
Crowdsourcing from Scratch:
A Pragmatic Experiment in Data Collection by Novice Requesters

Alexandra Papoutsaki, Hua Guo, Danae Metaxa-Kakavouli,
Connor Gramazio, Jeff Rasley, Wenting Xie, Guan Wang, and Jeff Huang

Department of Computer Science
Brown University

Abstract
As crowdsourcing has gained prominence in recent years,
an increasing number of people turn to popular crowdsourc-
ing platforms for their many uses. Experienced members
of the crowdsourcing community have developed numerous
systems both separately and in conjunction with these plat-
forms, along with other tools and design techniques, to gain
more specialized functionality and overcome various short-
comings. It is unclear, however, how novice requesters us-
ing crowdsourcing platforms for general tasks experience ex-
isting platforms and how, if at all, their approaches deviate
from the best practices established by the crowdsourcing re-
search community. We conduct an experiment with a class
of 19 students to study how novice requesters design crowd-
sourcing tasks. Each student tried their hand at crowdsourcing
a real data collection task with a fixed budget and realistic
time constraint. Students used Amazon Mechanical Turk to
gather information about the academic careers of over 2,000
professors from 50 top Computer Science departments in the
U.S. In addition to curating this dataset, we classify the strate-
gies which emerged, discuss design choices students made on
task dimensions, and compare these novice strategies to best
practices identified in crowdsourcing literature. Finally, we
summarize design pitfalls and effective strategies observed to
provide guidelines for novice requesters.

Introduction
Crowdsourcing has gained increasing popularity in recent
years due to its power in extracting information from un-
structured sources, tasks that machine learning algorithms
are unable to perform effectively. More people with little
prior knowledge of crowdsourcing are getting involved, thus
it is important to understand how novice requesters design
crowdsourcing tasks to better support them. In this paper, we
describe an experiment in which we observed and analyzed
how novice requesters performed a non-contrived crowd-
sourcing task using crowdsourcing. The task was to collect
information on the academic development of all faculty in 50
highly-ranked Computer Science departments—over 2,000
faculty in total. Through this experiment, we identify and
compare six distinct crowdsourcing strategies.

We believe this is the first empirical analysis of how
novice crowdsourcing requesters design tasks. This exper-
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iment was conducted as a class assignment based on a real-
istic crowdsourcing scenario: students were provided a fixed
sum of money to compensate workers, and a limited amount
of time to complete the assignment. They came up with dif-
ferent crowdsourcing strategies, which varied across multi-
ple dimensions, including size of task, restriction of input,
and amount of interaction with workers. The curated dataset
is available as a public resource1 and has already been vis-
ited by thousands of researchers.

This paper blends a quantitative analysis with qualitative
interpretations of the students’ observations. We believe our
approach was fruitful in comparing different dimensions and
providing interpretation. These findings have valuable impli-
cations for novice requesters when designing crowdsourc-
ing jobs, especially for data collection. One finding was that
novice requesters do not successfully integrate verification
strategies on their jobs or tend to ignore this stage until they
are well beyond their budget.

Our contributions are twofold. First, we report strategies,
as well design choices that emerged when novice requesters
designed crowdsourcing tasks for a realistic data collection
problem. We discuss the observed rationales and difficulties
behind task designs, relating them to systems and best prac-
tices documented in the research community, and summa-
rize implications for how to better support novice requesters.
Second, we compare how task results vary across these de-
sign choices to derive task design guidelines for novice re-
questers. These guidelines will give readers a better sense of
how they might structure jobs to maximize results.

Related Work
We discuss existing crowdsourcing taxonomies that inspired
our classification of strategies and dimensions; then relate to
previous work on developing tools, techniques, and systems
for supporting crowdsourcing requesters.

Taxonomies and Categorizations of Crowdsourcing
Researchers from a diversity of fields have generated tax-
onomies for a variety of crowdsourcing platforms, systems,
and tasks. Geiger et al. created a four-dimensional taxon-
omy for crowdsourcing strategies based on 46 crowdsourc-
ing examples (Geiger et al. 2011). Their dimensions were:

1http://hci.cs.brown.edu/csprofessors/
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(1) preselection of contributors; (2) aggregation of contri-
butions; (3) remuneration for contributions; and (4) acces-
sibility of peer contributions. Other work has similarly de-
constructed crowdsourcing strategies into separate dimen-
sions (Malone, Laubacher, and Dellarocas 2010). We con-
sider many of these these attributes of crowdsourcing in our
evaluation of strategies used by novice requesters.

Others have established classifications of different crowd-
sourcing tasks (Corney et al. 2009; Quinn and Bederson
2011). To remove this extra dimension of complexity, we re-
strict the specific type of task to a particular data collection
task in order to focus on novice requester strategies.

Researchers have also studied relevant components of
crowdsourcing systems, including the degree of collabo-
ration between workers, worker recruitment, and manual
involvement by researchers (Hetmank 2013). Specifically,
Doan et al. describe nine dimensions including nature of
collaboration and degree of manual effort (Doan, Ramakr-
ishnan, and Halevy 2011). We purposefully focus on the ex-
isting Mechanical Turk (MTurk) interface rather than an ex-
ternal or novel system, particularly as it is used by novice
requesters, and evaluate it with regard to each dimension.

Existing Tools, Techniques, and Systems
Existing research has led to the development of a plethora of
specialized crowdsourcing systems both for use by novices
and those with more expertise. In particular, many systems
have been developed to make crowdsourcing more effective
for specific use cases and experienced requesters. Systems
such as CrowdDB and Qurk use the crowd for a specific
purpose: performing queries, sorts, joins, and other database
functions (Franklin et al. 2011; Marcus et al. 2011). Sim-
ilarly, Legion:Scribe is a specialized system for a particu-
lar task: helping non-expert volunteers provide high-quality
captions (Lasecki et al. 2013). CrowdForge is an example
of a more general-purpose system, which allows requesters
to follow a partition-map-reduce pattern for breaking down
larger needs into microtasks (Kittur et al. 2011). Precisely
because many specialized systems for informed requesters
have been developed, our work seeks to focus on novice re-
questers doing a generalizable data collection task.

Systems have also been developed explicitly for the pur-
pose of bringing the benefits of crowd-powered work to an
inexperienced audience. One of the best-known examples,
the Soylent system, integrates crowd-work into a traditional
word processor to allow users to benefit from crowdsourc-
ing without needing a substantial or sophisticated under-
standing of the technique (Bernstein et al. 2010). In par-
ticular, the Find-Fix-Verify strategy built into Soylent pro-
vides users with high-quality edits to their documents au-
tomatically. Another system, Fantasktic, is built to improve
novices’ crowdsourcing results by providing a better sub-
mission interface, allowing requesters to preview their tasks
from a worker’s perspective, and automatically generating
tutorials to provide guidance to crowdworkers (Gutheim
and Hartmann 2012). Each of these novice-facing systems
is built to address a common mistake novices make when
crowdsourcing, such as inexperience verifying data or fail-
ing to provide sufficient guidance to workers. In contrast,

our work seeks to holistically study novices’ processes, suc-
cesses, and common mistakes when using crowdsourcing.
These insights are both valuable for further development of
robust systems for novice requesters, but also for novice re-
questers who may not be aware of existing systems or may
want to use crowdsourcing for a more general data collection
task, one for which existing systems are irrelevant.

To aid in the creation of complex crowdsourcing pro-
cesses, researchers have also developed various assistive
tools. TurKit introduced an API for iterative crowdsourc-
ing tasks such as sorting (Little et al. 2010). This tool is of
particular use to experienced programmers looking to pro-
grammatically integrate crowdsourcing into computational
systems. Another task-development tool, Turkomatic, uses
crowdsourcing to help the design of task workflow (Kulka-
rni, Can, and Hartmann 2012). We identified similar creative
uses of the crowd in meta-strategies such as this one when
observing the crowdsourcing behaviors of novice requesters.

Existing research has also studied useful techniques and
design guidelines for improving crowdsourcing results. Fari-
dani et al. recommend balancing price against desired com-
pletion time, and provide a predictive model illustrating this
relationship (Faradani, Hartmann, and Ipeirotis 2011). Other
work has compared different platforms, showing the de-
grees to which intrinsic and extrinsic motivation influence
crowdworkers (Kaufmann, Schulze, and Veit 2011). Re-
searchers have also developed recommendations for improv-
ing exploratory tasks (Willett, Heer, and Agrawala 2012;
Kittur, Chi, and Suh 2008) and have built models to pre-
dict quality of results based the task’s relevant parameters,
including the size of each task, number of workers per task,
and payment (Huang et al. 2010). Since novice requesters
are unlikely to consistently and effectively implement best
practices when designing their applications of crowdsourc-
ing, this work studies novice practices in order to pro-
vide recommendations for novice users and for crowdsourc-
ing platforms like MTurk seeking to become more novice-
friendly.

The Experiment
Nineteen undergraduate and graduate students completed an
assignment as part of a Computer Science Human-Computer
Interaction seminar. Students had no previous experience
with crowdsourcing, but had read 2 seminal papers that
introduced them to the field (Kittur, Chi, and Suh 2008;
Bernstein et al. 2010). Each student was given $30 in Ama-
zon credit and was asked to come up with one or more data
collection strategies to use on MTurk. The goal as a class
was to create a full record of all Computer Science faculty
in 50 top Computer Science graduate programs, according
to the popular US News ranking2. We chose this experiment
because it involves a non-trivial data collection task with
some practical utility, and contains realistic challenges of
subjectivity, varying difficulty of finding the data, and even
data that are unavailable anywhere online. Each student was
responsible for compiling a complete record on faculty at

2http://www.usnews.com/best-graduate-schools
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5–10 universities to ensure a fair division between depart-
ments with different sizes, resulting in two complete records
per university. Ten pieces of information were collected for
each faculty member: their full name, affiliated institution,
ranking (one of Full, Associate, Assistant), main area of re-
search (one of twenty fields, according to Microsoft Aca-
demic Research3), the year they joined the university, where
they acquired their Bachelors, Masters, and Doctorate de-
grees, where they did their postdoc, and finally, links to
pages containing the aforementioned information.

Collecting information about faculty is a challenging task
since the data must be gathered from a variety of sources in
different formats. Additionally, a certain degree of knowl-
edge on Computer Science or even general academic ter-
minology is required, posing a challenge to workers with
no academic background or familiarity with relevant jargon.
This task becomes even harder for the requester since we im-
posed realistic financial and time constraints on the crowd-
sourcing work by setting a fixed budget and deadline. Due
to its challenging nature, we believe our task is representa-
tive of many free-form data collection and entry tasks, while
simultaneously providing an interesting and useful dataset.
Finally, students can be seen as typical novices as they lack
experience in crowdsourcing, but are motivated to collect ac-
curate data as a portion of their final grade depended on it.

After 16 days the students amassed about 2,200 entries
of faculty, along with individual project reports that spanned
between 10 to 20 pages, containing the data collection strate-
gies used along with reflections on successes and failures.
All students acquired consent from workers, according to
our IRB. The worker pool was global and students exper-
imented with different qualification criteria throughout the
experiment. In the following sections we analyze these re-
ports to identify common strategies used for data collection
tasks. The entire body of data was curated and released as the
first free database of meta-information on Computer Science
faculty at top graduate programs.

Strategies for Data Collection Tasks
We report six strategies that arose after analyzing the nine-
teen students’ reports. Following grounded theory method-
ologies (Strauss and Corbin 1990), we classified the stu-
dents’ approaches into strategies based on how the tasks
were divided into individual HITs. Figure 1 summarizes the
processes that each strategy involves.

Brute-Force (I)
We name the crudest strategy Brute-Force, as it borrows the
characteristics and power of brute-force algorithms. In this
strategy, students assigned the entire data collection task to
a single worker. The worker was requested to fill 10 miss-
ing pieces of information for all Computer Science profes-
sors of a specific university. Most students employing this
strategy used links to external interfaces, such as Google
spreadsheets, to more easily accept the full record of fac-
ulty. Different styles in the incentives that were used to in-
crease data accuracy were reported. Some students restricted

3http://academic.research.microsoft.com

the range of accepted answers by using data validation tech-
niques. A student contemplated using an extreme adaptation
of the Brute-Force strategy by creating a single task for the
report of all Computer Science professors of all universi-
ties. He did not pursue this path due to time and budget con-
straints; instead all students that used Brute-Force applied it
independently to each university. Arguably, Brute-Force in-
cludes highly laborious and time consuming tasks for work-
ers, and the quality of the final results relies heavily on the
aptitude of a handful of workers. On the other hand, it re-
quires little oversight by the requester, and with the luck of
a few dedicated workers, yields rapid and good results.

Column-by-Column (II)
In this strategy, students broke the data collection task into
smaller sub-tasks, where each sub-task requests a specific
subset of the required information vertically across all fac-
ulty. In most observed cases, students employed a worker to
create the directory for a specific university, and afterwards
created at least three sub-tasks that corresponded to the rank,
educational information, and finally research area and join
year for all faculty. This strategy can be seen as filling the
dataset column-by-column or by groups of similar concepts.
Students that used it found that its main advantages are the
specialization of each worker on a sub-task, and the isola-
tion of any particularly bad worker’s errors to a well-defined
subset of the collected data. As a drawback they note its par-
allelization, as multiple workers will visit the same pages
to extract different pieces of information, ignoring adjacent
and relevant data on those pages.

Iterative (III)
In this form of crowdsourcing, students asked multiple
workers to contribute to the same data collection task, one
after another. Filling or correcting a cell in the spread-
sheet contributed to a prescribed reward. Each worker could
choose to add as many new cells as they wish or edit pre-
existing data from other workers, as they had access to the
whole spreadsheet. Their compensation was based on the ex-
tent to which they improved the data over its previous state.
This model is mainly characterized by the great potential for
interaction between workers; workers may work one after
another, with or without temporal overlap, and may interact
with each other’s results incrementally. Students found that
the biggest downside of this strategy is the complexity in
calculating the compensation, which requires an evaluation
of the quality and amount of work done by each worker. A
notable consequence of the flexibility of this strategy is that
a single worker may choose to complete all the work, and
the strategy converges to Brute-Force.

Classic Micro (IV)
The classic micro strategy is a staple of crowdsourcing. In
this approach, students often initially asked a worker to gen-
erate an index of names and sources for all professors at a
given university, and from there divided the job into as many
tasks as there were professors. In other words, each worker
was employed to retrieve all information about one specific
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professor. The use of a large pool of workers is a benefit of
this strategy, since it isolates each worker’s input to a small
subset of the data; this ensures that one worker’s tendency to
make mistakes does not negatively impact the entirety of the
final results. However, the need for a large number of work-
ers makes it more difficult to narrow workers by expertise
or other credentials, or to interact personally with workers,
while keeping the data collection rapid or efficient.

Chunks (V)
Division by chunks can be characterized as the transpose of
the Column-by-Column strategy. In Chunks, after compiling
an index of professor names and URLs, the faculty was di-
vided into some number of N disjoint groups, and each of
N workers were assigned to one group. Some students did
not release tasks that required unique workers, thus the ma-
jority of the work was completed by only a few workers. It is
worth noting that the same scenario can happen with Classic
Micro that then converges on Chunks, even if that was not
the intent of the novice requester.

Nano (VI)
In this final strategy students divided micro-tasks into a sub-
entry level. After crowdsourcing an index of names and
URLs, hundreds of new tasks were released to workers, each
requesting a single piece of information given only a profes-
sor name, link to a website, and university name. This strat-
egy had the highest level of parallelism and varied in exe-
cution based on how many workers eventually did the work.
If a worker can work only on one task then the downside is
that they miss any benefit from learning to complete the task
more efficiently or visiting a page that contains many pieces
of relevant information. Additionally, we observed that this
type of task may be more difficult for workers to understand
and thus complete effectively, since by barring specific de-
tails in the instructions, each worker completely lacks any
context for the work they are completing. A student that
used Nano reports that workers were reluctant to admit they
did not find the requested information and tended to insert
random answers. For example, even though most professors
have not completed a postdoc, workers would provide un-
related information that they either found in the resumes or
just copied from the instructions of the task.

Strategies for Data Verification
Given the time and budget constraints, only about half of the
students created separate tasks that verified and increased
the accuracy of their data. Most of the students who did
not create verification tasks mentioned that they planned a
verification step but had to cancel or abort it later due to
budgeting issues. In this section we report three verification
schemes students used and discuss their merits and disad-
vantages based on our observations from the reports.

Magnitude
Many students employed one or more workers to make a
count of all faculty at a university before issuing any tasks
for more specific information, such as faculty names; this

I.

II.

III.

create a task for
each data attribute

create a task where workers
iteratively enter as much

as they want

IV. create a task for each row

V. create a task for every
N rows

VI. create a task for each cell

create a task for all cellsD
D
D

ID
ID
ID

Define a goal Create a row index via crowdsourcing

Figure 1: An illustration showing the process for each of the
reported six crowdsourcing strategies. These are: (I) Brute-
Force, (II) Column-by-Column, (III) Iterative, (IV) Classic
Micro, (V) Chunks, and (VI) Nano.

measure of a faculty’s magnitude serves as a quick and in-
expensive sanity check for completeness of information col-
lected later. Additionally, if magnitudes are collected redun-
dantly, the level of agreement between independent workers’
reported magnitudes can serve as a reflection on the initial
difficulty of a task. In this experiment, for example, many
concurring reports of a faculty’s magnitude might reflect a
department with a well-organized faculty directory.

Redundancy
Some students created redundancy verification tasks, asking
a small number of workers to do the same task independently
from one another, similar to approaches used in well-known
crowdsourcing projects (von Ahn and Dabbish 2004). They
came up with different ways of merging those multiple re-
sults, including iteratively through a voting scheme, through
use of a script, and by simply selecting the best dataset.

Reviewer
The third verification strategy employs a reviewer, an in-
dependent worker who inspects and edits all or part of the
collected data, similarly to oDesk’s hierarchical model. This
strategy is notably challenging, since it can be very diffi-
cult to automatically validate the reviewer’s changes or to
ensure that the reviewer did a complete evaluation of the
data they were given. We observe that this strategy worked
particularly well when used in conjunction with incremen-
tal incentives such as rewarding reviewers proportionally to
the improvements they make, but simultaneously being cau-
tious of greedy reviewers who attempt to take advantage of
the bonus system and introduce incorrect changes. In some
cases, it seemed beneficial to employ a meta-reviewer to val-

143



Dimension Values
Incentive monetary bonus, recognition of work,

higher standard payments, none
Interface type native, third-party, custom
Task size small, medium, large
Level of guidance example and strategy, strategy only, none
Input restrictions forced choices, suggested choices, free text
Interaction among
workers restrictive, incremental, none

Table 1: The six dimensions we discovered in the crowd-
sourcing strategies observed in the class-sourcing activity.

idate the first reviewer’s work or parallel reviewers, though
this scheme can easily become complex and unmanageable.

Task Dimensions
In this section, we identify and analyze crowdsourcing task
design choices made by the novice requesters. To the best
of our knowledge, this is the first attempt to understand the
choices of novice requesters and provide an analysis of their
strategies based on empirical findings, on any particular type
of task. Most of the categories we describe can be general-
ized to many types of tasks, such as image categorization or
video annotation. We strive to provide a classification that is
independent of the specificities of MTurk.

By performing an open coding of the student-submitted
project reports, we identify six distinct dimensions that de-
scribe features of the crowdsourcing strategies: incentive, in-
terface type, task size, level of guidance, level of restrictions,
and interaction among workers. We describe the six dimen-
sions in detail and summarize our findings in Table 1.

Incentives
The most common incentive that students provided to the
workers is monetary bonuses in addition to their normal pay-
ments as a reward for exceptional work. These bonuses are
often promised by the students and stated in the descrip-
tion of the task to tempt workers into increasing the quality
of their work. Some students gave bonuses for single tasks
while others grouped tasks and checked the overall activ-
ity of their workers. Sometimes workers received an unex-
pected bonus by a satisfied requester. Another incentive we
observed is the interaction that some students initiated with
their workers. The class reports suggest that workers tend to
be highly appreciative of such non-financial recognition and
strive to prove their value to these requesters. Finally, some
students did not give any bonus or non-financial incentive
but gave a higher standard payment instead. A possible mo-
tivation for this style of employment is that giving a bonus
requires manual evaluation of the quality of the output.

Interface Type
We observed that students used three different types of in-
terfaces to present their tasks. The most broadly used is
the native interface that MTurk provides. This interface can
be hard to use for novice requesters, but is guaranteed to
work and is accepted by all workers. Students often found
themselves restricted as the native interface provides limited

functionality for more specialized and complex tasks. In this
case they linked their tasks to external interfaces offered by
third-parties or they designed themselves. A common exam-
ple in our experiment was the use of Google spreadsheets
as an external database that students knew how to work
with and most workers were already familiar with. Only
one student attempted to direct his workers to a website he
hosted his own infrastructure and found it hard to acquire
any results. We speculate that using custom webpages can
be tricky, as workers hesitate to trust an unknown interface
or are simply not interested in getting familiar with it.

Task Size
We classified the tasks designed by the students as small,
medium, or large, depending on the time of completion.
Small tasks lasted up to 5 minutes and required little ef-
fort by the worker. In our context, a small task would be
to acquire information for a single professor. Medium tasks
were more complicated and could last up to 30 minutes. For
example, finding the full names of all the professors of a
given university is a task of medium complexity that in-
volves a certain degree of effort, but is relatively straight-
forward. Large tasks were more demanding and lasted more
than an hour. An example of a large task is to find and record
all information for all faculty at one university. In addition to
dedication, these tasks may require some level of expertise,
and as such tend to be accompanied by large rewards.

Level of Guidance
Similarly, we characterize tasks based on different levels of
guidance provided by the students. When there was no guid-
ance, workers were given a task and were free to choose the
way they would proceed to tackle it. For example, if work-
ers are simply asked to fill in all information for all Com-
puter Science professors of a certain university, they can
choose their own strategy towards that end. Some workers
might first find the names of all professors and then proceed
to more specific information, while others would build the
database row by row, one professor at a time. We note that
giving no guidance can be a refreshing and creative oppor-
tunity for the workers but can unfortunately lead them to in-
efficient methodologies or entirely incorrect results. We ob-
served two ways of providing guidance: through strategies,
or by the additional use of examples. In strategy-based guid-
ance, workers were provided with tips on where and how
to find the required information, e.g. “you may find degree
information on the CV”. In example-based guidance, work-
ers were provided with a scenario of how a similar task is
completed. Some students observed that a drawback of using
guided tasks is that they can cultivate a lazy culture, where
workers only do what is explicitly suggested and do not take
the extra step that could lead to higher quality results.

Level of Restriction
We also distinguished tasks based on their level of restric-
tion. In tasks with no restriction students accepted free text
answers and granted full control and freedom to the worker.
In more controlled tasks students introduced restrictions in
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certain forms, e.g. pull-down menus that guided workers to
a predefined list of acceptable universities for the degree
fields. In between the two, we observed that some students
provided a list of suggestions but still allowed workers to
enter free text in case they can’t decide matches best the in-
formation they see. It is worth noting common themes we
found in the reports. Free text answers can give a better in-
sight to the quality of work, but involve post-processing to
bring them to some acceptable format and therefore are not
easily reproduced and generalized. Meanwhile, a number of
students reported that even though restricted answers can be
easily evaluated, they can be easily “poisoned” by malicious
or lazy workers who randomly pick a predefined option. No-
tably, this can also occur in free text answers where lazy
workers merely copy the examples given in the description.

Interaction Among Workers
We observed three distinct patterns of interaction among
workers: restrictive, incremental, and none. In restrictive in-
teractions, the input from one worker in an early stage served
as a constraint for other workers that would work on later
stages. For example, some students first posted tasks re-
questing an index directory or a count of the faculty. They
later used those as inputs, to request complete faculty in-
formation, while making sure the number of collected fac-
ulty approximately agreed with the initial count. In the incre-
mental interaction setting, the workers could see or modify
results that were acquired by others. The iterative strategy
always involved incremental interactions. This interaction
style also appeared in other strategies when multiple work-
ers entered data into a shared space, e.g. a Google Doc. Fi-
nally, workers could also work in isolation, without access to
any information from other workers. Students observed that
the first two models of interaction promoted a collaboration
spirit that resembles offline marketplaces, compared to the
third where workers work in a more individualistic base.

Analysis of Strategies and Dimensions
In this section, we analyze the identified strategies and di-
mensions to assess how task accuracy differs across strate-
gies and choices within individual dimensions. The goal
here is to better understand what approaches worked well
and not so well for the novice requesters based on task ac-
curacy and possible explanations identified in the reports.

Computing Data Accuracy
The structure of the class assignment assigned two students
to each one of the 50 universities. One student did not man-
age to acquire any data for one university, thus we have ex-
cluded it. As part of this analysis, we computed the accuracy
of each provided dataset for each one of the 99 instances.
Even though we lack the ground truth, we know that the cu-
rated dataset that was publicly released reflects it to a great
degree. As of today, we have received more than 650 correc-
tions by professors and researchers who have improved the
data. We moderated and confirmed each suggested correc-
tion or addition. In addition, we heavily revised the dataset
ourselves making hundreds of corrections. Using this public

dataset we created a script that compared the completeness
and accuracy of the provided data, by finding the longest
common subsequence of the provided and final entries. We
expect that the reported accuracies contain some errors, as
many students did not limit workers to provide answers from
a predefined list, sometimes yielding numerous names for
the same university e.g. University of Illinois, UIUC, Uni-
versity of Illinois at Urbana-Champaign, etc.

Strategies and Data Accuracy
Table 2 shows the distribution of the strategies. Since the as-
signment was not a controlled experiment and each student
was free to come up and experiment with different strategies,
the distribution of the used strategies is not uniform.

We performed an one-way ANOVA to test if the choice of
strategy had an effect on the accuracy of the data collected.
Despite the unequal sample size, Levene’s test did not show
inequality in variance. The ANOVA result was significant,
F(5,93) =2.901, p =0.018. A post hoc Tukey test showed that
data collected using the Classic Micro are significantly more
accurate than those obtained using either Chunks (p =0.025)
or Column-by-Column (p =0.046). Given that the success of
a strategy depends on the way that it was carried and im-
plemented by each student we are hesitant to provide strong
claims on the observed differences. Instead we provide pos-
sible explanations that rely on the anecdotal evidence found
in the reports. We speculate that Column-by-Column is not
as efficient as its reward is virtually lower, providing smaller
incentives for accurate work: workers have to visit multiple
webpages instead of finding everything in a single faculty
profile. Chunks suffered in the absence of a faculty direc-
tory. Lazy workers who were asked to fill all faculty whose
surname fell between a range of letters did a superficial job
by providing partial data and submitting premature work. In
Classic Micro, requesters rely on more workers and can bet-
ter control the quality. The mean and standard errors of the
data accuracy of each strategy are shown in Figure 2.
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Figure 2: Mean accuracy achieved using each strategy. Error
bars show standard errors.

Figure 3 depicts the means of the offered incentives for
each strategy. In addition we analyzed the correlation be-
tween rewards and quality and completeness of data and
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Brute- Column-by- Iterative Classic Chunks Nano
Force Column Micro

14 23 14 33 10 5

Table 2: The distribution of strategies chosen by students.

found none (R2 = 0.016). Further, the rewards varied greatly.
Given the budge constraint of $30 students utilized differ-
ent techniques to decide how much to pay for each type of
task. Some took into consideration the estimated task dif-
ficulty over the time required to complete the task, while
others mentioned that they tried to match the minimal wage
when possible. In cases of accidental errors in the task de-
sign, workers were paid more to compensate for their extra
effort. Finally, when tasks were completed at a very slow rate
students occasionally increased the payment as an attempt to
attract more workers. As students lacked mechanisms that
informed them of fair and efficient payments, various such
techniques were used until their budget was depleted.
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Figure 3: Mean payment per row of data (one faculty entry)
for each strategy. Error bars show standard errors.

Dimensions and Data Accuracy
We also analyzed the influence of each dimension’s value
on data accuracy. Table 3 displays for each dimension the
number of times each value is chosen and the corresponding
mean accuracy. We note that due to the small sample size
and imbalanced choices of dimensions, some of the dimen-
sion values were used by only one student (such as giving
no incentives), and the accuracies in those cases are incon-
clusive. We performed a statistical test for each dimension
to test whether the choice on any specific dimension influ-
ences the data collection accuracy. We performed one-way
ANOVAs for all dimensions. For the incentive we performed
a Friedman test due to unequal variance among groups.

We found that groups with differing interactions
among workers had significant differences in accuracy,
F(2,98) =3.294, p =0.04. A post hoc Tukey test showed that
data collected from designs where inputs from some work-
ers are used as constraints for others are significantly more
accurate than designs with no interactions, p =0.04. Table 3

Dimension Value Times Mean
Used Accuracy

incentive monetary bonus 49 0.70
higher standard payment 17 0.74
& recognition of work
monetary bonus 28 0.73
& recognition of work
none 5 0.83

interface native 57 0.70
third-party 39 0.75
custom 3 0.72

size small 65 0.74
medium 15 0.65
large 19 0.72

guidance example & strategy 56 0.73
strategy only 39 0.70
none 4 0.80

input forced choices 55 0.73
restrictions suggested choices 4 0.80

free text 40 0.70
worker restrictive 42 0.77
interactions incremental 30 0.70

none 27 0.66

Table 3: The effect of different values for each dimension.
The Times Used column corresponds to the total number
of tasks with a specific value for a dimension. The Mean
Accuracy column corresponds to the quality of the acquired
data for each dimension.

shows that designs with incremental interactions also on av-
erage yield more accurate data than designs with no interac-
tions. This suggests that building worker interactions into a
crowd task design, either implicitly as constraints or explic-
itly as asynchronous collaboration, may improve the qual-
ity of the data collected. Indeed, we have identified several
ways that worker interactions can reduce task difficulties
for individual workers: 1) by providing extra information,
e.g. the link to a professor’s website collected by another
worker who completed an early stage task; 2) by providing
examples, e.g. in the incremental interaction setting a worker
can see what the information collected by previous workers
looks like; 3) by allowing verification during data collection,
since workers can edit other workers’ results.

We did not find any significant effect when varying the
amount of compensation, which may be surprising to some.
However, when we coded monetary bonus, higher standard
payment, and recognition into three separate binary dimen-
sions and performed a t-test on each, we found that re-
questers communicating with workers to show recognition
gathered data that are significantly more accurate than those
who did not, p =0.021. We did not find an effect of the mone-
tary bonus or the higher standard payment. Acknowledging
the good work, or even indicating mistakes seems benefi-
cial. This is consistent with previous findings on the effect
of feedback to crowd workers (Dow et al. 2012). We also
did not find any significant effect of interface type, task size,
level of guidance, and input restrictions.
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Guidelines for Novice Requesters
By analyzing the students’ strategies and extracting their
facets, we are able to tap into how straightforward choices
made by novices affect the outcomes of crowdsourcing. We
summarize our findings into simple guidelines that can be
adopted by novice requesters who are new to using crowd-
sourcing for data collection and extraction from the Web.

Guideline 1: Consider the level of guidance and the
amount of provided training when choosing the task size,
instead of simply choosing the “middle ground”.

During the experiment, strategies with varying task sizes
were deployed. We observe that for different task sizes,
there is generally a trade-off between worker experience and
worker diversity. For larger tasks, each individual worker
accomplishes a large amount of work, thus being provided
training opportunities. Apart from experience that can be
gained just from doing more work, it is also practical and
cost-effective for requesters to train a worker by giving feed-
back; this is especially important for workers that will con-
tribute to a significant amount of work. One risk of having
large tasks is that if the task is accepted and completed by a
careless worker, then the overall quality of the results may
suffer; communication with workers, however, can also help
reduce this risk. When a job is posted as a set of smaller
tasks, workers with diverse skills will be engaged, and the
quality of individual work may have less impact on the qual-
ity of the final results. However, workers may be less experi-
enced and it is impractical for the requester to give feedback
to all of them. The optimal task size may well be depen-
dent upon the level of guidance and the amount of training
required for workers to produce high-quality results. We en-
courage requesters to experiment with this factor when de-
signing jobs. While it may seem tempting to create medium-
sized tasks to strike a balance, our result suggests otherwise.
The Chunks strategy, which uses medium-sized tasks, turned
out to be one of the worst strategies in this study. Multi-
ple design choices may be contributing to its ineffectiveness,
however, the task size may be an important factor: workers
may become bored part-way through the task, not remaining
motivated by the later larger payoff.

Guideline 2: Experiment with test-tasks to choose a pay-
ment proportional to the task size.

A task’s compensation should be proportional to its size.
Requesters ought to be aware of a task’s time complexity
and should adjust the reward accordingly. Some platforms
recommend a minimum hourly wage, and workers seem to
expect at least such payment. A few students in the class re-
ported receiving emails from workers complaining the wage
was too low and should at least match the U.S. minimum
wage. Approximating the allotted time for a specific task can
be daunting—requesters tend to underestimate its complex-
ity since they are familiar with the requested information and
the processes. Requesters should release test-tasks in order
to receive the appropriate feedback from the crowd. It is also
essential to experiment with different styles and amounts of
incentives in order to achieve the most accurate results.

Guideline 3: Communicate with workers who have done
well in early stages to engage them further.

We cannot stress enough how important it is to commu-
nicate with workers. Throughout the reports we repeatedly
observed comments that showed strong correlations between
contacting workers and the speed and quality of work. One
student not only promised a monetary bonus, but also tried
to make the worker part of the project, explaining the time
constraint and its scientific value: “While he did realize that
he would be getting a good amount of money for his work
(and this was a major motivation) he also responded to my
high demand of doing a lot of tedious work quickly, be-
cause I had told him about my time crunch. Furthermore,
task descriptions mentioning that these results will be pub-
lished also might have played a large role in encouraging the
Turkers to do these mundane tasks. Here, human emotions
significantly motivate whether one does a task or not!”

Students also sought workers that had a good accuracy
and completion record in early stages, to assist them with
the rest of the tasks. Most of the workers would respond
positively and would accept additional tasks. It is worth not-
ing that some students released tasks with minimum pay-
ment of 1 cent to make sure that only their preferred workers
would accept them. Later they would fully compensate with
bonuses. It is striking how easy it is to form such a bond of
trust and we urge requesters of any expertise to explore and
take advantage of the effect of the human nature.

In our study, communication might be particularly effec-
tive as this task required some domain expertise from work-
ers, such as knowing about subfields in Computer Science.
Workers can gain specific knowledge either by doing the
tasks or by receiving additional guidance. Thus, it can be
more effective to work with experienced workers who have
completed similar tasks.

Guideline 4: Provide additional incentives when using
restricted inputs and pair free-text inputs with additional
data cleaning tasks.

When designing the crowdsourcing jobs, requesters de-
cide whether to use free-text inputs or restrict user inputs
to a discrete set of options by providing them drop-down
lists. Each of the two options has advantages and disadvan-
tages. Providing a drop-down list can eliminate noise in user
inputs caused by typos and slight variations in naming con-
ventions. However, they make it easier for “lazy” workers to
cheat by randomly choosing an option, and this is hard to
detect. Free-text inputs, tend to be more correct despite the
need for additional review to remove typos and merge varia-
tions. One possible reason for this is that in the case of data
collection, free-text inputs ensure that the amount of effort
needed to produce rubbish answers that can easily pass the
review is as much as that needed to produce good answers,
and, as Kittur discussed in (Kittur, Chi, and Suh 2008), there
will then be little incentive for workers to cheat. There are
methods to make up for the disadvantages of both choices.
Restricted inputs can be coupled with bonuses or commu-
nication, while noise in free-text inputs can be removed by
follow-up verification and cleaning tasks.

Guideline 5: Plan the data verification methods in ad-
vance and carefully consider the amount of effort required
for verification.

One challenge students encountered was the verification
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of the results, essentially determining whether the data pro-
vided by workers were accurate. Many attempted to ap-
ply classic verification strategies including peer-reviews and
redundancy. Having workers review other workers’ output
has been shown effective in previous crowdsourcing re-
search (Bernstein et al. 2010). However, students have been
generally unsuccessful in this experiment when applying the
reviewer strategy: many reported that they would need to
pay more for the review task than the data generation task
or otherwise no worker would accept the review tasks. A
closer look reveals a probable cause: unlike previous ap-
plications of reviewer verification where the reviewer only
needs to read inputs from other workers and use general
knowledge to judge the inputs, in this data collection task
the reviewers need to check the information source together
with other workers’ inputs to judge their correctness. The ac-
tion of checking the information source potentially requires
as much or even more effort as in the data generation task,
and is therefore more costly. Compared to reviewer verifi-
cation, redundancy seems to have been working better in
this experiment, though still not as well as for common data
collection tasks, since workers are more likely to make the
same mistake due to lack of domain expertise. Overall, de-
signing verification strategies for domain-specific data col-
lection tasks seems challenging, and requesters may need to
carefully consider the amount of effort required for each ac-
tion and the influence of domain expertise in this process.

Discussion
Responsibility of Crowdsourcing Platforms
There exist a plethora of tools and systems built both sepa-
rately from existing crowdsourcing platforms and on top of
such platforms for the purpose of improving requesters rang-
ing from novices to experts with a wide variety of general
and highly specific crowdsourcing tasks. Given this wealth
of research and development into the shortcomings of cur-
rent platforms and methods of improving them, the onus
now falls on those platforms to integrate such community
feedback. In particular, this work suggests several reason-
able improvements that would improve novice requesters’
experiences with crowdsourcing platforms such as MTurk.
For instance, given the importance of communication with
workers, crowdsourcing platforms should consider provid-
ing the functionality and an accessible interface for allow-
ing requesters to chat in real time with their workers, and to
assign certain tasks directly to specific workers in the event
that a requester prefers that model. Similarly, novice users’
difficulty anticipating the costs and best practices for data
verification, existing platforms could draw on systems like
Soylent and Crowdforge to improve data collection tasks by
automatically generating redundant data and making a first
algorithmic attempt at merging the results.

Ethics
We notice that a substantial number of students expressed
concerns on the fairness of their payment and the use of
crowdsourcing in general. A student wrote: “I felt too guilty
about the low wages I was paying to feel comfortable [...] I

would not attempt crowdsourcing again unless I had the bud-
get to pay workers fairly.” A possible explanation for such
feelings is the unfamiliarity with crowdsourcing for the ma-
jority of the students. Further, the typical reward per task
converted to be significantly less than federal required min-
imum wage in the United States. Being unaccustomed with
payment strategies led to poor budget management, which
afterwards hindered their ability to pay workers fairly. The
idealistic views of 19 students are perhaps not representative
of the general feeling of crowdsourcing requesters and might
not accurately reflect what the workers perceive to be fair
compensation. Nevertheless, this warrants consideration, as
there is currently no universal consensus on what is consid-
ered to be a reasonable or generous compensation by both
requesters and workers in this branch of the free market.

Limitations
Since crowdsourcing platforms do not provide any demo-
graphics about requesters, there can be concerns of what
constitutes a “typical” novice requester and if students ac-
tually fit that definition. As with all crowdsourcing projects,
the quality of the data can substantially differ depending
on the worker performing the task. Similarly, some students
were more careful than others in completing the assignment.
Although our students were motivated by grade require-
ments and personal drive for in-class excellence, novice re-
questers might be motivated by a variety of different factors.

An additional limitation is that the evaluation comprised
of only one data collection task. There are potentially differ-
ent types of data to collect, and each may present different
challenges. We decided to explore one task in depth, and one
that was both realistic and had real practical value.

Conclusion
This paper presents the first analysis of crowdsourcing
strategies that novice requesters employ based on the fol-
lowing experiment: 19 students with limited experience use
crowdsourcing to collect basic educational information for
all faculty in 50 top U.S. Computer Science departments.
We provide an empirical classification of six specific crowd-
sourcing strategies which emerged from students’ reports.
We also compare these strategies based on the accuracy
of the data collected. Our findings show that some design
choices made by novice requesters are consistent with the
best practices recommended in the community, such as com-
municating with workers. However, many struggled with
coming up with cost-effective verification methods.

These findings imply several guidelines for novice re-
questers, especially those interested in data collection tasks.
Requesters, we found, can issue successful data collection
tasks at a variety of sizes using workers with a variety of
skill levels and classifications. Requesters may also want to
carefully consider where and whether they will validate their
collected data, since the need for and cost-efficacy of valida-
tion can vary greatly between tasks—in some cases, having
a worker review the data can cost more than generating the
data in the first place. We recommend that requesters inter-
act personally with workers to give clarifications and express
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appreciation. We also suggest that requesters estimate the
size of their tasks before issuing them to workers, and cal-
culate their pay rates accordingly, both for the happiness of
their workers and their own consciences.
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