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Abstract

Designing optimal pricing policies and mechanisms for
allocating tasks to workers is central to online crowd-
sourcing markets. In this paper, we consider the fol-
lowing realistic setting of online crowdsourcing mar-
kets – we are given a set of heterogeneous tasks re-
quiring certain skills; each worker has certain expertise
and interests which define the set of tasks she is inter-
ested in and willing to do. Given this bipartite graph
between workers and tasks, we design our mechanism
TM-UNIFORM which does the allocation of tasks to
workers, while ensuring budget feasibility, incentive-
compatibility and achieves near-optimal utility. We fur-
ther extend our results by exploiting a link with on-
line Adwords allocation problem and present a random-
ized mechanism TM-RANDOMIZED with improved ap-
proximation guarantees. Apart from strong theoretical
guarantees, we carry out extensive experimentation us-
ing simulations as well as on a realistic case study
of Wikipedia translation project with Mechanical Turk
workers. Our results demonstrate the practical appli-
cability of our mechanisms for realistic crowdsourcing
markets on the web.

Introduction

Motivated by a realistic crowdsourcing task of translating
Wikipedia articles, in this paper, we study the following
question:

How does one design market mechanisms for crowdsourc-
ing when the tasks are heterogeneous and workers have dif-
ferent skill sets?

The recent adoption of crowdsourcing markets on Inter-
net has brought increasing attention to the scientific ques-
tions around the design of such markets. A common theme
in these markets is that there is a requester who has a lim-
ited budget and a set of tasks to accomplish by a pool of on-
line workers, for instance, on platforms such as Amazon’s
Mechanical Turk1 (henceforth, MTurk), ClickWorker2, and
CrowdFlower3. The crowdsourcing tasks are of variety of

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.mturk.com/
2http://www.clickworker.com
3http://www.crowdflower.com/

nature including image annotation, rating search engine re-
sults, validating recommendation engines, collection of la-
beled data, and text translation.

Incentives and Market Efficiency: A key to making
these markets efficient is to design proper incentive struc-
tures and pricing policies for workers. Due to the financial
constraints of the requester, pricing the tasks too high can
result in lower output for the requestor. On the other hand,
pricing the tasks too low can disincentivize workers to work
on the tasks. This trade-off between efficiency and work-
ers’ incentives makes the pricing decisions in crowdsourcing
markets complex, and thus we require new algorithms that
take into account both the strategic behavior of workers and
the limited budget of the requester.

Workers with different skill sets and heterogeneous
tasks: In a realistic crowdsourcing setting, each worker has
certain expertise and interests which define the set of tasks
she can and is willing to do. For instance, consider a set of
heterogeneous task of translating Wikipedia articles into dif-
ferent languages. Here a tuple of topic of the articles and
a target language represents a unique task. Clearly, based
on the worker’s language skills and topic expertise, she can
only translate some articles into some languages, and not all.
There are numerous other crowdsourcing scenarios where
the tasks require specialized knowledge to accomplish them.
Mathematically speaking, this results in a bipartite graph be-
tween workers and tasks, and can thus require techniques
from matching theory to achieve optimal allocation of tasks
to workers.

Budget-feasible mechanisms: A series of recent re-
sults (Singer 2010; 2011; Singla and Krause 2013a; Chen,
Gravin, and Lu 2011; Singla and Krause 2013b) have pro-
posed the use of budget feasible procurement auction (first
introduced by Singer (2010)), as a framework to design mar-
ket mechanisms for crowdsourcing. However, the current re-
sults are limiting in the sense that they make a simplifying
assumption that tasks are homogeneous or they don’t con-
sider the matching constraints given by the bipartite graph as
described above. Technically speaking, these simplifications
help in the sense that the mechanism has to focus on picking
the right set of workers only, whereas in our setting it has
to do both - pick the right set of workers and assign them to
the right set of tasks, while maintaining the efficiency and
truthfulness properties.
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Our Results

In this paper, we look at the incentive-compatible mecha-
nism design problem for the following setting – there is a
requester who has a set of heterogeneous tasks and a lim-
ited budget. For each task, there is a fixed utility that the
requester achieves if that task gets completed. To do the
tasks, there is a pool of workers. Each worker has certain
skill sets and interests which makes her eligible to do only
certain tasks, and not all. Moreover, each worker has a cost,
which is the minimum amount she is willing to take for do-
ing a task. This minimum cost is assumed to be a private
information of the worker, and is same for all the tasks. For
expositional simplicity, we assume that a worker can do only
one task (we will relax this constraint later). The goal is to
design an auction mechanism that is: i) incentive compatible
in the sense that it is truthful for agents to report their true
cost, ii) picks a set of workers and assigns each to a task such
that the utility of the requester is maximized, and iii) budget
feasible, i.e., the total payments made to the workers does
not exceed the budget of the requester.

We begin by designing a deterministic mechanism for the
above problem which we call as TM-UNIFORM (i.e. Truth-
ful Matching using Uniform Rate). We first give a mech-
anism that is not fully truthful but satisfies truthfulness in
a weaker form, which we call oneway-truthfulness. Briefly,
by this property, workers only have incentive to report costs
lower than their true cost. This property also comes handy in
analyzing the performance of the mechanism, showing that
it achieves an approximation factor of 3, compared to the op-
timum solution (when the costs of the workers were known
to the requester). Then, we design a new payment rule for
TM-UNIFORM, that makes it fully truthful.

To improve the approximation guarantees of our mech-
anism, we make an interesting connection of a subrou-
tine in TM-UNIFORM to the well studied problem of on-
line bipartite-matching and Adwords allocation problem.
We use this connection (in particular a result from Goel
and Mehta (2008)) to design a randomized mechanism TM-
RANDOMIZED with approximation factor of 2e−1

e−1 ≈ 2.58.
However, for this mechanism, we can only show that it is
what we call truthful in large markets, that is, the incentive
to deviate goes down to zero as the market grows larger.

Finally, we carry out extensive experimentation on a real-
istic case study of Wikipedia translation project using Me-
chanical Turk workers. Our results demonstrate the practi-
cal applicability of our mechanism. We also do simulations
on synthetic data to evaluate the performance of our mecha-
nisms on various parameters of the problem.

We note that our mechanisms easily extend to work for
many-to-many matchings as well (where each task needs
to be done several times and each worker can do multiple
tasks), even though we describe all of our mechanisms for
the simple case where each worker is willing to do at most
one task and each task needs to be done by at most one
worker. More interestingly, in the many-to-many setting, we
can handle the case when the utility of doing a task is a non-
decreasing concave function of the number of times that the
task is done.

Related Work

From a technical perspective, the most similar work to
that of ours is the design of budget-feasible mechanisms,
initiated in Singer (2010). Subsequent research in this
direction (Chen, Gravin, and Lu 2011; Bei et al. 2012;
Singer 2011; Singla and Krause 2013a) has improved the
current results and extended them to richer models and ap-
plications. At the heart of it, these results consider two mod-
els – one is where each worker provides a fixed utility to the
requester if she gets hired (i.e. mechanism design version
of the knapsack problem), other is when there is a general
utility function (assumed to be submodular) on the set of
workers that get picked. For the knapsack utility function,
the best known approximation ratio is 2 +

√
2 (for deter-

ministic mechanisms), and 3 (for randomized mechanisms),
given by Chen, Gravin, and Lu (2011). For submodular util-
ity functions, the best known approximation ratio is 8.34 (for
an exponential-time mechanism) and 7.91 (for randomized
mechanisms), given by Chen, Gravin, and Lu (2011). By us-
ing the assumption of large markets, the approximation ra-
tios are improved to 2 for knapsack functions and 4.75 for
submodular functions (Singla and Krause 2013a).

We note that our model generalizes the results of bud-
get feasible mechanism design by extending them to prob-
lems with matching constraints, though we consider a sim-
pler utility functions (i.e., we consider knapsack and non-
decreasing concave utility functions, instead of the more
general class of submodular functions). The problem of
knapsack utility functions with matching constraints has
been studied by Singer (2010) and the proposed mechanism
achieves an approximation ratio of 7.3. However, we make
explicit use of the mathematical structure of matchings in bi-
partite graphs and the assumption of large markets to design
polynomial-time deterministic and randomized mechanisms
with much better approximation ratios as compared to what
is given by the current known results.

Other related work in this area studies the budget-feasible
mechanism design problem in an online learning setting.
Some relevant results in this direction are (Badanidiyuru,
Kleinberg, and Singer 2012; Singla and Krause 2013b;
Singer and Mittal 2013). Motivated from crowdsourcing set-
tings, budget-limited multi-armed bandits have also been
studied (Badanidiyuru, Kleinberg, and Slivkins 2013; Tran-
Thanh et al. 2010; 2012a; 2012b). The issue of heteroge-
nous tasks and workers having skill sets that restricts the
set of tasks they can do was studied from an online algo-
rithm design perspective by Ho and Vaughan (2012). An-
other recent work (Difallah, Demartini, and Cudré-Mauroux
2013) focuses on automated tools to pick the right set of el-
igible workers for a given task based on the profile of the
workers. There has also been some work on understanding
the issue of workers’ incentives in crowdsourcing markets
more closely. A model of workers is proposed in Horton and
Chilton (2010) in order to estimate their wages, and Horton
and Zeckhauser (2010) presents an automated way to nego-
tiate payments with workers.

We would like to point that some of the recent advance-
ments in the theory of online algorithms for matching and
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allocation problems (Karp, Vazirani, and Vazirani 1990;
Goel and Mehta 2008; Aggarwal et al. 2011; Devanur and
Hayes 2009; Devanur, Jain, and Kleinberg 2013) inspired
from online advertising are also relevant for the crowdsourc-
ing setting. In fact, we use one of the technical result of Goel
and Mehta (2008) in our randomized mechanism to improve
the approximation ratio.

The Model

We model the market with a bipartite Graph G(P, T ) where
P is the set of people (workers) and T is the set of tasks. For
any person p ∈ P , let cp denote its cost, which is assumed
to be private information of person p. Also, let ut denote the
utility of a task t ∈ T . An edge e = (p, t) in the graph indi-
cates that person p can do task t. Also we denote the budget
of the requester by B. We make a large market assumption
which is formally defined below.

A matching in G is an assignment of tasks to people such
that each task is assigned to at most one person and each
person is assigned at most one task. The goal is to design
a mechanism that solicits bids from people (representing
their private costs), and outputs a matching4 which repre-
sents the recruited people and the tasks that are allocated to
them. In addition, the mechanism comes up with a payment
for each recruited person. The properties that the mechanism
has to satisfy are: i) Truthfulness, that is, reporting the true
cost should be the dominant strategy of the people, and ii)
Budget-feasibility, that is, the total payment shouldn’t ex-
ceed the budget B. The mechanism has to achieve these two
properties while trying to maximize the total utility obtained
from the tasks that get allocated.

Large Markets

Crowd-sourcing systems are excellent examples of large
markets. Informally speaking, a market is said to be large
if the number of participants are large enough that no sin-
gle person can affect the market outcome significantly. Our
results take advantage of this nature of the crowdsourcing
markets to design better mechanisms. Formally speaking,
we assume that in our market, the utility of a single task
is very small compared to the overall utility of the optimal
solution. In other words, the ratio θ = umax

U∗ is small, where
umax = maxt∈T ut and U∗ is the maximum utility that can
be gained by assignment of tasks to people which is budget
feasible.

It is worth pointing out that such assumptions have been
considered before in large-market matching problems; for a
well-known example, we refer to Mehta et al. (2007) where
the small bid to budget ratio assumption is considered, i.e.
they assume that the ratio of the maximum bid in the market
is (arbitrarily) small compared to the budget.

Definitions

We now introduce some notation and useful definitions in
order to describe our mechanisms. Let N(p) and N(t) re-
spectively denote the set of neighbors of a person p and a

4we relax this constraint later to include the case when a person
can do multiple tasks and each task can be done multiple times

task t in the graph G. Also, for simplicity, we sometimes
denote E(G) by E.

For a matching M and a person p ∈ P , the match of p
in M is denoted by M(p) (possibly equal to ∅). Cost of M,
denoted by c(M), is defined as

∑
(p,t)∈M cp. Also, utility of

M, denoted by u(M) is defined as
∑

(p,t)∈M ut.
For any two matchings M,N, let M�N denote the graph

which contains only the edges that appear in exactly one of
the matchings M,N. It is a well-known fact that such a graph
is always a union of vertex-disjoint paths and cycles.

We compare the performance of our mechanism to the
optimum solution that knows the people’s costs (denoted by
offline optimum). We say that a mechanism has an approx-
imation ratio of α (where α ≥ 1) if the utility obtained by
this mechanism is always at least 1

α of the utility obtained
by the offline optimum solution.

The Uniform Mechanism (TM-UNIFORM)

In this section, we present a simple mechanism TM-
UNIFORM (i.e. Truthful Matching using Uniform Rate). The
mechanism pays the workers in a uniform manner, i.e. if a
worker is assigned a task with utility u, then it will be paid
r ·u, where coefficient r is the same for all workers. The co-
efficient r is called the buck per bang rate of the mechanism;
it will be discussed in more details below.

The mechanism, although not being truthful, satisfies
truthfulness in a weaker form, which we call oneway-
truthfulness, formally defined below. Briefly, by this prop-
erty, if a player has incentive to report untruthfully, then
she only has incentive to report a cost lower than her true
cost. This property also comes handy in analyzing the per-
formance ratio of the mechanism, showing that it achieves
an approximation factor of 3, compared to the optimum so-
lution (i.e., the maximum achievable utility when the true
costs of the workers are known to the requester). We make
the same mechanism truthful by changing its payment rule
and designing a non-uniform payment rule.

Oneway-truthfulness

Consider a reverse auction in which there exists a set of sell-
ers P where each seller p ∈ P has a private cost cp. In a
truthful mechanism, no seller wants to report a fake cost re-
gardless of what others do. In a oneway-truthful mechanism,
no seller wants to report a cost higher than its true cost re-
gardless of what others do. This notion is formally defined
below. For clarification, we first define the notion of cost
vector briefly: when we say a cost vector d, we mean a vec-
tor which has an entry dp corresponding to any player p,
where dp represents the cost associated with player p.

Definition 1. A mechanism M is oneway-truthful if for any
seller p ∈ P and any cost vector d for which dp > cp we
have

up(cp, d−p) ≥ up(dp, d−p)

where d−p denotes the cost vector corresponding to the rest
of sellers except p and up(x, d−p) denotes the utility of p
when she reports x and other players report d−p.
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Description of the Mechanism

The key concept in the mechanism is a buck per bang rate r
(or simply the rate) representing the payment that the mech-
anism is willing to pay per unit of utility, i.e. if a worker is
assigned a task with utility u, then it will be paid r · u. Here,
the coefficient r is same for all the workers. The buck per
bang rate of an edge e = (p, t), denoted by bb(e), is defined
by cp

ut
. Also, let G(r) be a subgraph of G which only con-

tains edges with rate at most r. The mechanism uses a fixed
(and arbitrary) permutation of the vertices of P , which we
denote by the permutation σ.

TM-UNIFORM starts with r = ∞ and it gradually de-
creases the rate r. Let m = |E(G)| and e1, . . . , em be a
list in which the edges are sorted w.r.t. their buck per bang
rate in decreasing order, i.e. for ei and ej , we have i ≤ j iff
bb(ei) ≥ bb(ej). Also, for technical reasons, let e0 be an
isolated dummy edge with buck per bang rate of infinity.

The mechanism is formally presented in Procedure TM-
Uniform. For any fixed r, it constructs the graph G′ = G(r)
and calls Procedure FindMatching to find a matching or as-
signment M ⊆ E(G′) in G′. Procedure FindMatching takes
as input a fixed permutation σ of the nodes in P . Then, the
nodes in P are visited one by one in the order of appear-
ance in σ. When p is visited, the mechanism assigns p to a
task t which has the highest utility among all the tasks that
can be currently assigned to p. Let M denote the matching
returned by the procedure after visiting all the nodes in P .
If r · u(M) > B, then the mechanism decreases the rate r
slightly and repeats this procedure for the new r; otherwise,
it stops.

To give more intuition on what TM-UNIFORM does, we
can think of the rate r as a line that sweeps the sorted list
e1, . . . , em from left to right in a continuous motion. All the
edges that have buck per bang rate more than r fall to the left
of the line. In case of ties (in buck per bang rates), the edges
fall to the left of the line one by one in the order of their
appearance in the list. The graph G′ always contains all the
edges to the right of the line. It stops when the matching
produced by FindMatching(G′, σ) has utility at most B/r.
Let r∗, G∗ respectively denote r,G′ when mechanism stops.
Based on this description, we define a notion of time for the
mechanism, which will be used in the analysis.

Definition 2. During execution of the Mechanism TM-
Uniform, we say that the mechanism is at iteration (r, e) if
the last edge that has been removed from G′ is e and the
current rate (position of the sweep line) is r.

We emphasize that according to the above definition, we
have a continuum of iterations each of which correspond to
a value of r as it is decreasing continuously (when the line
sweeps the sorted list). To be more precise, there can also be
two different iterations (r, e) and (r, e′) corresponding to the
same value of r, which happens when r = bb(e) = bb(e′).

The mechanism uses a uniform payment scheme, i.e. pay-
ing each worker r · uM(p) (where M(p) denotes the task as-
signed to p, possibly equal to ∅). With this payment, mecha-
nism TM-UNIFORM satisfies truthfulness in a weaker form,
which we call oneway-truthfulness (i.e. players only have

incentive to report costs lower than their true cost). This uni-
form payment scheme makes it easy to analyze the perfor-
mance of the mechanism.

Procedure FindMatching
input : Graph G′(P, T ), Permutation σ
output: A matching in G′

M ← ∅;
T ′ ← T ;
for i ← 1 to |P | do

Find the task t with the highest utility such that
t ∈ N(σ(i)) ∩ T ′;
M ← M ∪ (σ(i), t);
T ′ ← T ′\{t};

Return the matching M;

Procedure TM-Uniform
input : Graph G(P, T ), Budget B, Permutation σ
output: A matching in G

G′ = G;
for i ← 1 to m do

M = FindMatching(G′, σ);
if bb(ei) · u(M) ≤ B then

r ← min
(

B
u(M) , bb(ei−1)

)
;

break;
E(G′) ← E(G′)− {ei};

Return M as the final matching;
Make the uniform payments with rate r.

Next, we state our results for TM-UNIFORM based on the
uniform payment rule.
Theorem 1. TM-UNIFORM, based on uniform rate pay-
ment rule, is budget feasible, individually rational, oneway-
truthful, and is 3-approximate compared to the optimum so-
lution (which assumes access to the true costs).

The Truthful Mechanism

We can modify TM-UNIFORM and make it fully truthful by
modifying the payment rule. The allocation rule (selecting
the matching) stays identical to Mechanism TM-Uniform.
This modified payment rule along with the allocation rule in
Mechanism TM-Uniform, gives a truthful mechanism. The
payment rule is in fact the so-called threshold payment rule.

The Non-uniform Payment Rule: Each winner is paid
the highest cost that it could report and still remains a win-
ner.

Now, we state our main results for TM-UNIFORM based
on the non-uniform payment rule.
Theorem 2. TM-UNIFORM, with modified non-uniform
rate based threshold payment, is budget feasible, individu-
ally rational, truthful, and is 3-approximate compared to the
optimum solution (which assumes access to the true costs).
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The proofs of Theorem 1 and Theorem 2 are presented in
the longer version of the paper.

Randomized Mechanism (TM-RANDOMIZED)
In this section, we present a mechanism with an im-
proved approximation ratio of 2e−1

e−1 ≈ 2.58. We call
this mechanism the Randomized Uniform Mechanism (TM-
RANDOMIZED). Our mechanism is truthful in large mar-
kets, i.e., as the market becomes larger:
• Extra utility that a person gains by misreporting her cost

goes to zero.
• Ratio of any beneficial misreported cost to the true cost

goes to one.

TM-RANDOMIZED produces a fractional matching (for-
mally introduced below); if a fractional matching is not ac-
ceptable as the outcome of the mechanism, for example, if
the tasks are not splittable, then we provide a way to con-
vert (round) the produced fractional matching to an integral
matching. The resulting mechanism produces an integral
matching and it remains individually rational and truthful in
large markets; also, the approximation ratio of 2e−1

e−1 ≈ 2.58
still holds after this rounding. We now introduce some pre-
liminaries and then describe the mechanism in detail.

Preliminaries

Recall umax = maxt∈T ut and θ = umax
U∗ , that were used to

model the large market assumptions.
Truthful Mechanisms in Large Markets: In our setting,
we say that a mechanism is truthful in large markets when
θ → 0 implies the following two properties for any p ∈ P :
• The extra utility gained by misreporting goes to zero.

Formally, it means:

(
sup
x

up(x, d−p)− up(cp, d−p)

)
→ 0.

where d−p denotes any cost vector corresponding to the
rest of players except p, and up(x, d−p) denotes the utility
of player p when he reports a cost x.

• The difference between a beneficial (misreported) cost
and the true cost goes to zero. Formally, it means that:

|cp − x| → 0 and |cp − x| → 0.

where
x = sup

x
{u(x, d−p) ≥ u(cp, d−p)} ,

x = inf
x

{u(x, d−p) ≥ u(cp, d−p)} .
Fractional Matchings: Let m = |E(G)|. A fractional
matching x ∈ R

m is a vector that has an entry xe for each
edge e in G and satisfies the following conditions:∑

t∈T
x(p,t) ≤ 1, ∀p ∈ P (1)

∑
p∈P

x(p,t) ≤ 1, ∀t ∈ T (2)

The utility of a fractional matching x is defined by

u(x) =
∑

(p,t)∈E(G)

x(p,t) · ut

The key concept in our randomized mechanism is a
special fractional matching that we define as follows. For
any graph G(P, T ) and permutation σ on the nodes of
P , let x(G, σ) ∈ R

m denote the characteristic vector of
the (integral) matching that is constructed by Procedure
FindMatching(G, σ). Then, we define the fractional match-
ing x(G) as follows:

x(G) =
1

|P |!
∑
σ∈SP

x(G, σ) (3)

where SP is the set of all permutations on the elements of
P . Although we can not compute x(G) in polynomial time,
by sampling (a polynomial number of) many permutations,
it can be computed with arbitrarily small error.

Description of the Mechanism

On the intuitive level, the mechanism does the following:
it starts with a rate r = ∞ and computes the matching
x(G(r)). If r · u(x(G(r))) > B, then it slightly decrease
the rate r. This is done until it reaches a rate r = r∗ such
that r∗ · u(x(G(r∗))) ≤ B. The mechanism stops at a rate
r∗ and produces a fractional matching x∗.

The allocation is defined by x∗ in a natural way: Person
p is assigned a fraction x∗(p,t) of each task t ∈ T . The pay-
ments are uniform: person p is paid r · ut · x∗(p,t) for each
task t.

Recall the sorted list of the edges, e1, . . . , em, in which
the edges are sorted w.r.t. their buck per bang rate in de-
creasing order. Given this list, the mechanism is formally
presented in Procedure TM-Randomized.

Procedure TM-Randomized
input : Graph G(P, T ), Budget B
output: A matching in G

G′ = G;
for i ← 1 to m do

x = 1
|P |!

∑
σ∈SP

FindMatching(G′, σ);
if bb(ei) · u(x) ≤ B then

r ← min
(

B
u(x) , bb(ei−1)

)
;

break;
E(G′) ← E(G′)− {ei};

Make the uniform payments;
Return x as the final matching;

We show that this mechanism is individually rational,
truthful in large markets, and also, has approximation ra-
tio 2e−1

e−1 . Theorem 3 states our main results for TM-
RANDOMIZED, proof is presented in the longer version of
the paper.
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Theorem 3. TM-RANDOMIZED is budget feasible, individ-
ually rational, truthful in large markets, and has approxima-
tion factor of 2e−1

e−1 ≈ 2.58 compared to the optimum solu-
tion (which assumes access to the true costs).

Indivisible Tasks and Rounding Procedure

If a fractional matching is not acceptable as the outcome of
the mechanism, e.g., tasks are not divisible, then we round
the produced fractional matching to an integral matching.
The resulting mechanism produces an integral matching and
remains individually rational and truthful in large markets;
furthermore, it has the same approximation ratio.

Formal details of the procedure are quite technical and in-
volve understanding of the structure of the extreme points of
the polytope corresponding to the budget feasible matchings
– we leave it for the full version of paper. Below, we give a
high level description of the rounding procedure.

We round the output of TM-RANDOMIZED, denoted by
a fractional matching x, to an integral matching, i.e. we find
integral matchings x1, . . . , xk and non-negative numbers
λ1, . . . , λk summing up to one such that x =

∑k
i=1 λixi.

Moreover, we choose x1, . . . , xk such that they are almost
budget feasible, i.e. r · u(xi) ≤ B + r · umax. Given such
x1, . . . , xk, we randomly choose one of them according to
the probabilities given by λ1, . . . , λk.

In simple words, we can prove that a budget feasible frac-
tional matching can be written as a convex combination of
integral and almost budget feasible matchings. The rounding
procedure outputs one of these matchings, each with proba-
bility equal to its coefficient in the convex combination.

This procedure outputs an almost budget feasible inte-
gral matching. To obtain a (strictly) budget feasible integral
matching, we run the mechanism with a slightly reduced
budget. This can be done without any (asymptotic) loss in
the approximation ratio.

Extensions

We have presented our mechanisms for scenarios with one-
to-one assignments, however, the mechanisms also work for
finding many-to-many assignments. Here, we focus on the
following two important extensions which can model many
real-world applications, and in particular, are used to model
the market in our experimental studies in next section.

• Tasks can be done multiple times: Consider the more
general case when tasks can have decreasing reward func-
tions. Let a task have reward ri for being done in the i-th
time, where r1 ≥ . . . ≥ rn. We can reduce this to the ba-
sic setting by creating n identical copies of this task and
defining a reward ri for the i-th copy.

• People can do multiple tasks: If a person is willing to
do up to d tasks, then we create d copies of this node and
treat them as different individuals, i.e. each copy appears
separately in the permutation σ.

All the properties that we proved for our mechanisms also
hold in these extensions and the proofs are presented in the
longer version of the paper. In this section, we briefly ver-
ify this fact for our simpler (non-randomized) mechanisms.

The proofs for individual rationality and approximation ra-
tio remain identical to the one-to-one setting. Also, for one-
to-many assignments (where no person is assigned to more
than a task), the proof for truthfulness remains the same. It
remains to address truthfulness in the many-to-many setting.

Under the uniform payment rule, the mechanism remains
one-way-truthful, the proof for this directly follows from the
results of one-to-one assignment case. To get a fully truthful
mechanism, we use the natural extension of the non-uniform
payment rule for many-to-many assignments, and show that
the mechanism remains truthful under this payment rule.

Payment Rule for Many-to-Many Assignments: Sup-
pose person p is willing to do up to d tasks, which means
he has d copies in the graph, namely p1, . . . , pd. Then, p is
paid

∑d
i=1 θi, where θi is defined as follows: If copy pi is

assigned to no task by the mechanism, then θi = 0, other-
wise, θi is the highest cost that p could report such that pi
remains assigned to some task by the mechanism.

Next, we state our results for many-to-many assignments
for TM-UNIFORM, proof is presented in the longer version
of the paper.
Theorem 4. Extension of TM-UNIFORM for many-to-
many assignments is truthful under the non-uniform pay-
ment rule.

Experimental Evaluation
In this section, we carry out extensive experiments to under-
stand the practical performance of our mechanism on sim-
ulated data, as well as on a realistic case study of translat-
ing popular Wikipeda pages to different languages using the
MTurk platform. We begin by describing our experimental
setup, benchmarks and metrics.

Experimental setup

Benchmarks: We compare our mechanism TM-UNIFORM
against the following benchmarks and baselines:
• UNTM-GREEDY is an untruthful mechanism for match-

ing which (unrealistically) assumes access to the true
costs of the workers. It picks the edges iteratively in a
greedy fashion based on maximal marginal value by cost
ratio, and pay the worker the exact true cost. The mech-
anism runs until the budget is exhausted. This is a two
factor approximation of the OPT, the untruthful optimal
solution (Goel and Mehta 2008).

• UNTM-RANDOM is a trivial untruthful mechanism for
matching that picks the edges (an available worker-task
pair) in a random order iteratively, paying the exact cost
to the worker.

• TM-MEANPRICE is a trivial truthful mechanism for
matching which picks the edges randomly (same as in
UNTM-RANDOM), however it offers a fixed price pay-
ment (set to be the mean of the whole set of workers in
the crowdsourcing market). If the payment is higher than
current worker’s cost, the worker would accept the of-
fer, otherwise rejects. This serves as a trivial lower bound
baseline for our mechanism TM-UNIFORM. This base-
line reflects the kind of pricing strategies often used by
job requesters on online platforms like MTurk.
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(a) Distributions of Bids ($)

��
��

��
�

��
��

��
�

��
��

��
��

	�
��

��
��
�


�
��
��
��

��
��
��

��
��
�

�
��
��
�

��
��
�

��
��
��
��

�
��
��
��

��
��

��
��
��
��
�

��
��

��
�

��
���

�

��
��

��
��

��
��
��

��
��

��
��
��
��
�

��
��

��
��
���

�

��

���

���

���

���

���

���

���

�� �� �� �� ��

�
��

	

��


�

�	������

���� ����������!���������������"��
����� ������ ���"�

(b) Top languages, topics and tasks
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(c) Worker’s profile

Figure 1: (a) Distribution of workers’ bids ($), (b) Top languages, topics and tasks for MTurk workers, and (c) Illustrates a
profile of worker who picked Spanish and Japanese as target languages of interest; along with Culture and Life as topics of
interest. This corresponds to total of four types of tasks that this worker can perform, namely: Spanish Culture, Spanish Life,
Japanese Culture and Japanese Life. Topic Culture contains 253 pages and topic Life contains 120 pages, which decide the
total number of sub-taks available in these tasks. The concave utility function for each task is obtained by sorting the pages in
decreasing order of utility and summing it up. Further, Spanish internet users’ population is 164.9 million, compared to 99.2
million for Japanese which dictates the scale of 1.66 between the graphs of Spanish Culture v.s Japanese Culture and also
between Spanish Life v.s Japanese Life.

.

Metrics and experiments: The primary metric we track is
the utility of the mechanism for a given budget. On synthetic
data, we vary the amount of available budget to see the effect
on our mechanism. We also vary the degree of graph connec-
tivity between tasks and workers to understand the effect of
matching constraints. Additionally, we vary the variance of
tasks’ utilities and workers’ cost to understand its impact,
specially on the truthful mechanisms. In our experiments
on MTurk data, the utility is directly mapped to the abso-
lute number of page views from the tasks completed by the
mechanism and budget directly maps to the amount of avail-
able money in U.S. dollars ($) that can be spent for crowd-
sourcing. Apart from the overall utility, we further track the
utility acquired per target language and source topic. Our
main goal is to gain insights into the execution of the mech-
anisms which arise from the market dynamics (e.g., high
availability or shortage of workers with specific skills as well
as the utility difference between different type of tasks).

Distributions and parameter choices: For synthetic ex-
periments, we considered a simple market, where each
worker can do only one task and each task can be done only
once. We used uniform distribution with range of [0.1−0.9]
to generate the tasks’ utilities as well as the workers’ costs.
We generated a random graph with 200 workers, 200 tasks
and a probability of edge formation being set to 0.3. We fur-
ther vary these ranges of the distribution and graph degree
in the experiments below. For the real-world experiments on
Wikipedia translation case study, the data was collected from
online resources and MTurk as is further described in detail
below. We didn’t perform any specific scaling or normaliza-
tion of the values for real study, so as to make the utility ac-
quired easily interpretable from an actual application point
of view (e.g., page view counts for a given budget in US dol-
lars $). Next, we describe in detail the process of gathering
real data for our experiments.

Wikipedia translation on Mechanical Turk

We now describe our Wikipedia translation project in detail
including data collection from online resources and workers’
preference elicitation from MTurk platform.

Case study on Wikipedia translation project. Our ex-
periments are inspired by the application of translating
Wikipedia’s popular or trending articles to other languages,
making them easily accessible to every internet user. We in-
tend to use crowdsourcing for this application, where dif-
ferent workers can manage or perform the translation tasks,
possibly with help of available software tools. More con-
cretely, our goal is to translate the weekly top 5,000 most
popular pages of English Wikipedia to the top ten most
widely used languages on internet. Here, a task heterogene-
ity comes from the topic of the page and the target language.
As workers could have different topical interests and dif-
ferent expertise or preference for the target languages, this
creates the need for matching the right set of workers for
the tasks they can perform. We considered total of 25 dif-
ferent topics based on the top level classification topics ac-
tually used in Wikipedia5. Next we considered the 10 most
widely used internet languages (after English), along with
their user base on internet6,7. These together gives us a total
of 250 different heterogeneous tasks (25 topics times 10 lan-
guages). Next, we obtained the list of top 5,000 pages from
Wikipedia for one of the weeks in September 20138 along
with their page view count. We then annotated each one of
these pages to one of the 25 topics. Instead of using some
classifier or inferring top level topic from Wikipedia’s taxon-
omy, we resorted directly to MTurk to obtain this annotation.
We posted a Human Intelligence Task (HIT) which asked

5http://en.wikipedia.org/wiki/Category:Main topic classifications
6http://en.wikipedia.org/wiki/Languages used on the Internet
7http://pocketcultures.com/topicsoftheworld/files/2011/09/Internet-

Language-Infographic.png
8http://en.wikipedia.org/wiki/User:West.andrew.g/Popular pages
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(a) Varying budget ($)
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(b) Varying graph degree
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(c) Varying value/cost variance

Figure 2: Results for experiments on synthetic data. (a) Overall utility acquired by varying budget.TM-UNIFORM performance
is within a margin of 20% compared to that of UNTM-GREEDY (which assumes unrealistic access to true costs). TM-UNIFORM
shows up to 100% improvement over TM-MEANPRICE, a typical fixed price mechanism used by requester on crowdsourcing
platforms like MTurk. (b) Utility acquired as degree of graph is varied, for a fixed budget of 5$. (c) Effect of varying value/cost
variance in the market, by reducing the range of uniform distribution used for sampling task’s utilities and worker’s costs. The
results illustrate that markets with higher variance increases the strategic power of the workers.

workers to annotate each one of these pages with unique
topic from the list of 25 provided to them. At the end of this
whole process, we have a set of 250 heterogeneous tasks
associated with a topic and target language. Each task can
further be done multiple times, which equals the number of
pages annotated with the topic of this task – we refer to them
as sub-tasks. The utility associated with a sub-task is sim-
ply obtained by multiplying user base of target language and
page view count of the page (this simply denotes the effec-
tive page view count the application will have from this sub-
task). These utilities for all the sub-tasks (ordered in their
decreasing value) of a task form the concave utility curve
associated with the task. This is illustrated in Figure 1(c).

MTurk data and worker’s preferences. Next, our goal
was to infer worker preferences in terms of topical interests
as well the target languages they are interested in. We posted
a HIT on MTurk platform in form of a survey, where workers
were told about an option to participate in our research pro-
totype of Wikipedia translation project. Our HIT on MTurk
stated the survey’s purpose as to understand the feasibility of
our project, requesting workers to provide correct and honest
information. We clearly stated that workers are not required
to know the target language at this point and they can poten-
tially be trained with set of tools to assist in our translation
project. Our survey explicitly asked following questions to
the workers:

• Choose up to 10 topics from the list below based on your
interests for the source pages of the tasks you would be
interested to perform.

• Choose up to 5 languages from the list below based on
your interests for the target languages of the tasks you
would be interested in owning.

• Roughly, from 0.1$ to 5$, what price would you like to
receive per task?

• Roughly, from 1 to 100, how many tasks would you like
to perform per week?

Given the preference information elicited from this HIT,
we defined a skill for worker as combination of preference
of page topic and target language. This, together with the

characterization of the tasks, provides us with the graph of
matching constraints between workers and tasks.

Statistics A total of 1000 workers participated in our sur-
vey. We didn’t restrict our survey to any geographical region,
to allow for maximal variability in our study given the nature
of the application. Figure 1(a) shows the distribution of bids
collected. Figure 1(b) shows the top five languages and top-
ics which were preferred by workers. Figure 1(b) also illus-
trates the percentage of workers who can perform a particu-
lar type of task based on the inferred matching constraints.
Figure 1(c) shows the profile of a worker who picked Span-
ish and Japanese as languages; along with Life and Culture
as topics. This worker can do a total of four different type
of tasks, as illustrated in Figure 1(c) along with their utility
curves inferred from the associated sub-tasks.

Results on Synthetic data

We now discuss the findings from our experiments, starting
with results on synthetic data.

Varying budget. Figure 2(a) shows the utility acquired
by different mechanisms as we vary the available budget.
On synthetic data, our truthful mechanism TM-UNIFORM
performs within a margin of 20% compared to that of
UNTM-GREEDY with (unrealistic) access to true costs.
Both the trivial baselines for untruthful mechanism UNTM-
RANDOM and truthful mechanism TM-MEANPRICE per-
form relatively worse. We note that the very similar perfor-
mance of UNTM-RANDOM and TM-MEANPRICE is ac-
tually attributed to the fact that our cost and value dis-
tributions on which results are reported here are uniform.
A skewed distribution or using a different fixed price for
TM-MEANPRICE (for example, median of worker’s popu-
lation) could perform better or worse compared to UNTM-
RANDOM. However, both these mechanisms come without
any guaranteess and can perform arbitrarily bad, as we will
see on real data experiments.

Varying graph degree between workers and tasks.
We vary the degree of connectedness between workers and
tasks, which in turn could affect the availability of skills in
workers pool for a given task, affecting the performance of
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(b) Utility per topic
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(c) Utility per language

Figure 3: Results for experiments on Wikipedia translation using MTurk. (a) Overall utility acquired by varying budget.TM-
UNIFORM performance is within a margin of 55% compared to that of UNTM-GREEDY (which assumes unrealistic access to
true costs). And, we see up to 100% improvement over TM-MEANPRICE. (b) and (c) illustrates market dynamics by showing
the utility acquired per different topic and language as budget is varied. In (c), French language acquires higher utility in the
beginning, attributed to bigger pool of available workers (65.7% for French vs 27% Arabic on MTurk). Eventually Arabic
language catches up because of higher utilities associated with sub-tasks attributed to larger user base of the language (59.8
million for French vs 65.4 million for Arabic).

the mechanisms. Figure 2(b) studies this for a fixed budget
of 5$. Starting from a very low connectivity of 0.001, we in-
crement it in steps to see the affect on acquired utility. Both
TM-UNIFORM and UNTM-GREEDY show an increasing
performance with saturated gains, though the naive mech-
anisms UNTM-RANDOM and TM-MEANPRICE almost re-
main stagnant in terms of their performance.

Varying value/cost variance in market. Another aspect
we study on the synthetic data is the variance in utility of
tasks and that of workers costs, as illustrated in Figure 2(c).
As expected, in the extreme case of no variance, all the
mechanisms perform the same. And, as variance in market
increases, the relative performance of our mechanism TM-
MEANPRICE decreases w.r.t UNTM-GREEDY. Intuitively,
this shows that the markets with higher variance results in
increasing the strategic power of the workers.

Results on Wikipedia translation data

Next, we measure the performance of our mechanisms on
the real world data gathered as part of Wikipedia translation
project using MTurk workers.

Varying budget. Figure 3(a) illustrates the results of util-
ity on real data. Here, the utility corresponds directly to
the page-view counts that mechanism would generate on
internet and budget corresponds to US dollars ($) we are
given. The utility of TM-UNIFORM is about 55% lower than
UNTM-GREEDY, worse than what we observed on syn-
thetic data (20% lower). This is because of higher variance
of task values and worker’s costs in real data, increasing the
strategic power of workers and affecting the performance
of truthful mechanisms (see also Figure 2(c)). And, we see
up to 100% improvement over TM-MEANPRICE. The fixed
price mechanisms like TM-MEANPRICE are often used by
requesters currently in online crowdsourcing platforms like
MTurk. The performance of our mechanism TM-UNIFORM
compared to TM-MEANPRICE shows the potential gains we
can expect by using our mechanisms in current crowdsourc-
ing platforms.

Utility acquired per topic. Next, we study the effect
of market dynamics in a real crowdsourcing market. Fig-
ure 3(b) shows the utility acquired per topic as we vary the
budget. For a given topic, the acquired utility depends on
the number of workers interested in the topic as well as the
page view count of pages which fall in these topics. For ex-
ample, some pages related to recent sports events (in topic
Sports) or entertainment pages (in topic Arts) could be much
more popular compared to a page, let’s say, in topic Law.
Figure 3(b) shows the utility of four topics People, Tech-
nology, Science and Business as the budget is varied. The
dynamics can be seen between Science and Business – topic
Business acquires higher utility in the beginning because of
presence of some highly visited pages which fall in this cat-
egory. However, Science quickly takes over as the pool of
MTurk workers interested in Science topic is much larger
than that for Business (49.50% compared to 34.72%).

Utility acquired per language. Along the same lines
as above, Figure 3(c) illustrates the results for utility per
lanaguge. We plot the results for four languages: German,
French, Arabic and Russian. The dynamics of acquired util-
ity for a language are controlled by corresponding user
base on internet which is 75.5 Million(M), 59.8 M, 65.4
M and 59.7M respectively for these languages. Addition-
ally, the interests of MTurk workers affect the availability of
worker pool which in our data corresponds to 59.6%, 65.7%,
27% and 34.7%, respectively. The French language acquires
higher utility in the beginning, attributed to bigger pool of
available workers on MTurk. Eventually, Arabic language
catches up because of higher utilities associated with sub-
tasks attributed to larger user base of the language.

Conclusions and Future Work

In this paper, we studied the mechanism design problem for
crowdsourcing markets with matching like constraints, in-
spired by the realistic crowdsourcing project of translating
Wikipedia articles. We designed mechanisms with strong
theoretical guarantees which are complemented by extensive
experimentation to show their real-world applicability.
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There are some natural extensions for future work. We
assumed that workers have same cost for all the tasks. Ex-
tending our mechanisms to general setting where workers
can have different costs for different tasks would be prac-
tically useful. Another interesting generalization would be
when tasks require multiple workers for them to be finished.

We would like to point out that our mechanism TM-
UNIFORM takes as input a permutation on the workers. This
extra input gives a useful tool to manipulate the outcome
of the mechanism. For instance, if some workers are more
desired over others (say, based on quality ratings or demo-
graphics information), one can put these workers in the front
of the permutation. Lastly, our approximation factor 3 works
for the worst case permutation. It is an open question if one
can show better guarantees on a randomly selected permu-
tation. Our conjecture is that the expected performance of
the uniform mechanism on a randomly selected permutation
will be same as our randomized mechanism.
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