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Abstract

The recent advent of human computation – employing non-
experts to solve problems – has inspired theoretical work in
mechanism design for eliciting information when responses
cannot be verified. We study a popular practical method,
output agreement, from a theoretical perspective. In output
agreement, two agents are given the same inputs and asked to
produce some output; they are scored based on how closely
their responses agree.
Although simple, output agreement raises new conceptual
questions. Primary is the fundamental importance of common
knowledge: We show that, rather than being truthful, output
agreement mechanisms elicit common knowledge from par-
ticipants. We show that common knowledge is essentially the
best that can be hoped for in any mechanism without verifica-
tion unless there are restrictions on the information structure.
This involves generalizing truthfulness to include respond-
ing to a query rather than simply reporting a private signal,
along with a notion of common-knowledge equilibria. A final
important issue raised by output agreement is focal equilib-
ria and player computation of equilibria. We show that, for
eliciting the mean of a random variable, a natural player in-
ference process converges to the common-knowledge equi-
librium; but this convergence may not occur for other types
of queries.
Portions of this work were presented at the 2013 Workshop on
Social Computing and User-Generated Content, at the 14th
ACM Conference on Electronic Commerce.

Introduction

The emerging field of human computation has harnessed the
intelligence of an unprecedentedly large population of peo-
ple for the purpose of solving computational tasks. For ex-
ample, in the now-classic ESP game (von Ahn and Dabbish
2004), which has collected semantic labels for over one hun-
dred million images1, the image labeling task is turned into
a fun, online game: Two players are simultaneously shown
an image and asked to independently type words related to
the image; whenever a word is typed by both players, they
score some points and move on to the next image.

The ESP game is an example of an output agreement
mechanism, a term coined by von Ahn and Dabbish (2008)

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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to describe a fundamental aspect of the game — rewarding
agreement. While the ESP game has obtained an incredi-
ble amount of useful labels for images, it is interesting to
ask what knowledge is elicited in such games with strategic
players. Intuitively, a player will not always give the most
descriptive label of an image in the ESP game if he thinks
that that label may be too specialized to be known by the
other player. For example, instead of “Woodcock”, he may
type “bird” for a picture of a Woodcock. Hence, we cannot
expect to obtain all private knowledge of players in general.
Then, exactly what knowledge can be reliably obtained?

This question motivates our effort in this paper. We for-
mally define and analyze the broad class of output agree-
ment mechanisms. In an output agreement mechanism, two
players are presented with the same query and each gives a
response, there is a metric measuring the distance (or degree
of agreement) between the two responses, and the reward of
the players monotonically decreases with the distance. For
example, an output agreement mechanism can ask players
to report some statistic of a random variable (e.g. the mean
or median of customer ratings for a restaurant) and reward
them according to the absolute difference of their reports.
In this paper, we study what knowledge can be elicited at
game-theoretic equilibria in output agreement mechanisms.

The output agreement mechanisms fall into the general
setting that we refer to as information elicitation without ver-
ification (IEWV) because the designer would like to elicit
useful information from the participants, but does not neces-
sarily have the resources to verify the quality of responses.
Many mechanisms have been developed for this setting, in-
cluding the peer prediction method (Miller, Resnick, and
Zeckhauser 2005) and Bayesian truth serum (Prelec 2004).
However, the same model used for understanding prior
mechanisms does not provide additional insights for output
agreement beyond that it does not elicit all private knowl-
edge. A theoretical analysis of output agreement requires
novel approaches and insights that we believe are also rel-
evant to understanding the broader IEWV setting as well.

In this paper, we first focus on the solution concept. Typ-
ically, mechanisms for IEWV ask agents to report their
“signals”, that is, the information they observe, and aim to
truthfully elicit such signals under some assumptions on the
structure of players’ information or the mechanism’s knowl-
edge about it. But for output agreement, eliciting “signals”
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may be unnecessary or infeasible. We model output agree-
ment as asking agents a “query” and introduce a notion of
player specificity to capture the amount or “coarseness” of
knowledge that the player uses to answer the query. For ex-
ample, “Woodcock” is a very specific response (it might
be exactly the player’s signal), while “small bird” is more
coarse (though perhaps still useful), and “creature” is very
coarse. Technically, the most refined knowledge that the
player can use is his private signal (i.e. being truthful) while
the coarsest knowledge is the prior information.

With this, we show that output agreement games elicit
common knowledge: There is a strict equilibrium where
players report the correct answer according to the common
knowledge they possess; and this holds for any query we
ask and any information structure agents have. We note that
most prior mechanisms focus on only eliciting signals rather
than arbitrary queries and often require assumptions on the
information structure. Moreover, output agreement’s solu-
tion of common knowledge cannot be much improved: No
mechanism for IEWV can obtain answers that are based on
strictly more refined knowledge (in particular, players’ pri-
vate information), without making restrictions on the struc-
ture of players’ information. Another drawback of output
agreement is the existence of “bad” equilibria where no in-
formation is revealed; we formalize this with uninformative
equilibria and show that it is (virtually) impossible for a
mechanism for IEWV to avoid this problem.

We second focus briefly on some of the implications of
the common-knowledge solution concept on focal equilibria
in output agreement. In prior mechanisms for IEWV, which
focused on truthful equilibria, it might naturally be argued
that such equilibria are focal: Agents are presented with
a query and they respond truthfully. In output agreement,
however, truthful responses are not always an equilibrium.
If “Amanda” and “Ben” are playing an output agreement
game, then Amanda may observe the query and think of a
truthful response, but she must also reason about Ben’s pos-
sible truthful responses and her own best response to these.
But Ben should be following the same reasoning and should
therefore best-respond to Amanda’s best response; and so
on.

Ideally, this player inference process would converge, by
iterated computation of hypothetical best responses, to the
common-knowledge equilibrium. We show that for report-
ing the mean of a random variable in R

n, the inference pro-
cess indeed converges to the common-knowledge equilib-
rium. But this is not the case for querying the median or
mode of a random variable. Even if both players know that
an outcome for a binary variable will happen almost cer-
tainly, hence this outcome is the median and mode, the in-
ference process may converges to an equilibrium where both
players always report the other outcome.

For brevity, in most cases cases our proofs will be omitted;
they are available in the full version posted on the authors’
webpages.

Related Work

Prior work in information elicitation without verification in-
cludes notably the peer prediction method (Miller, Resnick,

and Zeckhauser 2005), its improved variants (Jurca and
Faltings 2006; 2007a; 2009; 2007b) and Bayesian truth
serum (Prelec 2004); these are most closely related to output
agreement along with their extensions, peer prediction with-
out a common prior (Witkowski and Parkes 2012b) and the
robust Bayesian truth serum (Witkowski and Parkes 2012a;
Radanovic and Faltings 2013). Other approaches focus on
observations drawn i.i.d. from an unknown distribution in
R (Lambert and Shoham 2008; Goel, Reeves, and Pennock
2009). Dasgupta and Ghosh (2013) design a mechanism to
elicit binary evaluations when there are multiple simultane-
ous queries for each agent and agents can exert more effort
to improve accuracy relative to an unknown ground truth.

The term “output agreement” was introduced by von
Ahn and Dabbish (2008), with a primary example being
the ESP Game (von Ahn and Dabbish 2004). Such games
have been investigated experimentally (Weber, Robertson,
and Vojnovic 2008; Huang and Fu 2012). But to our knowl-
edge, there has been no theoretical analysis of the general
output agreement setting. Witkowski et al. (2013) consider
a very simple output agreement setting, but suppose there is
an underlying (binary) truth to be discovered and that agents
can invest additional effort to gain additional information
about the truth. Jain and Parkes (2008) give a game-theoretic
model and analysis of the ESP Game, but their model makes
many ESP game-specific assumptions and restrictions. In
contrast, the output agreement class defined here covers a
far broader setting than image labeling and we do not make
any assumptions or restrictions on player strategies.

Setting

Here, we formally define mechanisms for information elic-
itation without verification (IEWV). In the IEWV setting,
there is a set of players, each holding some private informa-
tion. A mechanism designer queries each player separately
and simultaneously (i.e., without communication between
players). The designer selects an outcome of the mecha-
nism and assigns monetary payments to each agent. Thus
the mechanism, when applied to particular players, induces
a Bayesian simultaneous-move game.

Player Information

To model incomplete information, we adopt the general
states of the world model, which has been widely used in
economics for modeling private information (Aumann 1976;
McKelvey and Page 1986; Nielsen et al. 1990; Ostrovsky
2012). There is a finite set of possible states of the world Ω,
shared by all players. An event is a subset of Ω; for example,
the event Q ⊆ Ω could be “it is raining outside” and would
consist of every state of the world in which it is raining. Na-
ture selects a true state of the world ω∗ ∈ Ω; an event Q is
said to occur if ω∗ ∈ Q. Thus, the true state of the world
implicitly specifies all events that occur or do not: whether it
is raining, whether Alice speaks French, whether P = NP,
and so on.

A player’s knowledge is specified by a prior distribu-
tion P [ω] on Ω along with a partition Πi of Ω. A par-
tition of a set Ω is a set of nonempty subsets of Ω such
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that every element of Ω is contained in exactly one sub-
set. When the true state of the world is ω∗, each player i
learns the element of their partition that contains ω∗, de-
noted Πi(ω

∗). Informally, i knows that the true state of the
world ω∗ lies somewhere in the set Πi(ω

∗), but is unsure
where; more precisely, i updates to a posterior distribution
Pr [ω | Πi(ω

∗)] = Pr [{ω} ∩Πi(ω
∗)] /Pr [Πi(ω

∗)]. In line
with literature on information elicitation, Πi(ω

∗) will be re-
ferred to as i’s signal. (In mechanism design terms, it is
player i’s type.)

Throughout, we let the the set of states Ω and the number
of players n ≥ 2 be fixed.

A particular set of n players is therefore modeled by an
information structure I = (P [ω] ,Π1, . . . ,Πn), where each
Πi is a partition for player i and all players share the prior
P [ω]. I is common knowledge; this is the standard Bayesian
game setting. We use I to denote the set of valid information
structures on Ω with n players.

Common knowledge. Using partitions of the state space
to model private information allows an intuitive for-
mal definition of common knowledge.2 Given partitions
{Π1, . . . ,Πn}, the common-knowledge partition Π is de-
fined to be the meet of these partitions. The meet of a set
of partitions of Ω is the finest partition of Ω that is coarser
than each individual partition. Partition Ψ is coarser than
partition Γ (or is a coarsening of Γ) if each element of Ψ is
partitioned by a subset of Γ. In this case, Γ is finer than Ψ
(or is a refinement of Ψ).

Intuitively, an event (set of states) is common knowledge
if, when the event occurs, all players always know that the
event occurred; all players know that all players know this;
and so on. The common-knowledge partition consists of the
minimal (most specific) common-knowledge events.

To illustrate the difference between prior beliefs, common
knowledge, and a player’s posterior or private information,
consider the example of labeling images. We may formalize
the set of states of the world as a a list of binary attributes
describing the image in full detail: “(is a dog, is not brown,
is not candy, has grass in background, is running, is not a
dachshund, . . . )”. In this case, a player’s partition indicates
which attributes she can distinguish; for instance, “is a dog”
or not, “is a dachshund” or not, etc.

In this case, the prior is a distribution on all possible lists
of attributes that an image might have. Then, once the player
sees an image, she updates to a posterior. She will know sev-
eral attributes for certain due to her partition; and for those
that she is unsure of, she will have a posterior on them ac-
cording to a Bayesian update.

The common knowledge between players in this case is
the set of attributes that both players always observe. For
instance, if both players can distinguish dogs from non-dogs,

2Another common approach to modeling private information is
the “signals” model in which nature selects some hidden event and
there is a common prior over the joint distribution of players’ sig-
nals conditional on the event. This model is used in peer prediction,
for example. The two models are equivalent in that each can model
any scenario described by the other.

then whether the image is a dog will be common knowledge.
But if one player cannot distinguish dachshunds from non-
dachshunds, then whether the image is a dachshund will not
be common knowledge.

Mechanisms, Games, and Equilibria

A mechanism for IEWV consists of, for each player i, a re-
port space Ai and a reward function hi : I×A1×· · ·×An →
R that takes the player reports and returns the reward for
player i (and may depend on the information structure).

When a particular group of players participate in a mecha-
nism M , we have a Bayesian simultaneous-move game, de-
fined as G = (M, I). Nature selects a state of the world ω∗,
each player i observes Πi(ω

∗) and updates to a posterior ac-
cording to the prior, each i makes a report ai ∈ Ai, and each
is paid according to hi.

A strategy for player i is a function si that specifies, for
each element Πi(ω) of i’s partition, a probability distribu-
tion on Ai. In state ω∗, i learns element Πi(ω

∗) of his parti-
tion and draws an action ai ∼ si(Πi(ω

∗)). A strategy profile
(s1, . . . , sn) is a Bayes-Nash Equilibrium (or just equilib-
rium) of the game G if every player’s strategy si is a best
response to s−i (the profile with si omitted): For every state
of the world ω∗, the probability distribution si(Πi(ω

∗)) on
Ai is an optimal solution to

max
s′i(Πi(ω∗))

∑

ω∈Πi(ω∗)

Pr [ω | Πi(ω
∗)]Eω(s

′
i),

with

Eω(s
′
i) = E

[
hM
i (I, s1(Π1(ω)), . . . , s

′
i(Πi(ω

∗)),

. . . , sn(Πn(ω)))
]
,

where the expectation is taken over the actions aj drawn
from each sj(Πj(ω)), j �= i, and ai drawn from s′i(Πi(ω

∗)).
The strategy profile (s1, . . . , sn) is a strict equilibrium if ev-
ery si is the unique best response to s−i.

It is most common in the literature for IEWV to construct
mechanisms where the “good” (usually meaning “truthful”)
equilibrium is strict. We also wish to design focus on strict
equilibria for both theoretical and pragmatic reasons.

First, in human computation mechanisms, computing and
reporting a truthful response may not be the easiest or most
natural strategy. For instance, on a multiple choice question-
naire, simply selecting (a) for every answer may be easier
than picking a truthful response, if rewards are equal. So it
is not clear that agents will prefer truthful reporting. Sec-
ond, such mechanisms are often operated in noisy environ-
ments such as Mechanical Turk; strict incentives may en-
courage more accurate and less noisy responses. Finally, if
one does not desire strict incentives, there is a natural mech-
anism: Ask players to report truthfully and pay them a con-
stant amount. So, usually, the case where strict incentives are
desired is more interesting from a theoretical perspective.

Queries and Specificity

We introduce the notion of a query associated with a mech-
anism. For motivation, consider the example of eliciting a
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prediction for the total snowfall in a city during the follow-
ing year. A player’s signal could be very complex and in-
clude observations of many meterological phenomena. Yet,
the designer does not wish to elicit all of this weather data,
only to know a single number (predicted meters of snow-
fall). Thus, the designer would like to ask players to map
their knowledge into a report of a single number. This map-
ping — from weather knowledge to predicted snowfall — is
the “query” of the mechanism.

Formally, a query T = (T1, . . . , Tn) specifies, for each
player i, a function Ti : ΔΩ → Ai mapping a posterior
distribution to the “correct”’ report when the player has that
posterior belief.3

For example, the query could be to report the posterior
distribution itself, or the expected value of some random
variable, or the set of states on which the posterior has posi-
tive probability (that is, i’s signal).

In mechanism design, we usually focus on direct-
revelation mechanisms where players are simply asked to
report their signal. However, in IEWV, it is of interest to con-
sider other queries as well. One reason for this is that we are
interested in descriptively modeling non-direct-revelation
mechanisms, like output agreement, that exist in the lit-
erature or in practice. A second reason to consider gen-
eral queries is because this makes our impossibility results
stronger — they apply to mechanisms attempting to elicit
any type of information.

Specificity. Here, we generalize truthfulness to specificity
of player reports, capturing the following question: What
knowledge does a player use in reporting an answer to a
query? To our knowledge, this work is the first to consider
such an extension to the traditional notion of truthfulness.

Given a query T and a partition Π̂, define the notation TΠ̂
to be the strategy that, for each ω∗ chosen by nature, makes
the report T (Pr[ω | Π̂(ω∗)]). In other words, TΠ̂ reports
correctly according to the posterior distribution induced by
Π̂. Notice that a player i can only play strategy TΠ̂ if Π̂ is
a coarsening of his partition Πi: Otherwise, he will not in
general know which element of Π̂ contains ω∗.

Definition 1. A player i’s strategy si is called Π̂-specific if:

1. Π̂ is a coarsening of i’s partition Πi, and
2. si = TΠ̂.

To gain intuition, we note three natural special cases. The
case si = TΠi , or Πi-specificity, is just truthfulness: always
reporting according to i’s posterior. On the other extreme,
the case si = T{Ω}, or {Ω}-specific, means always report-
ing according to the prior no matter what signal is received.
In the middle, we identify the case si = TΠ, or Π-specific,

3One could generalize in two ways: First, by allowing multi-
ple possible correct answers for a given posterior, so that Ti maps
to a set of responses; and second, by allowing queries to specify
randomized reports, where the player is asked to draw from some
distribution. Output agreement can be generalized to include such
cases, although the notion of strict equilibrium requires tweaking;
and similarly, our negative results extend to these cases as well even
for “tweaked” equilibrium concepts.

or common-knowledge specific: reporting according to com-
mon knowledge.

Any strategy that is Π̂-specific, for some coarsening Π̂
of their partition Πi, has two nice properties that one might
associate with “weak” truthfulness. We illustrate with a run-
ning example: Suppose a player observes today’s date, and
consider coarsenings Π̂1 = the twelve months of the year
and Π̂2 = the four seasons. First, specificity requires that
a player report according to an event that actually occurs.
For example, given that it is August 2nd, a player may re-
port “it is August” as with Π̂1, or “it is summer” as with Π̂2,
but there is no partition where he may report that it is Jan-
uary or that it is spring. Second, reports must be consistent
across each element of Π̂. For example, if a player reports
“it is summer” when it is August 2nd, then the player must
make this exact same report on every other day of summer.
He cannot report “it is summer” on August 2nd but report
“it is August” on August 3rd.

Meanwhile, Π̂ specifies the granularity of the informa-
tion. For example, we could have month-specific or season-
specific information. We thus get a partial ordering or hierar-
chy of specificity, with truthfulness as the best and reporting
the prior as the worst, where Π̂1-specific is better than Π̂2-
specific if Π̂1 is a finer partition than Π̂2.

We can now utilize specificity in defining our equi-
librium solution concept: An equilibrium (s1, . . . , sn) is
(Π̂1, . . . , Π̂n)-specific if each player i plays a Π̂i-specific
strategy in it; as important special cases, we identify truthful
and common-knowledge-specific equilibria.

Equilibrium Results
Here, we provide a formal definition and game-theoretic
analysis of the two-player output agreement class of mech-
anisms. We show that the mechanisms elicit common-
knowledge-specific reports with strict incentives. We then
show that this is the best that can be hoped for by any mech-
anism making as few assumptions on the information struc-
ture as output agreement; we also show that the existence of
uninformative equilibria is unavoidable.
Definition 2. A two-player output agreement mechanism M
is a mechanism for eliciting information without verification
defined as follows. The mechanism designer announces a re-
port space A = A1 = A2 and an associated query T where
T1 = T2 (we will abuse notation by just writing T rather
than Ti). The designer selects a distance metric d on the
space A and a monotonically decreasing reward function
h : R≥0 → R. Each player i makes a report ai ∈ A and is
paid hM

i (a1, a2) = h(d(a1, a2)).
A distance metric d : A×A → R satisfies that d(x, y) ≥

0 with equality if and only if x = y, that d(x, y) = d(y, x)
for all x, y ∈ A, and that d(x, y) ≤ d(x, z) + d(y, z) for all
x, y, z ∈ A.

For an example mechanism in this category, consider an
audio transcription task: Two players each listen to a thirty-
second clip of speech and are asked to produce the written
transcription. The distance function on their outputs (tran-
scripts) is Levenshtein (edit) distance. The reward function
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can be a fixed constant minus the edit distance between their
transcripts.

Theorem 1. For any query T , any output agreement mech-
anism with a strictly decreasing reward function elicits a
strict equilibrium that is common-knowledge-specific for T .

Proof. For each player i, let si be a Π-specific strategy with
respect to T ; that is, si(Πi(ω

∗)) = T (Pr [ω | Π(ω∗)]).
Since Π is the common knowledge partition, we have that

in every state ω∗, s1(Π1(ω
∗)) = s2(Π2(ω

∗)). In any state,
both players’ strategies put full support on the same report;
thus, each player does strictly worse by drawing from any
other distribution. Thus (s1, s2) is a strict equilibrium.

How positive is Theorem 1, and can it be improved upon?
It is quite positive along the “query” axis: It works for any
given query. Prior mechanisms for IEWV tend to focus pri-
marily on eliciting signals. However, along the “specificity”
axis, we might naively hope for better; for instance, we
might want a truthful mechanism. But, notice that output
agreement makes no assumptions on the information struc-
ture I of the players. In the next section, we show that
no mechanism can strictly improve on common-knowledge
specificity unless it makes some such assumption. This
shows that output agreement is actually optimal along the
specificity axis among the class of mechanisms that make
no assumptions on I.

Impossibility Results

In this section, we give two broad impossibility results for
IEWV. First, as just discussed, we show that no mechanism
can guarantee an equilibrium more specific than common
knowledge unless it makes some assumption on the infor-
mation structures.

Second, we address a different concern about output
agreement mechanisms, that they have “bad” equilibria:
Players can agree beforehand to all make the same report,
ignoring their signals. Our second impossibility result says
that the same is true of all mechanisms for IEWV.

Theorem 2. Let T be any query and M any mechanism
for IEWV. Then M cannot guarantee a strict equilibrium
more specific than common knowledge. In particular, there
is some information structure I for which M is not strictly
truthful.

The proof creates an information structure where one
player’s partition is finer than the other’s, then shows that
the other player (and thus the mechanism’s reward rule) can-
not distinguish between two different posteriors of the first
player.

Uninformative equilibria. In IEWV, the goal is to de-
sign mechanisms with “good” equilibria in which informa-
tion is revealed. However, it has previously been noted in-
formally and observed for individual mechanisms or special
cases (Lambert and Shoham 2008; Jurca and Faltings 2005;
Della Penna and Reid 2012) that such mechanisms often also
have equilibria that are “bad” in some way. The conjecture

that this holds more generally may be considered something
of a suspected folk theorem in the literature.

The following characterization formalizes this intuition in
a very broad setting and for very “bad” equilibria: those in
which absolutely no information is revealed. Intuitively, the
characterization says that, if we take a game of IEWV and
ignore the signals received by each player, we can treat it
as a game of complete information (e.g. in normal form);
under very weak conditions, this game has an equilibrium,
and we can show that this equilibrium is an “uninformative”
equilibrium in the original game of IEWV.

Theorem 3. A strategy is termed uninformative if it draws
actions from the same distribution in every state of the
world (i.e. for every signal observed). A game of IEWV has
an equilibrium made up of uninformative strategies if and
only if there exists a Nash equilibrium in the two-player
complete-information game whose payoff matrix is given by
its reward rule.

Player Inference and Focal Equilibria

Suppose that, in an output agreement game, player 1 is pre-
sented with a given query; she might initially consider a
Π1-specific (truthful) strategy. But she knows that player 2
should play a best response, which in general is not neces-
sarily Π2-specific; and then she (player 1) should switch to a
best response to that strategy, and so on. We refer to this the
process of computing a sequence of best response strategies
as player inference. 4 An example player inference process
is given in Figure 1; it gives an example where players are
asked to report the most likely realization of a random vari-
able, which may be either � or 
. We revisit the example
in Theorem 5.

Ideally, this inference process would converge to the
common-knowledge-specific equilibrium (since it was
shown in the previous section that this is the “best” equi-
librium). We can show that this does indeed happen when
eliciting the mean of a random variable.

Theorem 4. Let t be a random variable taking values in
R

n. There is an output agreement mechanism for eliciting
the mean of t such that any sequence of best response strate-
gies, beginning with a Πi-specific strategy, converges to a
Π-specific equilibrium.

The proof is somewhat notationally involved and utilizes
a result of (Samet 1998), but is straightforward. The intu-
ition is to reward both players by the Euclidean distance be-
tween their reports, h(x, y) = −d(x, y)2 where d(x, y) =

‖x− y‖2 =
√∑n

i=1 |xi − yi|2. With this choice, a best re-
sponse is exactly the expected value of the other player’s
report; iterated best responses involve iterated expectations
over various subsets of states, weighted by various poste-
rior probabilities on these states; and on average, the weight
on each state converges to the common-knowledge poste-
rior probability of that state. (The heavy lifting in proving

4It is of note that this process does not consist of players taking
or observing actions (as opposed to best-response dynamics and
fictitious play); rather, it is the hypothetical process of a rational
agent computing the optimal strategy to play.
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ω1

P [ω1] = 0.40

t = �

ω2

P [ω2] = 0.35

t = �

ω3

P [ω3] = 0.25

t = �
(a) The three possible states of the world ω1, ω2, ω3

with their prior probabilities and the value of the ran-
dom variable t in each.

{ω1}
Pr [ω1] = 1.0

mode = �

{ω2, ω3}
Pr [ω2] = 0.58,Pr [ω3] = 0.42

mode = �
(b) Player 1’s signal structure: the left signal when
the state is ω1, the right when it is ω2 or ω3. For each
signal, the posterior beliefs and the “mode” (most
likely value) of t.

{ω1, ω2}
Pr [ω1] = 0.53,Pr [ω2] = 0.47

mode = �

{ω3}
Pr [ω3] = 1.0

mode = �
(c) Player 2’s signal structure: the left signal when
the state is ω1 or ω2, the right when it is ω3; posterior
beliefs and mode of t for each. For both signals ob-
served, if player 1 is reporting truthfully, then player
2’s best response is to be truthful.

{ω1}
Pr [ω1] = 1.0

response = �

{ω2, ω3}
Pr [ω2] = 0.58,Pr [ω3] = 0.42

response = �

(d) Player 1’s signals and posterior beliefs again, this
time showing the best response when player 2 is re-
porting truthfully. Player 2’s best response to this
strategy will be to also always report �, and they will
be in equilibrium.

Figure 1: Information structure for an output agreement
game. Players are asked to report the “mode” (most likely
value) of t, which could be either � or 
. The players are
paid 1 if they agree and 0 if they disagree. A player’s best
response given her signal is whichever of � or 
 is more
likely to be reported by her opponent. In this example, if
we start with a truthful strategy from either player and iter-
atively compute best response strategies, we converge to an
equilibrium where both players always report � no matter
what they observe. (Furthermore, it is more likely that t is
actually 
.

this is done by (Samet 1998).) This gives an expectation of
t according to common knowledge.

This result is encouraging because many natural tasks
may be modeled as reporting the mean of some random vari-
able. These could include straightforward numerical queries
such as estimating the number of cells in a microscope im-

age; geographical tasks such as estimating the facility lo-
cation that would minimize average commute time for a
large population; or numerical prediction tasks for long-term
events like yearly snowfall (where waiting to reward agents
until ground truth becomes available may be undesirable).

However, this nice convergence result does not extend to
two of the other most natural properties: median and mode.
In fact, this holds more broadly than in R

n; we consider
(non-constant) random variables taking values in an arbi-
trary metric space. By median of t, we mean a value in the
range of t that minimizes the expected distance to t[ω]. By
mode, we mean a value in the range of t with highest total
probability.

Theorem 5. When |Ω| ≥ 3, no output agreement mecha-
nism for eliciting the median or mode of a random variable
in an arbitrary metric space ensures for all settings that a
sequence of best response strategies, beginning with a Πi-
specific strategy for either player i, converges to a Π-specific
equilibrium.

The key counterexample that proves this statement is
given in Figure 1. Note that in state ω3, both players are cer-
tain that the true realization of the random variable is 
, yet
both report � due to their uncertainty about the other’s re-
port. Furthermore, this may be generalized to an arbitrarily
bad example. Intuitively, let the true realization be 
 with
probability 1 − ε, and let each player’s partition divide up
the state of the world into sets with probability 2ε, but all
overlapping (so each element of 1’s partition has ε overlap
with each of two different elements of 2’s partition, and vice
versa). When the realization is �, player 1 always observes
this but player 2 is unsure. Now by modifying probabilities
slightly to break ties “toward” �, we can cause a cascading
sequence of best responses so that, at the end, both play-
ers always report � even though the realization is almost
always 
.

Conclusions

Output agreement is a simple and intuitive mechanism.
However, when formalized and examined from the point
of view of information elicitation without verification, it
raises surprisingly complex questions. These include the no-
tion of specificity of player reports and the identification of
common-knowledge-specific equilibria in output agreement,
as well as the question of player inference and focal equilib-
ria in this setting. We hope that these concepts will find use
outside of output agreement mechanisms in the IEWV liter-
ature.

Output agreement mechanisms, meanwhile, are interest-
ing in their own right, providing several advantages over
other mechanisms. First, they do not require the mechanism
designer to assume anything about the signal structure of the
participants. Second, it is conceptually simpler and easier to
explain and implement, which may be beneficial in practice.
Third, it allows for any report space, which includes e.g.
asking players to compute on their signals, whereas other
mechanisms tend to be limited to reporting of (often binary)
signals. Fourth, it is robust in that its equilibrium guarantee
holds for any signal structure.
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Moreover, it turns out that this last property cannot be
achieved by mechanisms that elicit private information in
equilibrium. Output agreement’s common knowledge guar-
antee is the best we can hope for if we desire this robustness
property. Another downside of output agreement, that it has
“uninformative” equilibria, turns out to be inherent to the
IEWV setting: All other mechanisms have them too. These
impossibility results may also contribute to the IEWV liter-
ature by helping illustrate the nature of these difficulties.
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