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Abstract 

In our previous research, we examined whether minimally 
trained crowd workers could find, categorize, and assess 
sidewalk accessibility problems using Google Street View 
(GSV) images. This poster paper presents a first step to-
wards combining automated methods (e.g., machine vision-
based curb ramp detectors) in concert with human computa-
tion to improve the overall scalability of our approach.  

Introduction  

Although online maps and routing algorithms continue to 

improve—e.g., by providing pedestrian and bicycle navi-

gation support—there is little work focused on efficiently 

obtaining and integrating accessibility data. In previous 

research [Hara et al. 2013a], we examined whether remote 

crowd workers could find, categorize, and assess sidewalk 

accessibility problems using Google Street View (GSV) 

images. With simple quality control methods (e.g., majori-

ty vote), we found that workers could identify accessibility 

problems with 93% accuracy; however, crowd work is, by 

nature, labor intensive. Our current explorations, then, are 

focused on investigating how automated methods can be 

combined with human computation to improve the overall 

scalability, efficiency, and quality of our approach.  

 While we expect that computer vision and machine 

learning will provide multiple benefits including location 

triaging, view selection, and adaptive workflows, in this 

poster paper, we examine a single use case: automatically 

detecting accessibility features in GSV images with human 

verification. In our aforementioned past work, we found 

that labeling tasks were more time consuming than verifi-

cation tasks. Thus, in our work here, crowd workers simply 

verify results from an automatic curb ramp detection algo-

rithm rather than provide their own labels (Figure 1). Curb 

ramps were selected both because of their visual salience 

in images (a good starting point) as well as because of their 

significance to accessibility (e.g., see [3rd Circuit 1993]). 

Study Method 

We first created a test dataset defined by two geographic 

regions of interest in Washington DC: a 0.71 km
2
 semi-

urban mixed residential/commercial area (Mt. Pleas-

ant=MP) and a 0.56 km
2 
dense urban area with high pedes-

trian traffic (just east of the White House=WH). We built a 

custom web scraping tool to (i) query the GSV API, (ii) 

infer the center point of street intersections, (iii) and auto-

matically download the appropriate GSV panoramic image 

(13312x6656 px) at that intersection location. We also 

scraped the accompanying 3D-point cloud, which is far 

coarser than the RGB image (512x256 px). 

To create ground truth, three members of our research 

team independently outlined curb ramps in these images 

using a custom web-based labeling tool. We used majority 

vote between the three labeled datasets to create a single 

ground truth dataset (similar to [Hara et al. 2013a]). In all, 

our dataset contained 118 intersections with 437 curb 

ramps (160 in MP and 277 in WH). 

Automatic Curb Ramp Detection: For the curb ramp 

classifier, we trained a linear Support Vector Machine 

(SVM) using LibSVM [Chang and Lin 2011] with a Histo-

grams of Oriented Gradients (HOG) feature descriptor 

[Dalal and Triggs 2005] from VLFeat.org. For more detail 

 
Figure 1: We explore initial approaches to scalably detect accessibil-

ity problems in GSV images by combining automated approaches 

with human computation. This figure shows our validation interface 

for crowd workers to verify automatically detected curb ramps. 

The GSV pane is the 
primary interaction 
area. The camera 
angle is fixed and 
automatically set to 
center the label. 

A green box (label) 
represents a detected 
curb ramp. This is a 
true positive example. 

Turkers respond 
‘yes’ or ‘no’ in this 
dialog box to verify 
a label. 
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on this general approach, see our workshop paper [Hara et 

al. 2013b]. To train the classifier, we used 239 positive 

curb ramp patches (46x19 px) and 4541 negative patches 

(roughly 50% of our dataset; the remaining 59 intersections 

are used in our test set: 198 positive and 3762 negative).  

 Using the trained classifier, we implemented a multi-

scale sliding window curb ramp detector. We scanned the 

classifier across 46x19 px windows of the GSV panoramic 

image. Following Dalal and Triggs’s pyramid approach 

[2005], this process is repeated across successively shrunk-

en images (at 95%) after each full pass. This provides ro-

bustness against curb ramps of varying sizes. To eliminate 

redundant classifications, we use non-maximum suppres-

sion [Malisiewicz et al. 2011], which selects detections 

with high confidence values and eliminates overlapping 

classifications (overlap threshold: > 30%). 

In an attempt to improve efficiency and accuracy, we al-

so auto-generated image masks to isolate sidewalk inter-

section pixels. Importantly, our sliding window classifier 

only passed through these masked pixels (Figure 2b and 

2c). The mask was generated via a custom algorithm, 

which used 3D-point cloud data from GSV to discriminate 

between streets and non-street elements (e.g., buildings, 

the sky) as well as building boundary data from Open-

StreetMaps to help infer street corner locations. 

Human Verification via Mechanical Turk: To inves-

tigate the potential of using minimally trained crowd work-

ers for verification, we posted a custom tool to MTurk in 

July 2013 (Figure 1). In each HIT, turkers had to verify 10 

labels. We paid $0.05 per HIT ($0.005 per verification). At 

each intersection, we verified only the top 10 labels with 

the highest classifier confidence score. To gather consen-

sus, three turkers verified each label. Note: in this paper, 

we focus only on verifying false and true positives (false 

negatives are left for future work).  

Results and Conclusion 

In total, 26 distinct turkers completed 177 HITs and per-

formed 1,770 verifications (3 verifications for each of the 

590 labels). On average, turkers completed 6.8 HITs 

(SD=6.0), which is equivalent to 68 verifications. The me-

dian time per HIT was 27.3s (avg=31.3s; SD=15.0s). We 

examined two thresholds of correctness: we considered a 

label correct if 10% of the classified patch overlapped with 

ground truth as well as a more strict measure: 50% overlap 

(Figure 3a and b). The detection precision was 22.7% and 

9.2% respectively for each threshold without verification, 

which increased to 90.4% and 43.9% with crowdsourced 

verification. The precision is not 100% because some la-

bels are ambiguous (e.g., they overlap by some percentage 

with a curb ramp making it hard for the turker to know if 

‘yes’ or ‘no’ is the right answer). Low recall indicates that 

the classifier failed to detect many curb ramps (high false 

negative rate); future work will attempt to improve classi-

fier performance by using multiple photo angles and top-

down satellite imagery. 

 Though these results are promising, as our initial at-

tempt, our methods require much further development and 

refinement. Our future work includes improving the per-

formance of the curb ramp detector, investigating how ver-

ified labels can actively train the classifier, and researching 

how detection results can be used for crowd scheduling. 
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Figure 2: (a) We scraped GSV panoramas of the target intersections 

then (b) auto-generated a pixel mask based on 3D-point cloud data 

(from GSV) and street corner areas (from OpenStreetMap). (c) Our 

curb ramp detector slides a classifier window across the masked area 

(white) and returns both false and true positives (red rectangles). (d) 

The resulting correct rectangles after crowdsourced verification. 

 
Figure 3: We examined two correctness thresholds: 10% (left) and 

50% (right) overlap between ground truth and the classified patch. 

The x-axis is a different threshold: the classifier’s confidence score for 

each patch. This graph visualizes the result of crowdsourced verifica-

tion at various confidence score cutoffs (e.g., the result of verifying all 

labels with a score < 1.5 in the left graph results in ~50% precision).  
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