates in a heatmap the categorization of the
weather conditions derived from WUnderground, that uses
a binary categorization for rain and snow in every location.
The value of one (grey) represents rainy conditions, while
the value of two (black) represents snowy or both snowy
and rainy conditions. In figure 1b we present the respective
heatmap for the reports provided from the social sensors as
derived from mPING. Since mPING provides a more fine
grained categorization, to be consistent with figure la, we
group user reports that refer to rain (e.g., rain, drizzle, etc.)
with the value of one, and reports that refer to snow (e.g.,
snow, ice pellets, etc.) with the value of two. As can be seen,
the social sensors provide a quite accurate representation of
the extreme weather event as the majority of the areas are
categorized correctly, and especially the overland areas.
Accuracy. Figure 1c presents the accuracy of the social sen-
sors when categorizing weather conditions. We classify each
area as Truly or Falsely considered as being under emer-
gency (Positive) or not (Negative). We assume that a loca-
tion is under emergency when there are snowy conditions.
We vary the number of total acquired reports (500 - 5000)
and the maximum number of users per location (1-100) to
capture the fact that users heavily report from a location
when an event occurs. True Negative and False Positive rep-
resent areas that weather sensors have marked as not snow-
ing. Social sensors report for up to 13.5% of these areas that
it snows (FP). Such reports should be investigated by the au-
thorities as they can be vital (e.g., they may correspond to re-
ports provided by humans in streets not covered by weather
sensors or they may capture faulty sensors). True Positives
and False Negatives represent areas that the weather sensors
report snow. The social sensors fail to categorize all of them
correctly, mainly because they are not able to cover all re-
spective areas. Varying the maximum amount of reports per

*http://www.wunderground.com/weather/api/
>https:/mping.ou.edu/

location has a small impact, since users can accurately an-
swer binary questions. However, increasing the total amount
of reports increases True Positives and reduces False Nega-
tives, as they cover larger spatial area.

German Floods

In our second scenario we deal with answers that contain
numerical values and we aim to determine accurately the
rain precipitation that indicates the state of the floods that
took place in Germany. In order to develop real user profiles
we exploit the findings of the CrowdFlower case studies re-
ported in (Boutsis and Kalogeraki 2014; Boutsis, Kaloger-
aki, and Gunopulos 2016). As we obtained from the studies
each user has a bias; in the range of [0.0,0.93], with the aver-
age value of 0.35. Hence, we assume that users respond with
the same behavior, as in the case studies, but we also inject
some random noise in their responses. The response delay
of the users also depends on their behavior and ranges from
9 to 90 seconds, while the time window is set to 70 seconds;
this enables us to model the behavior of providing delayed
answers or rejecting tasks; in our experiments we assume a
fixed reward; for all tasks. Finally, the sensors are assigned
with a location within the spatial region but we bias some
locations to include more users, as happens in real environ-
ments where humans are located densely in large cities.

In the following experiments we have set the bound B to
0.59™°unt; and the execution time threshold 7 to 0.5. Each
response is evaluated against the ones provided within 500
meters and we set the acceptance threshold p to 0.9. Note,
that, in this scenario we consider that the areas are under
emergency when the precipitation is over 3mm; such values
can be provided by a local authority. Finally, we state that
EVIDENCE iterates up to six times to sample from sensors.
Classification Accuracy. In figure 2a we present the accu-
racy of EVIDENCE in terms of categorizing the spatial areas
for being under an emergency for various numbers of total
sensors and sample size. For a sensor size of 1000 sensors
the percentage of False Negatives is high ranging among 7
and 8 percent; this is because the sensor size is small and
thus we are not able to retrieve data from all the needed re-
gions. On the other hand the False Positives are minimal.
We state, however, that False Negatives are more critical
than False Positives, when making decisions for helping re-
gions under emergency. Selecting more samples per iteration
increases the categorization accuracy only slightly. On the
other hand, when we increase the amount of total users in the
region, EVIDENCE reduces the False Negatives which are
practically eliminated for selecting more than 100 samples
per iteration. Keep in mind that increasing the total users
only increases the amount of “good” sensors that we can
sample from based on their location and objectiveness.
State Accuracy. Figure 2b presents the accuracy of the state
value for all regions which are actually under emergency. We
focus on the regions which are under emergency since mis-
takes in these regions (misclassification or underestimation
of the situation) can lead to fatal results. Thus, we capture
the average sampling error error, for the affected areas us-
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Figure 2: EVIDENCE Evaluation for Varying Numbers of Samples

100 which represents the average of: (1) the sampling error
for each correctly assigned region (TP), and (2) the error of
one for all falsely evaluated regions (FN), multiplied with
100. Similar to figure 2a, we observe that the amount of to-
tal users in the social sensing system plays an important role
at the accuracy of the results, compared to the sample size
per round. Hence, we observe that for 1000 sensors in to-
tal the critical error to capture the state of the event ranges
within 50-55% mainly due to the amount of false negatives.
Respectively when the total sensors are increased to 10000
the critical error reduces to 8% for sampling from more than
300 sensors. Moreover, we report that if we consider only
the true positives, the respective critical error was approxi-
mately 14% for 1000 sensors, and 7% for 10000 sensors, no
matter how many samples we retrieve per round.
Scalability. In figure 3 we present the execution time of the
sampling process on a single EVIDENCE node, under vari-
ous sensor sizes, for a defined location. As the figure shows,
the execution time is slightly affected by the amount of sam-
ples, compared to the total sensor size. This happens since
the complexity is highly affected by the sorting performed.
The low complexity of EVIDENCE is also depicted, since
the execution time even for selecting 5000 samples from
100000 sensors is 4.5 seconds. However, as we have shown
previously selecting 300 samples from a total set of 10000 is
sufficient to provide an accurate prediction for large areas.
Comparison. Since there is no other technique that we know
that exploits social sensing to detect emergency events,
based on quantitative data, we compare EViDENCE with (i)
the Traditional approach, where the users select tasks at will
which is similar to Random Sampling, (ii) with Location, an
approach that considers only the spatial coverage objective
and (iii) CRITICAI (Boutsis and Kalogeraki 2014), a state-
of-the-art approach that considers assigning tasks based on
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Figure 3: Execution Time for the Sample
Selection

the reliability of the sensors and real-time constraints. How-
ever, we extend CRITICAI, which considered qualitative
data to consider quantitative data as well. We perform these
experiments with a sensor set size of 5000. EVIDENCE iter-
ates up to six times and samples from the available sensors.
Thus, to make the comparison fair with the rest of the ap-
proaches, which are non-iterative, we select six times more
samples, based on their strategy, to extract the same amount
of samples with EVIDENCE.

In figure 4a we compare the categorization accuracy of the
approaches. As can be observed, EVIDENCE has a superior
performance when categorizing the regions, especially for
the critical true positives and false negatives. EVIDENCE
performs within 15-17% for the true positives while the
other approaches do not exceed 6.2% when they sample
from 600 sensors. For the same amount of users the false
negatives of these approaches is 11% while EVIDENCE has
only 1%. This is mainly because our iterative sampling ap-
proach eliminates the regions which are not under emer-
gency and focuses on the important ones. However, as the
amount of samples increases the difference is reduced. Re-
spectively, figure 4b illustrates that EVIDENCE has a great
advantage on the critical error, mainly because the other ap-
proaches cannot compete with EVIDENCE in the catego-
rization of the regions. Although the critical error of EVi-
DENCE ranges between 11-27% depending on the amount
of sensors, the rest performed within 23-82%.

We also employed the iterative sampling approach to the
Location and CRITICAL strategies, to compare how the in-
dividual objectives of EVIDENCE perform. Figure 5 shows
that the Location objective that aims to maximize the en-
tropy has the worst performance on the False Negatives,
since it selects too many sensors that produce noisy re-
sponses. On the other hand, CRITICALI selects high quality
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Figure 4: Comparison with state-of-the-art approaches

users, but it cannot capture the whole region. Thus, it man-
ages to categorize less regions correctly. Nevertheless, that
difference is reduced as the amount of samples increases,
since inevitably such sensors will exist in all regions.

Related Work

There has been a large body of work on sampling to reduce
the size of the data in several application domains (Kong
2008). Sampling approaches that consider traditional sensor
networks typically aim to reduce the energy consumption of
the sensors (Lin et al. 2008) but they do not consider human
factors which is fundamental in social sensing as humans re-
sponses can not be trusted. Other sampling approaches aim
to reduce the data produced from the individual social sen-
sors (Qi et al. 2013). On the other hand our goal is to reduce
the amount of sensors that will provide the samples.

Recent works have identified that humans can act as social
sensors and provide great benefit in ascertaining the correct-
ness of the collected data (Wang et al. 2013) and several ap-
proaches have been proposed to determine the most suitable
users for each task based on human factors (Roy et al. 2015;
Ho and Vaughan 2012). Most of these works focus on as-
signing tasks based on user reliability (Karger, Oh, and Shah
2011), user “quality” (Khazankin et al. 2011), both user re-
liability and real-time requirements (Boutsis and Kaloger-
aki 2014) or to minimize the error subject to a budget con-
straint(Cao et al. 2012). Unlike EVIDENCE, none of the
these approaches deals with the problem of detecting the
state of real-world emergency events in a wide geographical
area and, thus, none of them considers the spatial dimension
which is fundamental for emergency events.

On the other hand, task assignment approaches that take
user locations into account also exist in the literature. A
number of works have been proposed to maximize the spa-
tial coverage in social sensing (Weinschrott et al. 2011;
Zhang et al. 2014; Zhao, Li, and Ma 2014; Li, Li, and Wang
2015; Han, Zhang, and Luo 2014), but these approaches fail
to consider important human factors. Another approach that
considers human factors (Kazemi, Shahabi, and Chen 2013)
aims to assign tasks to trustworthy users who are located
near the task, but it does not focus on event detection and
thus, it does not consider that the task assignment should
cover a wide spatial area rather than a single location.

Detecting spatial phenomena has been widely studied in
traditional sensor networks (Keally et al. 2014). However,
exploiting social sensors has important differences as they:
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Figure 5: Accuracy evaluation using indi-
vidual objectives

(1) provide subjective answers, (2) have different response
criteria, (3) their location can change dynamically. Most of
the sensor network works deal with static sensors (Wang
and Cheng 2008), and they focus on determining the event
boundaries (Subramaniam, Kalogeraki, and Palpanas 2006)
rather than identifying the state and intensity of the event.
In (Krause et al. 2008) they propose community sensing
methods for sensing applications. However, they extract data
from sensors instead of humans and the samples are selected
based on the demand for each location while we extract sam-
ples from all “active” areas evenly, as emergency events may
occur everywhere. Moreover, our problem is more complex
as we maximize two objectives while their goal is to max-
imize a function that quantifies the expected information
gain. Authors in (Sakaki, Okazaki, and Matsuo 2010) exploit
Twitter as a geolocated sensor data source to detect real-
time events. However, their approach has no influence on the
sensor selection, and they focus on detecting the focal point
of the event. Authors in (Wang et al. 2015) propose a scal-
able social sensing approach that exploits dependencies be-
tween observed variables to increase fact-finding accuracy.
In contrast to our setting, they assume that random users will
provide data voluntarily. In (Chu et al. 2011) they propose
different social sensing strategies for disaster situations, but
they do not focus on the user selection process or on detect-
ing the state of the event. Authors in (Gu et al. 2014) study
the data extrapolation in social sensing systems for disas-
ter response, while in (Hu et al. 2015) they consider logical
dependencies to minimize the network bandwidth in crowd-
sourcing environments, during emergencies. However, both
approaches focus on binary tasks and they do not take the
human factor into account. In our previous work (Boutsis
and Kalogeraki 2016), we exploited particle filters to iden-
tify regions under emergency. However, this work did not
consider the human characteristics that improve the results
dramatically compared to random sampling.

Conclusions

In this paper we presented our sampling approach that seeks
to exploit human sensors to achieve robust, real-time detec-
tion of the state of emergency events. We draw the following
conclusions from our experiments: (1) Users can contribute
accurate and critical information during emergency scenar-
ios, (2) EVIDENCE, by taking into consideration user abil-
ities and location, can reduce the classification error up to
90% during emergencies, compared to state-of-the-art ap-



proaches, and (3) we illustrated that EVIDENCE can work
robustly for wide areas with large amounts of users.

Acknowledgment

This research has been financed by the European Union
through the FP7 ERC IDEAS 308019 NGHCS project and
the Horizon2020 688380 VaVeL project.

References

Boutsis, I., and Kalogeraki, V. 2014. On task assignment for real-
time reliable crowdsourcing. In ICDCS, Madrid, June 2014, 1-10.
Boutsis, L., and Kalogeraki, V. 2016. Using human social sensors
for robust event location detection. In DCOSS, Washington, 2016.
Boutsis, I.; Kalogeraki, V.; and Gunopulos, D. 2016. Reliable
crowdsourced event detection in smart cities. In SCOPE, Vienna,
Austria, April 2016.

Cao, C. C.; She, J.; Tong, Y.; and Chen, L. 2012. Whom to ask?:
jury selection for decision making tasks on micro-blog services.
PVLDB 5(11):1495-1506.

Chaudhuri, S.; Das, G.; and Narasayya, V. 2007. Optimized strat-
ified sampling for approximate query processing. ACM Transac-
tions on Database Systems (TODS) 32(2):9.

Chu, E. T.-H.; Chen, Y.; Liu, J.; and Zao, J. 2011. Strategies for
crowdsourcing for disaster situation information. WIT Transac-
tions on the Built Environment 119:257-269.

Cochran, W. G. 1953. Sampling techniques.

Gu, S.; Pan, C.; Liu, H.; Li, S.; Hu, S.; Su, L.; Wang, S.; Wang,
D.; Amin, T.; Govindan, R.; Aggarwal, C.; Ganti, R.; Srivatsa, M.;
Barnoy, A.; Terlecky, P.; and Abdelzaher, T. 2014. Data extrapola-
tion in social sensing for disaster response. In DCOSS, May 2014.
Han, K.; Zhang, C.; and Luo, J. 2014. Bliss: Budget limited ro-
bust crowdsensing through online learning. In SECON, Singapore,
Malaysia, June 2014.

Ho, C.-J., and Vaughan, J. W. 2012. Online task assignment in
crowdsourcing markets. In AAAI Toronto, Canada, July 2012.
Hu, S.; Li, S.; Yao, S.; Su, L.; Govindan, R.; Hobbs, R.; and Ab-
delzaher, T. F. 2015. On exploiting logical dependencies for min-
imizing additive cost metrics in resource-limited crowdsensing. In
DCOSS, Fortaleza, Brazil, June 2015, 189-198.

Ipeirotis, P. G. 2010. Analyzing the amazon mechanical turk mar-
ketplace. XRDS 17(2):16-21.

Kamar, E.; Kapoo, A.; and Horvitz, E. 2015. Identifying and Ac-
counting for Task-Dependent Bias in Crowdsourcing. In HCOMP,
San Diego, CA, November 2015.

Karger, D. R.; Oh, S.; and Shah, D. 2011. Iterative learning for
reliable crowdsourcing systems. In NIPS, Granada, Dec 2011.
Kazemi, L.; Shahabi, C.; and Chen, L. 2013. Geotrucrowd: trust-
worthy query answering with spatial crowdsourcing. In SIGSPA-
TIAL, Orlando, FL, November 2013, 304-313.

Keally, M.; Zhou, G.; Xing, G.; Nguyen, D. T.; and Qi, X. 2014.
A learning-based approach to confident event detection in hetero-
geneous sensor networks. ACM ToSN 11(1):10.

Kerman, M. C.; Jiang, W.; Blumberg, A. F.; and Buttrey, S. E. 2009.
Event detection challenges, methods, and applications in natural
and artificial systems. Technical report, DTIC Document.
Khazankin, R.; Psaier, H.; Schall, D.; and Dustdar, S. 2011. Qos-
based task scheduling in crowdsourcing environments. In /CSOC,
Paphos, Cyprus, December 2011, 297-311.

Kong, X. 2008. Sampling Strategies in Sensor Networks. ProQuest.

11

Krause, A.; Horvitz, E.; Kansal, A.; and Zhao, F. 2008. Toward
community sensing. In IPSN, St. Louis, MO, April 2008, 481-492.

Li, H.; Li, T.; and Wang, Y. 2015. Dynamic participant recruitment
of mobile crowd sensing for heterogeneous sensing tasks. In MASS,
Dallas, TX, October 2015, 136-144.

Lin, S.; Arai, B.; Gunopulos, D.; and Das, G. 2008. Region sam-
pling: Continuous adaptive sampling on sensor networks. In ICDE,
Cancun, Mexico, April 2008, 794-803.

Ouyang, R. W.; Kaplan, L.; Martin, P.; Toniolo, A.; Srivastava, M.;
and Norman, T. J. 2015. Debiasing crowdsourced quantitative
characteristics in local businesses and services. In IPSN, Seattle,
WA, April 2015.

Panagiotou, N.; Zygouras, N.; Katakis, I.; Gunopulos, D.;
Zacheilas, N.; Boutsis, I.; Kalogeraki, V.; Lynch, S.; and O’Brien,
B. 2016. Intelligent urban data monitoring for smart cities. In
ECML-PKDD, Riva del Garda, Italy, September 2016.

Qi, X.; Keally, M.; Zhou, G.; Li, Y.; and Ren, Z. 2013. Adasense:
Adapting sampling rates for activity recognition in body sensor net-
works. In RTAS, Philadelphia, PA, April 2013, 163-172.

Roy, S. B.; Lykourentzou, I.; Thirumuruganathan, S.; Amer-Yahia,
S.; and Das, G. 2015. Task assignment optimization in knowledge-
intensive crowdsourcing. The VLDB Journal 24(4):467-491.
Sakaki, T.; Okazaki, M.; and Matsuo, Y. 2010. Earthquake shakes
twitter users: real-time event detection by social sensors. In WWW,
Raleigh, NC, April 2010, 851-860.

Shannon, C. E. 2001. A mathematical theory of communication.
ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1).
Subramaniam, S.; Kalogeraki, V.; and Palpanas, T. 2006. Dis-
tributed real-time detection and tracking of homogeneous regions
in sensor networks. In RTSS, Rio de Janeiro, Dec 2006, 401-411.
Thejaswini, M.; Rajalakshmi, P.; and Desai, U. B. 2015. Novel
sampling algorithm for human mobility-based mobile phone sens-
ing. Internet of Things Journal, IEEE 2(3):210-220.

Van Dyke Parunak, H., and Brueckner, S. 2001. Entropy and self-
organization in multi-agent systems. In AGENTS, May 2001.
Wang, T.-Y., and Cheng, Q. 2008. Collaborative event-region
and boundary-region detections in wireless sensor networks. [EEE
Transactions on Signal Processing 56(6):2547-2561.

Wang, D.; Abdelzaher, T.; Kaplan, L.; and Aggarwal, C. 2013.
Recursive fact-finding: A streaming approach to truth estimation in
crowdsourcing applications. In ICDCS, Philadelphia, July 2013.
Wang, S.; Su, L.; Li, S.; Hu, S.; Amin, T.; Wang, H.; Yao, S.; Ka-
plan, L.; and Abdelzaher, T. 2015. Scalable social sensing of inter-
dependent phenomena. In IPSN, Seattle, WA, April 2015, 202-213.
Weinschrott, H.; Weisser, J.; Durr, F.; and Rothermel, K. 2011. Par-
ticipatory sensing algorithms for mobile object discovery in urban
areas. In PerCom, Seattle, USA, March 2011, 128—135.

Willett, R.; Martin, A.; and Nowak, R. 2004. Backcasting: adaptive
sampling for sensor networks. In IPSN, Berkeley, CA, Apr 2004.
Zhang, D.; Xiong, H.; Wang, L.; and Chen, G. 2014. Crow-
drecruiter: selecting participants for piggyback crowdsensing un-
der probabilistic coverage constraint. In UbiComp, Seattle, WA,
September 2014, 703-714.

Zhao, D.; Li, X.-Y.; and Ma, H. 2014. How to crowdsource tasks
truthfully without sacrificing utility: Online incentive mechanisms
with budget constraint. In INFOCOM, Toronto, Canada, Apr 2014.
Zhuang, H., and Young, J. 2015. Leveraging in-batch annotation
bias for crowdsourced active learning. In WSDM, January 2015.
Zhuang, H.; Parameswaran, A.; Roth, D.; and Han, J. 2015. Debi-
asing crowdsourced batches. In KDD, Sydney, Australia, Aug 2015.





