
LoRUS: A Mobile Crowdsourcing System for Efficiently
Retrieving the Top-k Relevant Users in a Spatial Window

Anirban Mondal, Gurulingesh Raravi, Amandeep Chugh, Tridib Mukherjee
Xerox Research Center India, Bengaluru, India

{Anirban.Mondal, Gurulingesh.Raravi, Amandeep.Chugh, Tridib.Mukherjee}@xerox.com

Abstract

The prevalence of mobile devices and applications strongly
motivate mobile crowdsourcing for facilitating location-
dependent services. We propose LoRUS, a Location-based
Relevant User determination System for efficiently retrieving
the top-k relevant mobile users in a given spatial window.

1 Introduction

Given the ever-increasing popularity and proliferation of mo-
bile devices, it has now become practically feasible to enable
people to share information about dynamic events (e.g., trees
fallen on roads due to a storm, sudden truck breakdowns
and unscheduled processions) in their current location. This
strongly motivates facilitation of various kinds of location-
dependent information retrieval services and applications
using mobile devices. Such mobile applications have an in-
herently spatio-temporal aspect in the sense that only those
mobile users, who are present near a given location at that
time, are able to respond to queries arising from other users.
Consider a user Alice, who just heard from her colleagues
about an unscheduled procession in a route that she uses daily
for driving home. She may have queries such as “How many
cars are currently stuck due to the procession?”, “How many
hours is the route likely to remain blocked?” and so on. Here,
only the mobile users in the vicinity of the procession can
answer her queries.

In such above mentioned applications, it is critical to deter-
mine the most relevant users (i.e., those who are more likely
to respond to such queries in a relatively accurate manner)
in a given spatial window within a valid time-duration. For
example, since many users are likely to be shopping at a
large retail store for at least an hour, the time-duration for
queries related to offers in that store could be set to 60 min-
utes. In effect, this means that only those users, who have
been present in the store within the past 60 minutes would be
considered as relevant for answering queries. Interestingly,
the time-duration appropriate for each kind of query can vary.
Thus, the ability to handle multiple time-durations enables
personalization towards the diverse querying needs of users.

In this work, the relevance of a user w.r.t. a given query is
based on the user score, which depends upon the user’s level

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of engagement in responding relatively accurately to queries
in the past. Thus, the scoring can be based on the percentage
of queries answered by a user, the timeliness of the response,
as well as the quality of the response. Hence, given a spatial
window, we address the problem of efficiently retrieving the
top-k relevant mobile users who are moving in that window
within valid (possibly multiple) time-duration(s).

Existing broadcast approaches flood the network by send-
ing queries to all the users since they do not keep track of
user scores. Hence, they do not address mobile resource
constraints (e.g., energy, bandwidth) and also result in unnec-
essary spam. On the other hand, multi-cast approaches ran-
domly send the queries to some of the users to preserve mo-
bile resources, but they do not ensure the direction of queries
to the most relevant users. Furthermore, spatial indexes, such
as the R-tree (Guttman 1984), the quadtree (Finkel and Bent-
ley 1974) and the Q+R-tree (Y.Xia and Prabhakar 2003),
cannot efficiently retrieve information about the most relevant
mobile users within a given spatial region, let alone at varied
spatial granularities and for different time-durations.

We propose LoRUS, a Location-based Relevant User iden-
tification System. LoRUS can efficiently retrieve the top-k
relevant mobile users in a given spatial window. The key con-
tribution of LoRUS is the τR-tree, a novel R-tree-based index
augmented with an array for indexing different time-durations
and fixed-length arrays for indexing the most relevant users
in space for each pre-defined time-duration.

2 τR-tree: An efficient index for retrieving

relevant users in a spatial window

The τR-tree is a novel R-tree-based spatial index in which
each node of the R-tree is augmented with (a) an array for
indexing the recent different time-durations; and (b) fixed-
length arrays for indexing the most relevant users in the
Minimum Bounding Rectangle (MBR) of the region covered
by a given R-tree node for each time-duration.

Non-leaf nodes of the τR-tree are of the form (ptr, mbr,
AR), where ptr is a pointer to a child node in the τR-tree,
and mbr is the MBR, which covers all the MBRs in that child
node. Here, AR is an array, each entry of which corresponds
to a given time-duration. The size of each time-duration is
a constant T . Suppose T=10 minutes. Here, AR[1] corre-
sponds to information about the relevant users in mbr for the

Human Computation and Crowdsourcing: Works in Progress Abstracts:
An Adjunct to the Proceedings of the Third AAAI Conference on Human Computation and Crowdsourcing

24

past 10 minutes; AR[2] concerns the past 20 minutes and so
on. Furthermore, the array has a fixed n number of entries
for indexing n different time-durations. Here, the values of
T and n are both application-dependent.

Each entry of AR contains a pointer to a fixed-length array
A, which contains information about relevant users for the
given time-duration in the region covered by the node. Each
such fixed-length array A contains entries of the form (Uid,
Uscore), where Uid represents the unique identifier of a given
user, while Uscore refers to her score. The elements of A
are kept sorted in descending order of the user scores for
facilitating quick retrieval of the most relevant users. Each
fixed-length array structure (for indexing user information)
at each τR-tree node has a maximum size limit λ.

Leaf nodes of the τR-tree are of the form (pt, rect, AR),
where pt is a pointer to a rectangle in the spatial database,
while rect is the MBR of that rectangle. Here, the signif-
icance of AR is essentially the same as explained above.
Creation, search and updates in the τR-tree use standard
R-tree algorithms (Guttman 1984) with the only exception
being the handling of the time-duration arrays and the fixed-
length array structures that store user information. Using the
τR-tree, we obtain top-k relevant users (with user scores)
corresponding to each of the queried time-durations. Then
we compute a net user score across the time-durations.

3 Performance Evaluation
In our experiments, we simulate the positions of mobile users
by attaching a given user to each spatial point (representing a
landmark) in the dataset; then the user moves within a fixed
radius of that point. In consonance with practice, this ensures
that regions with a high number of points (landmarks) have a
higher density of users. Each user was randomly assigned a
score between 0 to 100.

For generating a synthetic dataset with 1 million spatial
points, we divide the universe into a grid of 10X10 equal-
sized cells. The points are assigned to the cells using a Zipf
distribution with zipf factor ZFS of 0.7, which represents
a highly skewed spatial distribution. Thus, there would be
a relatively few dense cells containing a large number of
points, while the other cells would be sparse. Within a given
cell, the location of each point is decided randomly.

We considered a total of 8 time-durations; queries were
selected to be across the recent 5 time-durations. We set the
value of k to 10 for all our experiments i.e., all experiments
aimed at retrieving the top-10 relevant users in a given spatial
window. We set k′ to 15 i.e., each query was sent to 15
users. The query window scaling factor f scales the area of
a square window query. We set the default area of a given
query window (i.e., for the case when f = 1) to 1% of the
universal space. Moreover, we set the maximum number M
of entries in the τR-tree node to 40. The maximum size λ for
each fixed-length (user) array in the τR-tree is set to 50 for
all our experiments. We used the disk page size as 4 KB.

For performance comparison, we adapt and combine vari-
ants of the approaches proposed in (Y.Xia and Prabhakar
2003) and (Papadias, Mamoulis, and Theodoridis 1999) to
our scenario. We adapt the approach in (Y.Xia and Prabhakar
2003) by building an R-tree on the mobile users to index the

 200

 600

 1000

 1 3 5

A
R

T
 (

s)

f

τR-tree
MTR

(a) ART

 20

 60

 100

 1 3 5

D
is

k
I/

O
 (

10
3)

f

τR-tree
MTR

(b) Disk I/O

Figure 1: Effect of variations in the query window scaling
factor f for Dense Regions (Synthetic spatial dataset)

users who are in a given region at a point in time. Similar
to the τR-tree, each R-tree node in this reference approach
is augmented with fixed-length array structures for indexing
user IDs for a specific time-duration. Similar to (Papadias,
Mamoulis, and Theodoridis 1999), our reference approach
creates and maintains multiple R-trees i.e., one R-tree for
each time-duration. After traversing the corresponding R-
trees for each of the time-durations, it collates the results and
sends the query to any randomly selected k users. We des-
ignate the reference approach as MTR (Multiple Temporal
R-Trees). MTR does not consider user scores.

Our performance metrics are average response time
(ART) and number of disk I/Os incurred by the queries.
Figure 1 depicts the results of the experiment in which we
selected a query window randomly from one of the relatively
dense cells and then varied the query window scaling fac-
tor f . As the value of f increases, the query window area
also increases. Hence, the query window intersects more
index nodes, thereby resulting in higher disk I/Os and conse-
quently higher ART. The predominant cost here is the disk
I/O cost due to index node retrievals. Hence, ART follows
a similar trend to that of disk I/O for both approaches. Re-
call that we use the information across five time-durations
for determining the top-k users for both approaches. Thus,
unlike the τR-tree, MTR traverses five R-trees (one for each
time-duration), thereby incurring higher ART and disk I/Os.

4 Conclusion
We have proposed the LoRUS mobile crowdsourcing system
for efficiently retrieving the top-k relevant mobile users in a
given spatial window. In the future, we plan to explore using
LoRUS in conjunction with different incentive models.

References
Finkel, R., and Bentley, J. 1974. Quad trees: A data structure for
retrieval on composite keys. In Acta Informatica 4 (1).
Guttman, A. 1984. R-trees: A dynamic index structure for spatial
searching. In Proc. ACM SIGMOD.
Papadias, D.; Mamoulis, N.; and Theodoridis, Y. 1999. Processing
and optimization of multiway spatial joins using R-trees. In Proc.
PODS.
Y.Xia, and Prabhakar, S. 2003. Q+Rtree: Efficient indexing for
moving object databases. In Proc. DASFAA.

25

