
Conversations in the Crowd:
Collecting Data for Task-Oriented Dialog Learning

Walter S. Lasecki1∗, Ece Kamar2, Dan Bohus2
Computer Science Department1

University of Rochester
wlasecki@cs.rochester.edu

ASI Group2
Microsoft Research

{eckamar,dbohus}@microsoft.com

Abstract

A major challenge in developing dialog systems is ob-
taining realistic data to train the systems for specific do-
mains. We study the opportunity for using crowdsourc-
ing methods to collect dialog datasets. Specifically, we
introduce ChatCollect, a system that allows researchers
to collect conversations focused around definable tasks
from pairs of workers in the crowd. We demonstrate that
varied and in-depth dialogs can be collected using this
system, then discuss ongoing work on creating a crowd-
powered system for parsing semantic frames. We then
discuss research opportunities in using this approach to
train and improve automated dialog systems in the fu-
ture.

Introduction
One of the primary bottlenecks in the development of task-
oriented dialog systems, and in scaling them to multiple do-
mains, is the availability of domain-specific dialog data. Di-
alog systems harness multiple components, such as speech
recognition, natural language understanding, dialog man-
agement, natural language generation, and each of these
components requires and significantly benefits from the
availability of domain-specific data resources and models.
Examples include acoustic and language models, spoken
language understanding models, domain ontologies, domain
interaction plans, natural language generation templates, etc.

Although many AI problems have benefitted from im-
mensely growing data sources, end-to-end data acquisition
for task-oriented dialog systems remains a challenging prob-
lem. Existing approaches for collecting dialog data result
in high development costs and are time consuming for sys-
tem developers. Unless external resources happen to already
be available (which is not the case for most domains), in-
domain data collection requires having a deployed system
capable of sustaining a dialog with a user. This leads to a
bootstrapping problem: given the lack of data to train the
initial systems, system developers carry the burden of de-
veloping grammars and language models either manually or
with Wizard-of-Oz studies. Collecting dialog data with an
early version of a deployed system has shortcomings: data

∗The author did this work while at Microsoft Research
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: User view of our task interface. We recruit pairs of
crowd workers (who assume ‘User’ and ‘Assistant’ roles) to
hold task-oriented conversations.

collection quality may suffer from the inadequacies of the
system itself, and users may bias their language to adjust for
the deficiencies of the system in the pursuit of having a suc-
cessful dialog. As a result, the speed of data collection may
be slower than desired. Finally, this costly development pro-
cess must be repeated all over again for each new domain or
system, or even when new functionality is added.

We investigate the use of crowdsourcing for collecting
task-oriented text-based dialog data. We present ongoing
work on ChatCollect, a system that coordinates workers on a
crowdsourcing platform, by pairing them up in real-time, as-
signing them dialog roles, asking them to accomplish a given
task together, and recording their interactions. The system
requires minimal input from system developers; it only asks
for a description of the task to be given to workers.

We discuss results and lessons learned from an initial ex-
periment, and present statistics that help characterize the
trends we observed in these conversations. While further in-
vestigation is needed, our initial results suggest that this is
a feasible approach for collecting task-oriented dialog data.
We discuss future steps to improve the efficiency of data
collection with the system. We conclude with a discussion

2



of ongoing work on providing training data for spoken lan-
guage understanding models by having the crowd collec-
tively parse logs from the conversation into their correspond-
ing semantic frames. Our work suggests a possible future
in which the crowd can be used to increasingly automate
the process of building dialog systems in new domains, on-
demand, with minimal effort from developers.

Background
Our approach draws from rich prior work in both conversa-
tional dialog systems, and crowdsourcing.

Conversational Dialog Systems
Our ChatCollect system is designed to alleviate the devel-
opment efforts for dialog systems. The manual authoring of
these systems has been recognized as a time consuming ef-
fort that requires domain expertise (Ward and Pellom 1999).
This challenging and time-consuming process has been used
in the development of many dialog systems (e.g., (Gandhe
et al. 2009; Aleven et al. 2006; Allen et al. 1996)). Alterna-
tive approaches have focused on learning from transcribed
human-human dialogs (Gorin, Riccardi, and Wright 1997)
or dialogs collected through Wizard-of-Oz studies (Lath-
rop 2004). However, existing human-human corpora apply
to limited domains, and collecting data for new domains
with the existing techniques is difficult and expensive. More-
over, they do not scale well – an important aspect given the
amount of data needed to train accurate models for dialog
systems. The system proposed in this paper holds promise
for obtaining natural dialog data for various domains with
little to no involvement from system designers. The ap-
proach may enable automated training of future dialog sys-
tems and speed up the real-world deployment of such sys-
tems.

Crowdsourcing
Crowdsourcing has gained immense popularity in recent
years as a means to provide programmatic, easy, and scal-
able access to human intelligence. Crowdsourcing has been
applied to a large variety of tasks ranging from search rel-
evance (Chen et al. 2013) to image description (Bigham et
al. 2010). Recently, there has been growing interest in ap-
plying crowdsourcing to language problems. Crowdsourcing
tasks have been designed for speech transcription (Lasecki et
al. 2012), speech acquisition (Lane et al. 2010), translation
(Zaidan and Callison-Burch 2011) and paraphrase genera-
tion (Burrows, Potthast, and Stein 2013). Some prior work
has particularly focused on crowdsourcing methods for the
development of dialog systems. Wang et. al. studied meth-
ods for eliciting natural language for a given semantic form
(Wang et al. 2012). The Asgard system uses crowdsourc-
ing for free-form language generation and for the semantic
labeling of segments of the collected language (Liu et al.
2013). Bessho et. al. (Bessho, Harada, and Kuniyoshi 2012)
developed a dialog system that requests efforts from a real-
time crowd to make progress in a dialog when automated
approaches fail.

Continuous real-time crowdsourcing was introduced by
Lasecki et. al (Lasecki et al. 2011) in order to create crowd-
powered systems capable of interacting with their users
and their environment. This approach was applied to con-
versational interaction in Chorus (Lasecki et al. 2013b;
2013a), a conversational question answering system. Both
of these systems are able to quickly get input from crowd
workers by pre-recruiting (Bigham et al. 2010; Bernstein et
al. 2011). ChatCollect differs from these systems by recruit-
ing all sides of the dialog from the crowd for automated di-
alog generation.

ChatCollect System
The ChatCollect system is designed to collect realistic task-
oriented dialog data from crowd workers. The only inputs
of the system developer to the ChatCollect system are the
different tasks the developer wants to collect data about. For
example, a developer may tell ChatCollect to collect data
about flight reservations, planning a night out or deciding
what car to buy.

The ChatCollect system hires a pair of workers from a
crowdsourcing marketplace in real-time and links them to an
instant-messenger style chat window to have a conversation
about the given task, and assigns a role to each worker. The
first worker routed to the chat window is assigned the role
of the “Assistant” and is instructed to help someone with
the task at hand, such as finding a flight. The second worker
is assigned the role of the “User” and is given a task type
to complete with the help of the Assistant (e.g., find flight).
In order to add realistic depth to the conversations held by
workers playing a part, the system does not prime the User
with the details of the task she needs to complete, but instead
it asks the User to imagine such a setting. Both workers are
instructed not to share any personally identifiable informa-
tion about themselves.

Since the Assistant is hired first and routed to the chat
interface, the User finds the Assistant waiting when she is
routed to the chat interface. The User is instructed to start
the dialog when she is at the chat interface by telling the
Assistant about the task. The User and Assistant both share
information about the task, discuss possible solutions, and
revise the task.

Workers are asked to complete the task as well as possible
(rather than meet the minimum requirements, or just accept
any response). Once the User deems that the task is com-
plete, she can signal the end of the interaction by clicking
“done”, which forwards her and the Assistant worker to a
survey page asking them each about the quality of the inter-
action they had. The survey also asks the Assistant workers
about the resources (e.g., websites) they used to complete
the given task.

We designed a payment scheme for the ChatCollect sys-
tem that rewards workers based on the time they spend on
the task as well as the quality of dialog they had (assessed
by evaluators, or their conversational partner). Workers are
paid a fixed amount per minute for waiting for their partner
to arrive and for the dialog to start. We then review the di-
alogs after completion and assign a bonus amount for each

3



dialog to reward the dialogs that successfully complete their
task.

Experiments
We evaluated the ChatCollect system on the Universal Hu-
man Relevance System (UHRS) crowdsourcing market-
place, Microsoft’s internal crowdsourcing platform. Similar
to other platforms, UHRS connects a large worker pool from
different regions in the world with requesters seeking hu-
man input. Previous work on this platform shows that work-
ers provide high quality work with low latency (Wang et
al. 2012). In our experiments, we used American English
speaking workers.

In order to see what these conversations will look like, we
collected an initial dataset that could be manually analyzed.
We collected this data in 3 sessions, resulting in 16 com-
pleted conversations focusing on two tasks: finding a flight,
and finding a hotel. The details for these tasks (e.g., city)
were not told to workers, but instead chosen by the worker
as part of their role-playing.

Success rate Our 16 successful conversations were drawn
from 38 started sessions. While this is only a 42.1% com-
pletion rate for paired workers, our manual evaluation shows
that every one of the conversations that lasted more than one
round were marked as complete by the workers and were
evaluated by us as successful. This means that filtering out
bad sessions is easy, helping to keep the cost of data collec-
tion low. All of the completed conversations contained valid
responses to the questions asked.

This analysis suggests that once two workers are paired
for the task and start a conversation, they complete a suc-
cessful dialog. The unsuccessful conversations resulted from
workers not being successfully paired in real-time. For ex-
ample, in a number of the instances, the assistant worker left
the system before a user worker could be assigned to the
task to start a dialog. The average wait time for a worker
in a successful conversation was 4:41 minutes (median 2:16
minutes), while the average wait time for an unsuccessful
one was 34:35 minutes (median 6:16 minutes).

Length of Conversations There were a total of 343 turns
in the conversations we collected, with an average of 21.4
(median 19) turns containing 268.5 (median 243) words per
conversation. The standard deviation was 13.7 turns and
197.5 words, showing the conversations varied significantly
in length. In fact, the minimum number of turns was 6, while
the maximum was 58. The minimum number of words was
75 (from a conversation with 8 turns) and the maximum was
748. As may be expected, number of turns was a strong pre-
dictor of amount of interaction (number of words).

Variation Between Conversations In the 16 conversa-
tions between pairs of workers, 19 unique workers partici-
pated. Despite the fact that some workers repeated (which
we explicitly allowed), none of the conversations repeated
which city or pair of cities were involved in the travel plans.

Worker Feedback From the 16 conversations, we col-
lected 25 survey responses: 13 from Users and 12 from As-
sistants. Of the Users, 11 (84.6%) replied that they were

“very satisfied” with the responses from the assistant, one
said they were “somewhat satisfied”, and one said they were
“very dissatisfied”, though this worker claimed to be happy
with the response in the chat itself.

11 of 13 Users said the interface made their task “very
easy” to complete, while two said it was “somewhat easy”.
8 out of 12 of the Assistants thought the task was “very easy”
to complete, 3 found it “somewhat easy”, and one was neu-
tral. Six of these workers reported that the hardest part of the
task was finding the right questions to ask to determine the
user’s preferences. To complete their task, Assistants used
typical web tools such as Google, Kayak, or Expedia. Over-
all, 5 workers specifically mentioned enjoying the task in the
free-response section of the survey, supporting prior work
using Mechanical Turk that also found a large percentage of
workers enjoyed a conversational task (Lasecki et al. 2013b).

Crowd Parsing of Semantic Frames
One potential avenue for using the data collected in this
manner is to construct corpora for developing the domain-
specific spoken language understanding component of a di-
alog system. In slot-filling type domains, this amounts to
identifying the domain ontology, i.e. the set of domain-
specific frames, the corresponding slots and values, and de-
veloping a labeled corpus that captures the semantic parses
for each lexical turn in the dialog.

We address this problem by developing CrowdParse, a
system that uses the crowd to parse dialogs into semantic
frames as the conversation progresses. As a result of this
task, we can generate dialog data accompanied with seman-
tic labels that can be directly used in training spoken lan-
guage understanding components (Liu et al. 2013). Crowd-
Parse asks workers to evaluate the information provided in a
task-oriented dialog and extract frames (tasks), fields (types
of information), and values (information provided) for both
sides of the conversation. As the conversation progresses,
workers add information, building on the prior information
captured by either their previous step or prior workers.

When workers take the CrowdParse task, they are routed
to a point in a conversation. They then update the frame they
are presented with, and continue to a new task until they
choose to stop.

Discussion and Future Work
Our initial results suggest that ChatCollect can provide an
effective tool for collecting task-oriented dialog data. We
limited the size of the data collected for this exploratory
work to 16 in order to more easily review each conversa-
tion manually, but ChatCollect can be run continuously to
collect larger datasets. In future work, it will be interest-
ing to explore how the dialog data collected with our sys-
tem compares to prior datasets generated by bringing par-
ticipants into a lab setting, or collected through a deployed
system.

While the completed conversations were all successful,
fewer than half of the chat sessions that workers were routed
to were completed. The main reason for this was that some-
times a large delay would occur between the arrivals of

4



the two workers. Accordingly, none of the incomplete con-
versations had more than one round of dialog (each party
spoke at most once when they arrived, but the first left be-
fore the second arrived). A quick way to address this is-
sue is following marketplace specific strategies to attract
workers to our tasks more quickly, such as reposting tasks
to increase task visibility. As a more permanent fix, future
versions of ChatCollect will detect when one party discon-
nects, and route the other to an active task (with appro-
priate compensation for any work done so far). This also
helps in the case when a conversation is partially com-
plete, and one worker leaves, as was observed in preliminary
testing. Also, pre-recruiting approaches used in prior work
can help ensure worker availability (Bigham et al. 2010;
Bernstein et al. 2011).

Our ultimate goal is to enable the automatic training and
scaling of dialog systems to new domains. Future versions of
the system will investigate collecting speech from workers
with microphones in order to train spoken language under-
standing components. We believe such a pipeline can reduce
the cost of developing dialog systems that are able to easily
generalize to new domains.

Conclusion
Crowdsourcing methods such as the ones presented here of-
fer new opportunities for developing dialog systems that can
continuously learn on demand with low cost. In this pa-
per, we introduced ChatCollect, a system for collecting task-
oriented dialog data using pairs of crowd workers. We pre-
sented some results from an initial set of 16 conversations
containing a total of 4296 turns which we analyzed manu-
ally, finding that these conversations are appropriately varied
and on-topic. We also discussed ongoing work on Crowd-
Parse, a system that uses the crowd to parse semantic frames
from dialogs. We believe this work takes first steps towards
a future in which dialog systems can be easily trained in new
domains by using crowd-generated datasets.

Acknowledgements
The authors would like to thank Eric Horvitz for many in-
sightful discussions about this work.

References
Aleven, V.; Sewall, J.; McLaren, B. M.; and Koedinger,
K. R. 2006. Rapid authoring of intelligent tutors for real-
world and experimental use. In ICALT 2006, 847–851.
Allen, J. F.; Miller, B. W.; Ringger, E. K.; and Sikorski, T.
1996. A robust system for natural spoken dialogue. In Pro-
ceedings of ACL 1996, 62–70.
Bernstein, M. S.; Brandt, J. R.; Miller, R. C.; and Karger,
D. R. 2011. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. In Proc. of UIST 2011, 33–42.
Bessho, F.; Harada, T.; and Kuniyoshi, Y. 2012. Dialog sys-
tem using real-time crowdsourcing and twitter large-scale
corpus. In Proceedings of SIGDIAL 2012, 227–231.
Bigham, J. P.; Jayant, C.; Ji, H.; Little, G.; Miller, A.; Miller,
R. C.; Miller, R.; Tatarowicz, A.; White, B.; White, S.; and

Yeh, T. 2010. Vizwiz: nearly real-time answers to visual
questions. In Proceedings of UIST 2010, 333–342.
Burrows, S.; Potthast, M.; and Stein, B. 2013. Paraphrase
acquisition via crowdsourcing and machine learning. ACM
Trans. Intell. Syst. Technol. 4(3):43:1–43:21.
Chen, X.; Bennett, P. N.; Collins-Thompson, K.; and
Horvitz, E. 2013. Pairwise ranking aggregation in a crowd-
sourced setting. In Proceedings of WSDM 2013, 193–202.
Gandhe, S.; DeVault, D.; Roque, A.; Martinovski, B.; Art-
stein, R.; A. Leuski, J. G.; and Traum, D. 2009. From
domain specification to virtual humans: An integrated ap-
proach to authoring tactical questioning characters. In Pro-
ceedings of Interspeech 2008.
Gorin, A. L.; Riccardi, G.; and Wright, J. H. 1997. How
may i help you? Speech Commun. 23(1-2):113–127.
Lane, I.; Waibel, A.; Eck, M.; and Rottmann, K. 2010.
Tools for collecting speech corpora via mechanical-turk. In
Proceedings of the NAACL HLT 2010 Workshop on Creat-
ing Speech and Language Data with Amazon’s Mechanical
Turk, CSLDAMT ’10, 184–187.
Lasecki, W.; Murray, K.; White, S.; Miller, R. C.; and
Bigham, J. P. 2011. Real-time crowd control of existing
interfaces. In Proceedings of UIST 2011, 23–32.
Lasecki, W.; Miller, C.; Sadilek, A.; AbuMoussa, A.; and
Bigham, J. 2012. Real-time captioning by groups of non-
experts. In Proceedings of UIST 2012.
Lasecki, W. S.; Thiha, P.; Zhong, Y.; Brady, E.; and Bigham,
J. P. 2013a. Answering visual questions with conversational
crowd assistants. In Proc. of ASSETS 2013, To Appear.
Lasecki, W.; Wesley, R.; Nichols, J.; Kulkarni, A.; Allen, J.;
and Bigham, J. 2013b. Chorus: A crowd-powered conversa-
tional assistant. In Proceedings of UIST 2013, To Appear.
Lathrop, B. e. a. 2004. A wizard of oz framework for collect-
ing spoken human-computer dialogs: An experiment proce-
dure for the design and testing of natural language in-vehicle
technology systems. In Proceedings of ITS 2004.
Liu, J.; Pasupat, P.; Cyphers, S.; and Glass, J. 2013. Asgard:
A portable architecture for multilingual dialogue systems. In
Proceedings of ICASSP 2013.
Wang, W. Y.; Bohus, D.; Kamar, E.; and Horvitz, E. 2012.
Crowdsourcing the acquisition of natural language corpora:
Methods and observations. In SLT 2012. IEEE.
Ward, W., and Pellom, B. 1999. The cu communicator sys-
tem. In Proceedings of IEEE ASRU.
Zaidan, O. F., and Callison-Burch, C. 2011. Crowdsourcing
translation: professional quality from non-professionals. In
Proceedings of HLT 2011, 1220–1229.

5




