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Abstract
The growing need to analyze large collections of docu-
ments has led to great developments in topic modeling.
Since documents are frequently associated with other
related variables, such as labels or ratings, much interest
has been placed on supervised topic models. However,
the nature of most annotation tasks, prone to ambigu-
ity and noise, often with high volumes of documents,
deem learning under a single-annotator assumption un-
realistic or unpractical for most real-world applications.
In this paper, we propose a supervised topic model that
accounts for the heterogeneity and biases among dif-
ferent annotators that are encountered in practice when
learning from crowds. We develop an efficient stochas-
tic variational inference algorithm that is able to scale
to very large datasets, and we empirically demonstrate
the advantages of the proposed model over state of the
art approaches.

Introduction
Topic models, such as latent Dirichlet allocation (LDA), al-
low us to analyze large collections of documents, by reveal-
ing their underlying themes, or topics, and how each doc-
ument exhibits them (Blei, Ng, and Jordan 2003). There-
fore, it is not surprising that topic models have become a
standard tool in machine learning, with many applications
that transcend their original purpose of modeling textual
data, such as analyzing images (Fei-Fei and Perona 2005;
Wang, Blei, and Fei-Fei 2009), videos (Niebles, Wang, and
Fei-Fei 2008), survey data (Erosheva, Fienberg, and Joutard
2007) or social networks data (Airoldi et al. 2007).

Since documents are frequently associated with other
variables such as labels, tags or ratings, much interest has
been placed on supervised topic models (Mcauliffe and Blei
2008), which allow the use of that extra information to
“guide” the topics discovery. By jointly learning the topics
distributions and a regression or classification model, super-
vised topic models have been shown to outperform the sep-
arate use of their unsupervised analogues with an external
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regression/classification algorithm (Wang, Blei, and Fei-Fei
2009; Zhu, Ahmed, and Xing 2012).

Supervised topics models are then state-of-the-art ap-
proaches for predicting target variables associated with com-
plex high-dimensional data, such as documents or images.
Unfortunately, the size of modern datasets make the use of a
single annotator unrealistic and unpractical for the major-
ity of the real-world applications that involve some form
of human labeling. For instance, the popular Reuters-21578
benchmark dataset was categorized by a group of personnel
from Reuters Ltd and Carnegie Group, Inc. Similarly, the
LabelMe1 project asks volunteers to annotate images from a
large collection using an online tool. Hence, it is seldom the
case where a single oracle labels an entire collection.

Furthermore, the Web, through its social nature, also ex-
ploits the wisdom of crowds to annotate large collections
of documents and images. By categorizing texts, tagging
images or rating products, Web users are generating large
volumes of labeled content. However, when learning super-
vised models from crowds, the quality of labels can vary
a lot due to task subjectivity and differences in annotator
reliability (or bias) (Snow et al. 2008; Rodrigues, Pereira,
and Ribeiro 2013). It is therefore essential to account for
these issues when learning from this increasingly common
type of data. Hence, the interest of researchers on build-
ing models that take the reliabilities of different annotators
into consideration and mitigate the effect of their biases has
spiked during the last few years (e.g. (Welinder et al. 2010;
Yan et al. 2014)).

The increasing popularity of crowdsourcing platforms
like Amazon Mechanical Turk (AMT) has further con-
tributed to the recent developments in learning from crowds.
This kind of platforms offer a fast, scalable and inexpensive
solution for labeling large amounts of data. However, their
heterogeneous nature in terms of contributors makes their
straightforward application prone to many sorts of labeling
noise and bias. Hence, a careless use of crowdsourced data
as training data risks generating flawed models.

In this paper we propose a fully generative supervised

1http://labelme.csail.mit.edu
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topic model that is able to account for the different reliabili-
ties of multiple annotators and correct their biases. The pro-
posed model is then capable of jointly modeling the words
in documents as arising from a mixture of topics, the latent
true labels as a result of the empirical distribution over topics
of the documents, and the labels of the multiple annotators
as noisy versions of that latent ground truth. Although we
focus on multi-class classification problems, the same ratio-
nale can be applied to regression problems. Since the major-
ity of the tasks for which multiple annotators are used gen-
erally involve complex data such as text, images and video,
by developing a multi-annotator supervised topic model we
are contributing with a powerful tool for learning predictive
models of complex high-dimensional data from crowds.

Given that the increasing sizes of modern datasets can
pose a problem for obtaining human labels as well as for
Bayesian inference, we propose an efficient stochastic vari-
ational inference algorithm (Hoffman et al. 2013) that is able
to scale to very large datasets. We empirically show, using
both simulated and real multiple-annotator labels obtained
from AMT for popular text and image collections, that the
proposed model is able to outperform other state-of-the-art
approaches. We further show the computational and predic-
tive advantages of the stochastic variational inference algo-
rithm over its batch counterpart.

State of the art
Latent Dirichlet allocation (LDA) soon proved to be a pow-
erful tool for modeling documents (Blei, Ng, and Jordan
2003) and images (Fei-Fei and Perona 2005), by extracting
their underlying topics. However, the need to model the re-
lationship between documents and labels quickly gave rise
to many supervised variants of LDA. One of the first no-
table works was that of (Mcauliffe and Blei 2008) in devel-
oping supervised LDA (sLDA). By extending LDA through
the inclusion of a response variable that is linearly dependent
on the mean topic-assignments of the words in a document,
sLDA is able to jointly model the documents and their re-
sponses, in order to find latent topics that will best predict
the response variables for future unlabeled documents. Al-
though initially developed for general continuous response
variables, (Wang, Blei, and Fei-Fei 2009) later extended
sLDA to classification problems, by modeling the relation-
ship between topic-assignments and labels with a softmax
function.

There are several ways in which document classes can
be included in LDA. The most natural one in this setting is
probably the sLDA approach, since the classes are directly
dependent on the empirical topic mixture distributions. This
approach is coherent with the generative perspective of LDA
but, nevertheless, several discriminative alternatives also ex-
ist. For example, DiscLDA (Lacoste-Julien, Sha, and Jordan
2009) introduces a class-dependent linear transformation on
the topic mixture proportions, whose parameters are esti-
mated by maximizing the conditional likelihood of response
variables. (Ramage et al. 2009) propose Labeled-LDA, a
variant of LDA that incorporates supervision by constrain-
ing the topic model to use only the topics that correspond
to a document’s label set. While this has the advantage of

allowing multiple labels per document, it is restrictive in the
sense that the number of topics needs to be the same as the
number of possible labels.

The approaches discussed so far rely on likelihood-based
estimation procedures. The work of (Zhu, Ahmed, and
Xing 2012) contrasts with these approaches by proposing
MedLDA, a supervised topic model that utilizes the max-
margin principle for estimation. Despite its margin-based
advantages, MedLDA looses the probabilistic interpretation
of the document classes given the topic mixture distribu-
tions. On the contrary, this paper proposes a fully generative
probabilistic model of the labels of multiple annotators and
the words in the documents.

Learning from multiple annotators is an increasingly im-
portant research topic. Since the early work of (Dawid and
Skene 1979), who attempted to obtain point estimates of
the error rates of patients given repeated but conflicting re-
sponses to various medical questions, many approaches have
been proposed. These usually rely on latent variable models.
For example, (Smyth et al. 1995) proposed a model to esti-
mate the ground truth from the labels of multiple experts,
which is then used to train a classifier.

While earlier works usually focused on estimating the
ground truth and the error rates of different annotators, re-
cent works are more focused on the problem of learning a
classifier. This idea was explored in (Raykar et al. 2010),
who proposed an approach for jointly learning the levels
of expertise of different annotators and the parameters of a
logistic regression classifier, by modeling the ground truth
labels as latent variables. This work was later extended by
(Yan et al. 2014) by considering the dependencies of the an-
notators’ labels on the instances they are labeling, and also
by (Rodrigues, Pereira, and Ribeiro 2014) through the use
of Gaussian process classifiers. The model proposed in this
paper shares the same intuition with this line of work, and
models the true labels as latent variables. However, it differs
significantly by using a fully Bayesian approach for estimat-
ing the reliabilities and biases of the different annotators.
Furthermore, it considers the problems of learning a low-
dimensional representation of the input data (through topic
modeling) and modeling the answers of multiple annotators
jointly, providing an efficient stochastic variational inference
algorithm.

Approach
In this section we develop a multi-class supervised topic
model with multiple annotators. We start by deriving a
(batch) variational inference algorithm for approximating
the posterior distribution over the latent variables and an al-
gorithm to estimate the model parameters. We then develop
a stochastic variational inference algorithm that gives the
model the capability of handling large collections of doc-
uments. Finally, we show how to use the learned model to
classify new documents.

Proposed model
Let D = {wd, yd}Dd=1 be an annotated corpus of size D,
where each document wd is given a set of labels yd =
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{ydr}
Rd
r=1 fromRd distinct annotators. We can take advantage

of the inherent topical structure of documents and model
their words as arising from a mixture of topics, each be-
ing defined as a distribution over the words in a vocabu-
lary, as in LDA. In LDA, the nth word, wdn, in a document d
is provided a discrete topic-assignment zdn, which is drawn
from the documents’ distribution over topics θd. This allows
us to build lower-dimensional representations of documents,
which we can explore to build classification models by as-
signing coefficients η to the mean topic-assignment of the
words in the document, z̄d, and applying a softmax function
in order to obtain a distribution over classes.

Unfortunately, a direct mapping between document
classes and the labels provided by the different annotators
in a multiple-annotator setting would correspond to assum-
ing that they are all equally reliable, an assumption that is
violated in practice, as previous works clearly demonstrate
(e.g. (Snow et al. 2008; Rodrigues, Pereira, and Ribeiro
2013)). Hence, we assume the existence of a latent ground
truth class, and model the labels from the different annota-
tors using a noise model that states that, given a true class c,
each annotator r provides the label l with some probability
πrc,l. Hence, by modeling πr we are in fact modeling a per-
annotator confusion matrix, which allows us to account for
their different levels of expertise and correct their potential
biases.

The generative process of the proposed model can then be
summarized as follows:

1. For each annotator r
(a) For each class c

i. Draw reliability parameter πrc |ω ∼ Dir(ω)

2. For each topic k
(a) Draw topic distribution βk|τ ∼ Dir(τ)

3. For each document d
(a) Draw topic proportions θd|α ∼ Dir(α)

(b) For the nth word
i. Draw topic assignment zdn|θd ∼Mult(θd)

ii. Draw word wdn|zdn,β ∼Mult(βzdn)

(c) Draw latent (true) class cd|zd,η ∼ Softmax(z̄d,η)

(d) For each annotator r ∈ Rd
i. Draw annotator’s label yd,r|cd,πr ∼Mult(πrcd)

where Rd denotes the set of annotators that labeled the dth

document, z̄d = 1
Nd

∑Nd

n=1 z
d
n, and the softmax is given by:

p(cd|z̄d,η) =
exp(ηTc z̄

d)∑C
l=1 exp(ηTl z̄

d)
.

Figure 1 shows a graphical model representation of the
proposed model, where K denotes the number of topics,
C is the number of classes, R is the total number of an-
notators and Nd is the number of words in the document
d. Notice that we included a Dirichlet prior over the topics
βk to produce a smooth posterior and control sparsity. Sim-
ilarly, instead of computing maximum likelihood or MAP
estimates for the annotators reliability parameters πrc , we

Variational param. Original param.
ξrc πrc
ζk βk
γd θd

λd cd

φdn zdn

Table 1: Correspondence between variational parameters
and the original parameters.

place a Dirichlet prior over these variables and perform (ap-
proximate) Bayesian inference. This contrasts with previ-
ous works on learning from crowds (Raykar et al. 2010;
Yan et al. 2010).

Figure 1: Graphical model representation of the proposed
model.

Approximate inference
Given a dataset D, the goal of inference is to compute the
posterior distribution of the per-document topic proportions
θd, the per-word topic assignments zdn, the per-topic dis-
tribution over words βk, the per-document latent true class
cd, and the per-annotator confusion parameters πr. As with
LDA, computing the exact posterior distribution of the la-
tent variables is computationally intractable. Hence, we em-
ploy mean-field variational inference to perform approxi-
mate Bayesian inference.

Variational inference methods seek to minimize the KL
divergence between the variational and the true posterior dis-
tribution. We assume a fully-factorized (mean-field) varia-
tional distribution of the form:

q(θ, z1:D, c,β,π1:R) =

( R∏
r=1

C∏
c=1

q(πrc |ξrc )

)

×
( K∏
i=1

q(βi|ζi)
) D∏
d=1

q(θd|γd)q(cd|λd)
Nd∏
n=1

q(zdn|φdn),

where ξ1:R, ζ, γ, λ and φ1:D are variational parameters.
Table 1 shows the correspondence between variational pa-
rameters and the original parameters.

Let Θ = {α, τ, ω,η} denote the model parameters. Fol-
lowing (Jordan et al. 1999), the KL minimization can be
equivalently formulated as maximizing the following lower
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bound on the log marginal likelihood,

log p(w1:D, y1:D|Θ)

= log

∫ ∑
z,c

q(θ, z1:D, c,β,π1:R)

× p(θ, z1:D, c,w1:D, y1:D,β,π1:R|Θ)

q(θ, z1:D, c,β,π1:R)
dθ dβ dπ1:R

> Eq[log p(θ, z1:D, c,w1:D, y1:D,β,π1:R|Θ)]

+ Eq[log q(θ, z1:D, c,β,π1:R)]

= L(γ,φ1:D,λ, ζ, ξ1:R|Θ), (1)

which we maximize using coordinate ascent.
Optimizing L w.r.t. γ and ζ gives the same coordinate as-

cent updates as in (Blei, Ng, and Jordan 2003):

γdi = α+

Nd∑
n=1

φdn,i (2)

ζi,j = τ +
D∑
d=1

Nd∑
n=1

wdn,jφ
d
n,i. (3)

The variational Dirichlet parameters ξ can be optimized
by collecting only the terms in L that contain ξ:

L[ξ] =
R∑
r=1

C∑
c=1

C∑
l=1

Eq[log πrc,l]

(
ω +

Dr∑
d=1

λdcy
d,r
l − ξ

r
c,l

)

−
R∑
r=1

C∑
c=1

log Γ

( C∑
t=1

ξrc,t

)
+

R∑
r=1

C∑
c=1

C∑
l=1

log Γ(ξrc,l),

where Dr denotes the documents labeled by the rth anno-
tator, Eq[log πrc,l] = Ψ(ξrc,l) − Ψ(

∑C
t=1 ξ

r
c,t), and Γ(·) and

Ψ(·) are the gamma and digamma functions, respectively.
Taking derivatives of L[ξ] w.r.t. ξ and setting them to zero,
yields the following update:

ξrc,l = ω +

Dr∑
d=1

λdcy
d,r
l . (4)

Similarly, the coordinate ascent updates for the docu-
ments distribution over classes λ can be found by consid-
ering the terms in L that contain λ:

L[λ] =
D∑
d=1

C∑
l=1

λdl η
T
l φ̄

d −
C∑
l=1

λdl log λdl

+
D∑
d=1

Rd∑
r=1

C∑
l=1

C∑
c=1

λdl y
d,r
c Eq[log πrl,c],

where φ̄d = 1
Nd

∑Nd

n=1 φ
d
n. Adding the necessary Lagrange

multipliers to ensure that
∑C
l=1 λ

d
l = 1 and setting the

derivatives w.r.t. λdl to zero gives the following update:

λdl ∝ exp

(
ηTl φ̄

d +

Rd∑
r=1

C∑
c=1

yd,rc Eq[log πrl,c]

)
. (5)

Observe how the variational distribution over the true classes
results from a combination between the dot product of the
inferred mean topic assignment φ̄d with the coefficients η
and the labels y from the multiple annotators “weighted” by
their expected log probability Eq[log πrl,c].

The main difficulty of applying standard variational infer-
ence methods to the proposed model is the non-conjugacy
between the distribution of the mean topic-assignment z̄d
and the softmax. Namely, in the expectation

Eq[log p(cd|z̄d,η)] = Eq[ηTcd z̄
d]− Eq

[
log

C∑
l=1

exp(ηTl z̄
d)
]
,

the second term is intractable to compute. We can make
progress by applying Jensen’s inequality to bound it as fol-
lows:

−Eq
[

log
C∑
l=1

exp(ηTl z̄
d)

]
> − log

C∑
l=1

Eq[exp(ηTl z̄
d)]

= − log
C∑
l=1

Nd∏
j=1

(
φdj
)T

exp
(
ηl

1

Nd

)
= − log(aTφdn),

where a ,
∑C
l=1 exp( ηlNd

)
∏Nd

j=1,j 6=n
(
φdj
)T

exp
(
ηl
Nd

)
,

which is constant w.r.t. φdn. This local variational bound can
be made tight by noticing that log(x) 6 ε−1x + log(ε) −
1,∀x > 0, ε > 0, where equality holds if and only if x = ε.
Hence, given the current parameter estimates (φdn)old, if we
set x = aTφdn and ε = aT (φdn)old then, for an individual
parameter φdn, we have that:

−Eq
[

log
C∑
l=1

exp(ηTl z̄
d)

]
> −(aT (φdn)old)−1(aTφdn)− log(aT (φdn)old) + 1.

Using this local bound to approximate the expectation of
the log-sum-exp term, and taking derivatives of the evidence
lower bound w.r.t. φn with the constraint that

∑K
i=1 φ

d
n,i =

1, yields the following fix-point update:

φdn,i ∝ exp

(
Ψ(γi) +

V∑
j=1

wdn,j

(
Ψ(ζi,j)−Ψ

( V∑
k=1

ζi,k

))

+

∑C
l=1 λ

d
l ηl,i

Nd
− (aT (φdn)old)−1ai

)
. (6)

where V denotes the size of the vocabulary. Notice how the
per-word variational distribution over topics φ depends on
the variational distribution over the true class label λ.

The variational inference algorithm iterates between
equations 2-6 until the evidence lower bound, eq. 1, con-
verges. The supplementary material provides additional de-
tails on the derivation of this algorithm2.

2Supplementary material available at: http://amilab.dei.uc.pt/
fmpr/maslda-supp-mat.pdf
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Parameter estimation
The model parameters are Θ = {α, τ, ω,η}. For the sake
of simplicity we assume the parameters α, τ and ω of the
Dirichlet priors to be fixed, and only estimate the coeffi-
cients η using a variational EM algorithm. Therefore, in
the E-step we use the variational inference algorithm from
approximate inference section to estimate the posterior dis-
tribution of the latent variables, and in the M-step we find
maximum likelihood estimates of η by maximizing the evi-
dence lower bound L. Unfortunately, taking derivatives of L
w.r.t. η does not yield a closed-form solution, hence we use
a numerical method, namely L-BFGS (Nocedal and Wright
2006), to find an optimum. The objective function and gra-
dients are given by

L[η] =
D∑
d=1

(
C∑
l=1

λdl η
T
l φ̄

d − log
C∑
l=1

bdl

)

∇ηl,i =
D∑
d=1

(
λdl,iφ̄

d
i −

bdl∑C
t=1 b

d
t

×
Nd∑
n=1

1
Nd
φdn,i exp( 1

Nd
ηl,i)∑K

j=1 φ
d
n,j exp( 1

Nd
ηl,j)

)
,

where, for convenience, we defined the following variable:
bdl ,

∏Nd

n=1

(∑K
i=1 φ

d
n,i exp

(
1
Nd
ηl,i

))
.

Stochastic variational inference
In the “approximate inference” section, we proposed a batch
coordinate ascent algorithm for doing variational inference
in the proposed model. This algorithm iterates between ana-
lyzing every document in the corpus to infer the local hidden
structure, and estimating the global hidden variables. How-
ever, this can be inefficient for large datasets, since it re-
quires a full pass through the data at each iteration before
updating the global variables. In this section we develop a
stochastic variational inference algorithm (Hoffman et al.
2013), which follows noisy estimates of the gradients of the
evidence lower bound L.

Based on the theory of stochastic optimization (Robbins
and Monro 1951), we can find unbiased estimates of the gra-
dients by subsampling a document (or a mini-batch of doc-
uments) from the corpus, and using it to compute the gradi-
ents as if that document was observedD times. Hence, given
an uniformly sampled document d, we use the current poste-
rior distributions of the global latent variables, β and π1:R,
and the current coefficient estimates η, to compute the pos-
terior distribution over the local hidden variables θd, zd and
cd using eqs. 2, 6 and 5 respectively. These posteriors are
then used to update the global variational parameters, ζ and
ξ1:R by taking a step of size ρt in the direction of the noisy
estimates of the natural gradients.

Algorithm 1 describes a stochastic variational inference
algorithm for the proposed model. Given an appropriate
schedule for the learning rates {ρt}, such that

∑
t ρt and∑

t ρ
2
t < ∞, the stochastic optimization algorithm is guar-

anteed to converge to a local maximum of the evidence lower
bound (Robbins and Monro 1951).

Algorithm 1 Stochastic variational inference

1: Initialize γ(0), φ(0)
1:D, λ(0), ζ(0), ξ(0)1:R, t = 0

2: repeat
3: Set t = t + 1.
4: Sample a document wd uniformly from the corpus.
5: repeat
6: Compute φdn using eq. 6, for n ∈ {1..Nd}.
7: Compute γd using eq. 2.
8: Compute λd using eq. 5.
9: until local parameters φdn, γd and λd converge.

10: Compute step-size ρt = (t+ delay)−κ.
11: Update topics variational parameters

ζi,j
(t) = (1− ρt)ζ(t−1)i,j + ρt

(
τ +D

Nd∑
n=1

wdn,jφ
d
n,i

)
.

12: Update annotators confusion parameters

ξrc,l
(t) = (1− ρt)ξrc,l

(t−1) + ρt
(
ω +Dλdc y

d,r
l

)
.

13: until global convergence criterion is met.

Document classification
In order to make predictions for a new (unlabeled) docu-
ment d, we start by computing the approximate posterior
distribution over the latent variables θd and zd. This can be
achieved by dropping the terms that involve y, c and π from
the model’s joint distribution (since, at prediction time, the
multi-annotator labels are no longer observed) and averag-
ing over the estimated topics distributions. Letting the topics
distribution over words inferred during training be q(β|ζ),
the joint distribution for a single document is now simply
given by

p(θd, zd) =

∫
q(β|ζ)p(θd|α)

Nd∏
n=1

p(zdn|θd)p(wdn|zdn,β)dβ.

Deriving a mean-field variational inference algo-
rithm for computing the posterior over q(θd, zd) =

q(θd|γd)
∏Nd

n=1 q(z
d
n|φdn) results in the same fixed-point

updates as in LDA (Blei, Ng, and Jordan 2003) for γdi
and φdn,i. Using the inferred posteriors and the coefficients
η estimated during training, we can make predictions as
follows:

cd∗ = arg max
c
ηTc φ̄

d. (7)

This is equivalent to making predictions in sLDA (Wang,
Blei, and Fei-Fei 2009).

Experiments
In this section, the proposed model, multi-annotator su-
pervised LDA (MA-sLDA), is validated using both simu-
lated annotators on popular corpora and using real multiple-
annotator labels obtained from Amazon Mechanical Turk.3

3Source code and datasets used are available at:
http://amilab.dei.uc.pt/fmpr/
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Simulated annotators
In order to first validate the proposed model in a
slightly more controlled environment, the well-known 20-
Newsgroups benchmark corpus (Lang 1995) was used by
simulating multiple annotators with different levels of exper-
tise. The 20-Newsgroups consists of twenty thousand mes-
sages taken from twenty newsgroups, and is divided in six
super-classes, which are, in turn, partitioned in several sub-
classes. For this first set of experiments, only the four most
populated super-classes were used: “computers”, “science”,
“politics” and “recreative”. The preprocessing of the docu-
ments consisted of stemming and stop-words removal. Af-
ter that, 75% of the documents were randomly selected for
training and the remaining 25% for testing.

The different annotators were simulated by sampling their
answers from a multinomial distribution, where the parame-
ters are given by the lines of the annotators’ confusion ma-
trices. Hence, for each annotator r, we start by pre-defining
a confusion matrix πr with elements πrc,l, which correspond
to the probability that the annotators’ answer is l given that
the true label is c, p(yri = l|c). Then, the answers are sam-
pled i.i.d. from yri ∼ Mult(πrc,l). This procedure was used
to simulate 5 different annotators with the following accura-
cies: 0.737, 0.468, 0.284, 0.278, 0.260. The distributions of
the accuracies of the different annotators among the differ-
ent classes are relatively uniform. In this experiment, no re-
peated labelling was used. Hence, each annotator only labels
roughly one-fifth of the data. When compared to the ground
truth, the simulated answers revealed an accuracy of 0.405.
See Table 2 for an overview of the details of the datasets
used.

Both the batch and the stochastic variational inference
(svi) versions of the proposed model (MA-sLDA) are com-
pared with the following baselines:
• LDA + LogReg (mv): This baseline corresponds to apply-

ing unsupervised LDA to the data, and learning a logistic
regression classifier on the inferred topics distributions of
the documents. The labels from the different annotators
were aggregated using majority voting (mv). Notice that,
when there is a single annotator label per instance, ma-
jority voting is equivalent to using that label for training.
This is the case of the 20-Newsgroups’ simulated annota-
tors, but the same does not apply for the experiments with
Amazon Mechanical Turk.

• LDA + Raykar: For this baseline, the model of (Raykar et
al. 2010) was applied using the documents’ topic distribu-
tions inferred by LDA as features.

• LDA + Rodrigues: This baseline is similar to the previ-
ous one, but uses the model of (Rodrigues, Pereira, and
Ribeiro 2013) instead.

• Blei 2003 (mv): The idea of this baseline is to replicate a
popular state-of-the-art approach for document classifica-
tion. Hence, the approach of (Blei, Ng, and Jordan 2003)
was used. It consists of applying LDA to extract the docu-
ments’ topics distributions, which are then used to train a
SVM. Similarly to the previous approach, the labels from
the different annotators were aggregated using majority
voting (mv).

Figure 2: Average testset accuracy (over 5 runs; ± stddev.)
of the different approaches on the 20-Newsgroups data.

• sLDA (mv): This corresponds to using sLDA (Wang, Blei,
and Fei-Fei 2009) with the labels obtained by performing
majority voting (mv) on the annotators’ answers.

For all the experiments the hyper-parameters α, τ and
ω were set using a simple grid search in the collection
{0.01, 0.1, 1.0, 10.0}. The same approach was used to op-
timize the hyper-parameters of the all the baselines. For the
svi algorithm, different mini-batch sizes and forgetting rates
κwere tested. For the 20-Newsgroup dataset, the best results
were obtained with a mini-batch size of 500 and κ = 0.6.
The delay was kept at 1. The results are shown in Figure 2
for different numbers of topics, where we can see that the
proposed model outperforms all the baselines, being the svi
version the one that performs best.

In order to assess the computational advantages of the
stochastic variational inference (svi) over the batch algo-
rithm, the log marginal likelihood (or log evidence) was
plotted against the number of iterations. Figure 3 shows
this comparison. Not surprisingly, the svi version converges
much faster to higher values of the log marginal likelihood
when compared to the batch version, which reflects the effi-
ciency of the svi algorithm.

Amazon Mechanical Turk
In order to validate the proposed model in a real crowd-
sourcing setting, Amazon Mechanical Turk (AMT) was used
to obtain labels from multiple annotators for two popular
datasets: Reuters-21578 (Lewis 1997) and LabelMe (Rus-
sell et al. 2008).

Reuters-21578 is a collection of manually categorized
newswire stories with labels such as Acquisitions, Crude-oil,
Earnings or Grain. For this experiment, only the documents
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Dataset Num.
classes

Train/test
sizes

Annotators
source

Num. answers per
instance (± stddev.)

Mean annotators
accuracy (± stddev.)

Maj. vot.
accuracy

20 Newsgroups 4 11536/3846 Simulated 1.000 ± 0.000 0.405 ± 0.182 0.405
Reuters-21578 8 1800/5216 Mech. Turk 3.007 ± 1.019 0.568 ± 0.262 0.710

LabelMe 8 1000/1688 Mech. Turk 2.547 ± 0.576 0.692 ± 0.181 0.769

Table 2: Overall statistics of the datasets used in the experiments.

Figure 3: Comparison of the log marginal likelihood be-
tween the batch and the stochastic variational inference (svi)
algorithms on the 20-Newsgroups corpus.

belonging to the widely-used ModApte split (Lewis et al.
2004) were considered with the additional constraint that the
documents should have no more than one label. This resulted
in a total of 7016 documents distributed among 8 classes. Of
these, 1800 documents were submitted to AMT for multi-
ple annotators to label, giving an average of 3.007 answers
per document (see Table 2 for further details). The remain-
ing 5216 documents were used for testing. The collected an-
swers yield an average annotator accuracy of 56.8%. Apply-
ing majority voting to these answers reveals a ground truth
accuracy of 71.0%.

The results obtained by the different approaches are given
in Figure 4, where it can be seen that the proposed model
(MA-sLDA) outperforms all the other approaches. For this
dataset, the svi algorithm is using mini-batches of 300 doc-
uments.

The proposed model is also validated using a dataset from
the computer vision domain: LabelMe (Russell et al. 2008).
In contrast to the Reuters and Newsgroups corpora, LabelMe
is an open online tool to annotate images. Hence, this ex-
periment allows us to see how the proposed model gen-
eralises beyond non-textual data. Using the provided Mat-
lab interface, we extracted a subset of the LabelMe data,
consisting of all the 256 x 256 images with the categories:
“highway”, “inside city”, “tall building”, “street”, “forest”,
“coast”, “mountain” or “open country”. This allowed us to
collect a total of 2688 labeled images. Of these, 1000 im-
ages were given to AMT workers to classify with one of
the classes above. Each image was labeled by an average of

Figure 4: Average testset accuracy (over 30 runs; ± stddev.)
of the different approaches on the Reuters data.

2.547 workers, with a mean accuracy of 69.2%. When ma-
jority voting is applied to the collected answers, a ground
truth accuracy of 71.0% is obtained.

The preprocessing of the images used is similar to
the approach of (Fei-Fei and Perona 2005). It uses 128-
dimensional SIFT (Lowe 1999) region descriptors selected
by a sliding grid spaced at one pixel. This sliding grid
extracts local regions of the image with sizes uniformly
sampled between 16 x 16 and 32 x 32 pixels. The 128-
dimensional SIFT descriptors produced by the sliding win-
dow are then fed to a k-means algorithm (with k=200) in
order construct a vocabulary of 200 “visual words”. This al-
lows us to represent the images with a bag of visual words
model.

With the purpose of comparing the proposed model with
a popular state-of-the-art approach for image classification,
for the LabelMe dataset, the following baseline was intro-
duced:

• Bosch 2006 (mv): This baseline is similar to one in
(Bosch, Zisserman, and Muñoz 2006). The authors pro-
pose the use of pLSA to extract the latent topics, and the
use of k-nearest neighbor (kNN) classifier using the doc-
uments’ topics distributions. For this baseline, unsuper-
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Figure 5: Average testset accuracy (over 30 runs; ± stddev.)
of the different approaches on the LabelMe data.

vised LDA is used instead of pLSA, and the labels from
the different annotators for kNN (with k = 10) are aggre-
gated using majority voting (mv).

The results obtained by the different approaches for the La-
belMe data are shown in Figure 5, where the svi version is
using mini-batches of 200 documents.

Analyzing the results for the Reuters-21578 and LabelMe
data, we can observe that the proposed model outperforms
all the baselines, with slightly better accuracies for the batch
version, especially in the Reuters data. Interestingly, the
second best results are consistently obtained by the multi-
annotator approaches, which highlights the need for ac-
counting for the noise and biases of the answers of the dif-
ferent annotators.

Conclusion
This paper proposed a supervised topic model that is able
to learn from multiple annotators and crowds, by account-
ing for their biases and different levels of expertise. Given
the large sizes of modern datasets, and considering that the
majority of the tasks for which crowdsourcing and multiple
annotators are desirable candidates, generally involve com-
plex high-dimensional data such as text and images, the pro-
posed model constitutes a strong contribution for the multi-
annotator paradigm. This model is then capable of jointly
modeling the words in documents as arising from a mixture
of topics, as well as the latent true labels and the (noisy)
labels of the multiple annotators. We empirically showed,
using simulated annotators on the 20-Newsgroups dataset
and using real annotators from Amazon Mechanical Turk for
Reuters-21578 and LabelMe data, that the proposed model
is able to outperform state-of-the-art approaches. Finally, an

efficient stochastic variational inference algorithm was de-
scribed, which gives the proposed model the ability to scale
to large datasets.

Given that the target variables associated with documents
can be continuous, and also considering that documents can
sometimes belong to more than one class, future work will
explore the extension of the proposed model to regression
and multi-label classification problems.
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