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Abstract

Many crowdsourcing applications require spatial data
modelling to make sense of location-based observations
provided by multiple users. In this context, we pro-
pose a new spatial function modelling approach to ad-
dress the problem of fusing multiple spatial observa-
tions reported by possibly untrustworthy users in the
domains of participatory sensing and crowdsourcing ap-
plications. Specifically, we use a heteroskedastic Gaus-
sian process model to incorporate user trust modelling
into Bayesian spatial regression. In particular, by train-
ing the model with the reports gathered from the crowd,
we are able to estimate the spatial function at any lo-
cation of interest and also learn the level of trustwor-
thiness of each user. We show that our method outper-
forms other standard homoskedastic and heteroskedas-
tic Gaussian processes by up to 23% on a crowdsourced
radiation dataset collected during the 2011 Fukushima
earthquake in Japan. We also show that our method is
able to improve the quality of spatial predictions on syn-
thetic data by up to 70% and is robust in settings of up to
30% presence of untrustworthy users within the crowd.

Introduction
Participatory sensing is the paradigm of harnessing the
power of ordinary people who voluntarily provide environ-
mental readings using readily available sensor devices, such
as smart phones or tablets. This paradigm has been suc-
cessfully applied to crowdsourcing spatial data in various
domains, including tracking contagious diseases (Sadilek,
Kautz, and Silenzio 2012), monitoring traffic flows (Horvitz
et al. 2012) and measuring nuclear radioactivity for envi-
ronmental monitoring (Gertz and Di Justo 2012). In particu-
lar, the smart devices owned by the users are provided with
a number of sensors such as microphone, camera and GPS
sensor which enable them to report geo-tagged information
contents. This rapid and inexpensive information gathering
now provides an unprecedented amount of data that is use-
ful to solve extremely important problems such as highly de-
centralised information gathering tasks in the domains men-
tioned above. However, one of the main obstacles to make
use of such information is data trustworthiness which relates
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to the range of accuracy of the users in reporting their obser-
vations. In general, crowd generated content can be untrust-
worthy due to several dimensions of inaccuracy of humans
as observers such as the errors of their sensor devices or the
malicious behaviour of some users in reporting information
strategically (Hall and Jordan 2010). Therefore, the task of
aggregating the reports into a single estimate is difficult to
achieve in practice. In particular, the computation of reliable
aggregations of spatial data reported by untrustworthy users
is a key challenge in crowdsourcing domains.

The challenge of merging untrustworthy information has
started to be addressed within a number of AI communi-
ties. However, most of this work has focused on informa-
tion fusion for crowdsourced classification and image la-
belling tasks. In these settings, the reports are typically rep-
resented as noisy samples of the fixed quantity observed by
the crowd, i.e. the true object class or the image label. Then,
the reports are fused using simple majority voting (Bachrach
et al. 2012) or iterative learning methods (Reece et al. 2009),
or using statistical models to infer both the accuracy of
the users and the true answer to the task from the crowd
responses (Dawid and Skene 1979; Raykar et al. 2010;
Kamar, Hacker, and Horvitz 2012). However, these classi-
fication methods are unsuitable for dealing with regression
problems involving spatial data since the spatial correlation
within the report set introduces dependencies between the
observed value and the observer’s location. Therefore, the
fusion of the reports must be derived as the continuous func-
tion estimating the crowdsourced spatial phenomenon which
requires different inference approaches from the ones above.

To address these shortcomings, we develop a method
for fusing crowdsourced spatial data in the setting where
users have different unknown levels of trustworthiness. Our
method builds upon the heteroskedastic Gaussian process
(HGP) which is a powerful non-parametric learning model
providing a flexible Bayesian inference framework for spa-
tial regression (Rasmussen and Williams 2006). These qual-
ities make such a model attractive to be employed for merg-
ing data also in crowdsourcing settings. Specifically, we de-
velop a new method for aggregating crowdsourced spatial
estimates where the reports consist of pairs of measurements
and precisions. This setting is relevant to the large class of
crowdsourcing problems where numerical values of the un-
certainty about each observation is provided by the users as
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part of their reports. For example, such reported uncertain-
ties may refer to the precision of a sensor, the variance of
some repeated measurement, or the confidence level esti-
mated through self-appraisal by the user.

In our HGP model, we introduce a set of trustworthiness
hyperparameters to characterise the different users’ reliabili-
ties. We use the trust hyperparameters to uncertainty scaling
parameters which provide the model with the ability to flex-
ibly increase the noise around subsets of reports associated
with untrustworthy users. Then, by training the model with
the reports gathered from the crowd, we are able to estimate
the underlying spatial function and also learn the individ-
ual user’s trustworthiness. We show that our method is more
accurate than other standard GP and HGP approaches with
an extensive experimental evaluation on both synthetic and
real-word data.

Thus, this paper makes the following contributions to the
state of the art:
• We propose a trust-based HGP model which combines

the HGP with a user trust model to be able to aggre-
gate location-dependent crowdsourced observations while
learning the individual user trustworthiness.

• We show that our method significantly improves the qual-
ity of the predictions of other GP and HGP methods in an
application of crowdsourced radiation monitoring using
real-world data from the 2011 Fukushima nuclear disas-
ter. In particular, our method outperforms the benchmarks
by up to 23%. We also provide an in-depth analysis of
the performance using synthetic data showing that our
method is robust in settings with up to 30% untrustwor-
thy users and improves the predictions of up to 70%.
In the remainder of the paper, we first discuss the rest

of the related work from community sensing and informa-
tion fusion in spatial crowdsourcing. Then we describe our
model and its inference process. Finally, we discuss our ex-
perimental results and conclude.

Related Work
Prior work on community sensing addresses the problem of
reliably merging spatial information provided by multiple
users in various applications. Krause et al. (2008) discuss
optimal policies for the online integration of sensor infor-
mation in community sensing applied to traffic monitoring
data. Their approach focuses on modelling the online infor-
mation acquisition process aiming to maximise the utility of
the acquired information while taking into account the lim-
ited resources and system constraints. In the same domain,
Herring et al. (2010) applies logistic regression techniques
to estimate the congestion state of the roads from GPS re-
ports. However, both of these approaches do not address the
question of how to deal with untrustworthy reports in the
data fusion process which is the focus of this work.

Faulkner et al. (2011) designed a system for decentralised
detection of earthquakes using cell phone accelerometer
data. In this setting, smart phones provide sensor readings
from their accelerometers and compute the probability of
an earthquake using a hierarchical hypothesis testing ap-
proach. Then, a decentralised decision-theoretic framework

is used to merge local sensor decisions into a final earth-
quake prediction. However, their approach is only applica-
ble to binary classification problems, e.g. earthquake events,
whereas we focus on spatial regression problems with a con-
tinuous space of decision variables.

In a more comparable setting, Groot, Birlutiu, and Heskes
(2011) applied the standard GP model to regression prob-
lems with multiple inaccurate annotators in object labelling
tasks. In their model, the accuracy of each object label is
taken as the aggregation of the accuracies of its annotators.
Then, the individual object accuracies are incorporated in
the GP as latent hyperparameters and their value is estimated
from the reported labels through maximum marginal likeli-
hood estimation. In our spatial setting, reports are sparsely
distributed over the area of interest, and consequently each
location is unlikely to have multiple observations. Therefore,
their approach may suffer from having an arbitrarily large
number of free hyperparameters, one for each location, thus
making the inference problem computationally infeasible. In
contrast, our approach directly models user trustworthiness
in the HGP model using a smaller set of parameters, one for
each user, and which are easier to estimate from the data
using a similar inference approach. In addition, a key dif-
ference is that our method can handle reports as continuous
estimates rather than single point observations.

The Heteroskedastic GP Model
In this section, we summarise the standard HGP model for
spatial regression (see Rasmussen and Williams 2006, for
more details). Given a dataset D = {(xi,j , yi,j)}, where
xi,j ∈ R2 is a two-dimentional location (latitude and lon-
gitude) and yi,j ∈ R is the value of the i-th observation
reported by user j in the location xi,j . We want to infer the
underlying function f : R2 → R which, in our setting, rep-
resents the spatial phenomenon observed by the crowd. We
assume that yi,j is a noisy sample of f with a zero-mean
Gaussian noise εi,j ∼ N (0, σ):

yi,j = f(xi,j) + εi,j (1)

where σ is constant across the reporting process. A GP is de-
fined as a distribution over f such that the joint distribution
over any subset of function values is multivariate Gaussian.
Specifically, the GP distribution over f is specified as:

f(x) ∼ GP(m(x),K(x,x′))

where m(x) = E(f(x)) is the mean function modelling
the expected values of f (often assumed to be constant) and
K(x,x′) = cov(f(x), f(x′)) is the covariance function
specifying the correlation between pairs of function values.
Both these functions have free hyperparameters controlling
the smoothness and the noise properties of the GP estimator.
Then, given the conjugate form of the Gaussian likelihood
and the GP prior, the inference in GP models yields to a
closed form expression for the posterior density over f from
which the predictive distribution of the function at different
test points can be derived.

While the GP can only model datasets with constant vari-
ance noise, HGPs relax this assumption to represent datasets
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where the noise variances changes across the inputs, i.e.
εi,j ∼ N (0, σi,j). This varying noise feature, commonly re-
ferred to as heteroskedasticity, is particularly relevant to our
crowdsourcing settings where data are typically provided by
sources with individual noise levels (i.e. the user accuracy).
However, unlike the homoskedastic case, heteroskedasticity
in GP models makes inference no longer tractable due to
the dependency of σi,j on xi,j which does no longer allow a
closed form likelihood and leads to an intractable integral for
the posterior updates. For this reason, research has focussed
on approximate inference in HGP models, using Markov
Chain Monte Carlo approaches (Goldberg, Williams, and
Bishop 1997) or Expectation-Maximisation (Kersting et al.
2007) and variational Bayes approximation (Lzaro-gredilla
and Titsias 2011).

However, a notable tractable exception of HGPs derives
from assuming independency between the σi,j terms. That
is, the users sample observations with independent noise lev-
els. This assumption is reasonably applicable to the crowd-
sourcing setting since users typically report observations
independently and collusion among crowd members, i.e.
groups of users intentionally misreporting their estimates, is
not (yet) a primary issue within crowdsourcing systems (Ve-
nanzi, Rogers, and Jennings 2013). From this, the likelihood
factorises over cases in the dataset and the posterior distribu-
tion over the function can be derived as the combination of
the HGP kernel and the diagonal noise matrix (see the next
section for more detail).

While the standard HGP model can only represents data
points with heteroskedastic noise, it does not take into ac-
count the different trustworthiness between the users who
provide them. Therefore, we now detail our extension to the
HGP to model untrustworthy spatial crowd reports.

Crowdsourcing Spatial Functions
In crowdsourcing spatial functions, we collect a number of
observations of f submitted by a crowd of n users at dif-
ferent locations. For example, f may represent the environ-
mental process being monitored, such as a weather map, pol-
lution map or radiation map. Thus, the domain of f is the
set of locations describing the observed land area and the
codomain is the continuous range of values that the function
can assume. Each user i provides a set of ki observations
Oi = {oi,j : 1 < j < ki} and let k =

∑n
i ki be the total

number of observations received from the crowd. Each ob-
servation oi,j includes : (i) the user’s GPS location xij ∈ R2

(assumed to also be the location of the measurement), (ii) the
measured value yi,j ∈ R and (iii) the precision θi,j ∈ R+.
In particular, θ is the observed precision modelling the un-
certainty in yi,j as reported by the user.

To relate the noise in an observation to the reported pre-
cision, we assume that oi,j is a noisy sample of f and the
observed noise variance (or inverse precision) is specified
by θ−1

i,j . That is:

yi,j = f(xi,j) + εi,j εi,j ∼ N (0, θ−1
i,j ) (2)

Thus, the equation above specifies the HGP regression prob-
lem for multi-user crowd reporting settings. As an exam-

Figure 1: Example dataset with heteroskedastic noise includ-
ing 30 estimates reported by six users observing the blue-
dotted function.

ple, Figure 1 illustrates a dataset of 30 estimates reported by
six users observing the one-dimensional function f (blue-
dotted line). Each estimate is plotted as the reported mean
yij (starred points) and the two standard deviations bars
(±2/

√
θij) given by the reported precisions.

Modelling User Trustworthiness
We characterise the trustworthiness of each user i with an
individual parameter ti ∈ [0, 1] (1 for a fully trustworthy
user and 0 for an untrustworthy user). In particular, we con-
sider user trustworthiness as shaped by the behaviour of a
user in reporting inconsistent estimates with respect to f .
In practice, our approach models the principle that trustwor-
thy users are expected to sample possibly noisy observations
from f . On the other hand, an untrustworthy user can report
observations which may be uncorrelated with f and sampled
from different statistics. For instance, the previous example
in Figure 1 shows that user 6 (black) is potentially untrust-
worthy since all of its estimates are inconsistent with the true
value of f , i.e. f(xi,j) /∈ [yi,j ± 2/

√
θij ]. In contrast, user

3 (blue) is more trustworthy since most of its estimates are
representative samples of f .

Now, the ability to identify untrustworthy users and han-
dle the inaccuracy of their reports in the data fusion pro-
cess is required to accurately estimate the function. To ad-
dress this, we use a trust-based uncertainty scaling technique
based on adding extra uncertainty to subsets of data points
depending on how much such points are trustworthy. By do-
ing so, the model is able to allow larger variance around un-
trustworthy points, whilst still modelling correlations in the
locality of such points.

More formally, let θ̂i,j = tiθi,j be the trusted precision,
i.e. the reported precision linearly scaled by ti. Then, the
regression problem stated in Eq. 1 is updated as follows:

yi,j = f(xi,j) + ε̂i,j ε̂i,j ∼ N (0, (tiθi,j)
−1) (3)

That is, the set of precisions reported by user i is now scaled
proportionally to ti. This produces the effect of increasing
the uncertainty in user i’s reports up to turning them into
completely uninformative contributions when ti is close to
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zero.1 In this way, the model can now refine the data fusion
process by filtering untrustworthy estimates depending on
the ti parameters. Thus, the next crucial step is how to learn
the values of ti from the data and how to make predictions
of f accordingly.

Trust-Based HGP
To perform inference in the function space, we place a zero-
mean GP prior over f , i.e. m(x) = 0. Here we use the
squared-exponential covariance function which is a com-
monly used kernel for modelling smoothly varying quanti-
ties:

K(x,x′) = σf exp
(
− d(x,x′)2

2l2

)
(4)

where d is the line distance between two locations x and x′

calculated using the standard equilateral projection:

d(x,x′) = R0

√
x2 + y2 (5)

x = (lon− lon′) cos((lat+ lat′)/2) (6)

y = lat− lat′ (7)

where R0 = 6, 371 is the mean Earth’s radius in kilome-
ters, σf is the signal variance and l is the length scale of the
squared exponential function.

Recall, in order to have a tractable likelihood, we need to
assume independence between the noise terms, i.e. ε̂i,j ⊥
ε̂i′,j′ ⇒ θ̂i,j ⊥ θ̂i′,j′ and ti ⊥ ti′ , which is equivalent to as-
sume uncorrelated accuracies between individual measure-
ments and that users are independently trustworthy. Then, to
predict the value of f at a new location x∗, and let y∗ be
such a value, let y be the vector of observations, then assum-
ing that y and y∗ are Gaussian random vectors, we can write
the joint distribution at the test location as:

[
y
y∗

]
∼ N

(
0,

[
K(x,x) + Σ K(x,x∗)
K(x∗,x) K(x∗,x∗)

])
where

Σ = diag(θ̂i,1, . . . , θ̂i,pi , . . . , θ̂n,1, . . . , θ̂n,pn)−1

is the k× k diagonal matrix of the reported precisions, each
scaled by the user’s ti parameter. That is, using our trust-
based parametrisation of the noise rates, we obtain a joint
density with ti regulating the noise of the user’s set of input
points.

Next, using the marginalisation properties of the Gaussian
distribution, the predictive density of our trust-based HGP
(or Trust HGP) is a multivariate Gaussian expressed as fol-
lows:

p(y∗|x, y,x∗) = N (E[y∗], σ
2(y∗))

1Notice the case ti = 0 produces an infinite value for the vari-
ance which is already correctly represented by the IEEE 754 float-
ing point standard and should be handled accordingly in computer
programs.

where

E[y∗] = K(x∗,x)[K(x,x) + Σ]−1y

σ2(y∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + Σ]−1K(x,x∗)

are the predictive mean and variance of f at the loca-
tion x∗, respectively, given the hyperparameter set Θ =
{σf , l, ti, . . . , tn}.

Then, we can derive the log marginal likelihood by inte-
grating the likelihood over the HGP prior:

L = ln
(∫

p(y|f,x)p(f |x)df
)

= −1

2
yTC−1y − 1

2
ln |C| − k

2
ln(2π)

where C = K(x,x) + Σ. The partial derivatives of the like-
lihood function are:

∂L
∂Θ

=
1

2
yTC−1 ∂C

∂Θ
C−1y +

1

2
tr

(
C−1 ∂C

∂Θ

)
and from Eq. 7, we can find that:

∂C

∂σf
= 2σf exp

(
− d2

2l2

)
(8)

∂C

∂l
= −

σ2
fd

2

l3
exp

(
− d2

2l2

)
(9)

∂C

∂ti
= − 1

t2i
diag(0, . . . , 0, θi,1, . . . θi,pi

, 0, . . . , 0)−1 (10)

Given this, we use the maximum marginal likelihood estima-
tor, a standard model selection framework for GP models, to
set the values of the hyperparameters, which also include the
users’ trustworthiness values, i.e. ΘML = arg maxΘ(L|Θ).
In particular, the analytical gradient of the likelihood with
respect to the hyperparameters (Eq. 8, 9, 10) can be used for
the efficient search for the maximiser using gradient based
optimisation methods.2

The model training and posterior updates is of time com-
plexity O(k3). This is the standard complexity of inference
in GP methods (Rasmussen and Williams 2006) as a result
of the operational cost of inverting the covariance matrix. In
practice, we found that our model can handle datasets with
up to 2, 500 data points in approximately 5 minutes on a i5
3.6 GHz CPU, 8GB RAM architecture.

Experimental Evaluation
To evaluate our method, we consider the key crowdsourc-
ing application of radiation monitoring where we test the
Trust HGP accuracy in making spatial radioactivity predic-
tions against the presence of untrustworthy sensors. Subse-
quently, we complete our analysis by running simulations on
synthetic data which allows us to test the robustness of our
method with a number of untrustworthy crowds.

2The non-linear conjugate gradient method provided by the
gpml v.2 Matlab toolbox was used in our implementation.
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Figure 2: Image showing the location of the Xively sensors
(a) and the SPEEDI sensors (b).

Experimental Setup

In our experiments, we consider the following benchmarks:

• Standard GP: The homoskedastic GP (i.e. with a
constant-variance noise) with a zero-mean function and a
squared exponential covariance function (Rasmussen and
Williams 2006, §2.2).

• HGP: The standard HGP model without trust parameters,
i.e the non-trust version of our model where the trust pa-
rameters are statically set to 1, ti = 1,∀i.

• Optimal HGP: This is the hypothetical optimal HGP
method provided with perfect knowledge of the correct
ti values. That is the Trust HGP, where ti = 1 and ti = 0
for trustworthy and untrustworthy users, respectively, are
set in advance. Note we can only make this comparison in
the case of the synthetic datasets.

To measure the accuracy of each GP method, we compute
the root mean square error (RMSE) with respect to y∗, i.e.
the ground truth values of f :

RMSE(y, y∗) =

√√√√ 1

N

N∑
i=1

(yi − y∗i )

whereN is the total number of predictions. We also consider
the negative continuous rank probability score (NCRPS)
to provide a more comprehensive measure of the probabil-
ity mass predicted around y∗. This is a non-local scoring
rule particularly suitable for scoring predictors providing the
properties of properness (i.e. the true generative distribution
has the best score) and distance-sensitive scores (i.e. it is
proportional to predictive probability mass placed near the
true value) (Kohonen and Suomela 2006). In particular, the
NCRPS averaged over N Gaussian predictions is:

RMSE NCRPS
Standard GP 30.80± 0.30 −64.34± 0.04
HGP 64.13± 0.99 −9.31± 0.12
Trust HGP 26.74± 0.27 −7.14± 0.08

Table 1: Scores of the predictions of the three GP methods
on the Xively dataset.

NCRPS(N (y, σ2), y∗) =
1

N

N∑
i=1

σi

(
1√
π
− 2ϕ

(
y∗i − yi
σi

)
−

y∗i − yi
σi

(
2φ

(
y∗i − yi
σi

)
− 1

))

where ϕ and φ denote the probability density function and
the cumulative distribution of a standard normal random
variable, respectively.

Evaluation on Real-World Data
In this experiment, we present an application of our method
to the scenario of crowdsourced radiation monitoring dur-
ing the Fukushima nuclear disaster. On 3 March 2011, a
tsunami caused by a 9 magnitude earthquake hit the east
coast of Japan severely damaging the nuclear power plant of
Fukushima-Daichii. The subsequent nuclear accident led to
radioactivity increases of up to 1,000 times the normal levels
in the area of Fukushima and provoked the second-largest
world-wide nuclear emergency since Chernobyl, 1985. In
response, private individuals deployed 557 Geiger counters
across the country (many of them based on open-hardware
boars such as Arduino or Goldmine) which were able to
report live radiation data through the web connected to
the Xively platform (xively.com). This entirely crowd-
sourced Xively sensor network, showed in Figure 3a, came
to live in less than two weeks after the disaster and became a
key resource for the public to gather live radioactivity infor-
mation from the disaster scene. However, the key challenge
for the rescue teams was to manage the large amount of
data streamed by the sensors into a comprehensive spatial ra-
dioactivity prediction, considering that an unknown number
of unreliable sensors were reporting verifiably wrong mea-
surements. In this scenario, we show how our Trust HGP
can be applied to improve the accuracy of radioactivity pre-
dictions from the radiation data provided by the Xively net-
work.

We used the readings reported by the Xively sensors
over one day, 1 March 2012 (the experiment was repeated
over different days with similar results and a live demo
of this experiment running on a daily basis is available at
jncm.ecs.soton.ac.uk). We estimate the mean value
yi and the precision θi of each sensor by taking the average
and the inverse variance of the series of its measurements.
The sensor readings are reported in the unit of microsieverts
per hour (µSv/h) at an average frequency of 2 readings per
hour. In this way, we construct the Xively dataset with 557
reports, one from each sensor, where each report consists of
i) xi the sensor location, ii) yi, the sensor’s average radiation
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Figure 3: The images show the radiation heat map predicted by the standard GP on the SPEEDI dataset (a) the standard GP on
the Xively dataset (b) and the Trust HGP on the Xively dataset (c).

reading, iii)θi the sensor’s empirical precision. 3

To build a ground truth for this experiment, we use data
provided by the SPEEDI network: the official radiation mon-
itoring network maintained by the Nuclear Division of the
Ministry of Science of Japan (MEXT)4. The SPEEDI net-
work includes 2122 sensors reporting readings at a fre-
quency of 6 readings per hour, also in the unit of µSv/h
(Figure 2b). Thus, we construct a second SPEEDI dataset
using the mean and the precision of the readings reported
by the SPEEDI sensors. Then, making the reasonable as-
sumption that the SPEEDI dataset are more reliable due to
their official source, we run the standard GP on the SPEEDI
dataset to generate the ground truth radiation data showed in
Figure 3a.

In more detail, Figure 3b and Figure 3c show the predic-
tions of the two methods (GP and Trust HGP) on the Xively
dataset depicted as radiation heat maps. While the two pre-
dictions are similar in identifying the peak of radioactivity of
approximately 0.33 µSv/h near to the location of the Fuk-
ishima power plant, they are substantially different in several
locations. For example, it can be noticed that the standard
GP does not provide valid radiation values near the loca-
tion of Onagawa in the Miyagi prefecture (38.45 N, 141.44
E). In fact, we manually discovered that some of the sensors
located in that area sporadically reported invalid measure-
ments which caused the GP to predict inconsistent radiation
values. In contrast, the Trust HGP makes more plausible pre-
dictions and overcomes this issue by correctly learning to
place a low degree of trustworthiness on such sensors. In
particular, it estimated that 17% of the Xively sensors have
trustworthiness values lower than 0.5. The same analysis on
the SPEEDI sensors revealed that only few of these (less
than 1%) were untrustworthy which confirmed our assump-

3This dataset and the Java code to query the Xively sensors are
available as supplementary material.

4bousai.ne.jp

tion about the SPEEDI network being more reliable.
Finally, Table 1 reports the scores of the predictions of

the three methods in N = 100 trials. In each run, we ran-
domly sample 80% of the sensors in order to evaluate the
performance of the tested methods over different portions
of the Xively dataset. The results show that the Trust HGP
outperforms the best benchmark by 13% with respect to the
RMSE and by 23% with respect to the NCRPS. In more de-
tail, while the HGP improves the NCRPS of the standard GP,
the RMSE of the former is significantly worse. In contrast,
our method achieves the best performance in both the scores
as a result of its correct learning of the trustworthiness val-
ues. Thus, this result shows that our method is more accurate
and considerably more informative in estimating radiation
levels on a prominent crowdsourced spatial dataset.

Evaluation on Synthetic Data
In this experiment, we evaluate the Trust HGP in estimat-
ing a one-dimensional function from synthetic reports. We
consider a crowd of n = 20 users where each user provides
ki observations where ki ∼ U [3, 20]. We simulate f using
a beta function, Beta(α, β) with support in [0, 1] and with
random shape parameters sampled as {α, β} ∼ U [1, 20].

To generate synthetic reports of f ,we sample the preci-
sions as θi,j ∼ ±U [0.5, 20]. Then, taking random input
point xi,j in the domain of f , the corresponding output yi,j
is generated as a Gaussian random sample around the func-
tion value y∗i,j , i.e. yi,j ∼ N (y∗i,j , θi,j). Finally, we simulate
a percentage ρ of untrustworthy users among the crowd by
adding extra noise w ∼ ±U [1, 5] to their set of estimates.
In more detail, by randomly sampling between the positive
and the negative noise range we avoid the bias of having the
noise of untrustworthy estimates always positively or nega-
tively defined.

Figure 4 shows the typical regression of the four methods
in this setting. Given a test dataset of 240 estimates with
ρ = 30% (Figure 4a), the standard GP usually produces
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Figure 4: Example of regression with the four GP methods with a dataset of 240 estimates referring to 20 users with ρ = 30%.
Specifically, the ground truth f is the blue-dotted line and the GP predictions are depicted as the mean (red line) and the 2σ
shaded area.

good mean-value predictions but overestimates the uncer-
tainty (Figure 4b). This also agrees with the empirical find-
ings by Kersting et al. (2007) from a general evaluation of
GPs applied to heteroskedastic settings. Instead, the HGP
predictions have lower uncertainty but are less accurate as
the mean-value prediction is typically far from f (Figure
4c). Furthermore, the irregular shape of the HGP’s predictive
function is explained by the effect of chasing every noisy
point due to considering all the reports as equally trustwor-
thy. In contrast, the Trust HGP achieves the best trade-off
between high accuracy and low predictive uncertainty (Fig-
ure 4d) and its regression is almost identical to the one of the
optimal HGP (Figure 4e). In fact, the correct learning of the
trustworthiness values enables our method to exclude most
of the untrustworthy points by placing a high noise around
these points.

In more detail, Figure 5 shows the performance of the four
methods in N = 200 repeated runs varying ρ from 0% to
60%. The graph shows that the Trust HGP outperforms the
best benchmark by up to 34% in the RMSE (Figure 5a) and
up to 70% in the NCRPS (Figure 5b). In particular, it per-
forms close to the optimal HGP up to ρ = 30% and, af-
ter this point, it’s accuracy gradually conforms to the other
methods as ρ increases. This means that the Trust HGP can
correctly handle crowds with a moderately large presence of
untrustworthy users. Specifically, the error in its predictions
is only 25% worse than the Optimal HGP for ρ = 50%,
and it is almost zero when the majority of trustworthy users
within the crowd is more than 70%.

Furthermore, the NCRPS shows that Trust HGP’s predic-
tions are significantly more accurate and with low uncer-
tainty, hence very informative. Also, of note is the fact that
the HGP outperforms the standard GP in terms of NCRPS
in any ρ configuration, while the latter typically has a lower
RMSE. However, both of these methods are less accurate
than the Trust HGP.

Conclusions
In this paper, we addressed the problem of learning continu-
ous functions from crowdsourced spatial data using a trust-
based HGP modelling approach. The key innovation of our
approach lies in combining an HGP with a user trust model
introducing a set of trust hyperparameters to model the dif-
ferent accuracies of the users in reporting their estimates.
In particular, by training our model with the reports gath-
ered from the crowd, we are able to estimate the underlying
spatial function at new locations and also learn the trustwor-
thiness level of each user. Furthermore, we showed that our
methods significantly improves, the quality of the predic-
tions of the standard GP and HGP methods by up to 23%
in the key disaster response application of crowdsourced
radiation monitoring using real-world data from the 2011
Fukushima nuclear disaster. We also evaluate our method on
synthetic data showing that it outperforms the benchmarks
by up to 70% and is robust against an up to 30% presence of
untrustworthy users. Therefore, our method is able to pro-
vide an informative support to decision makers to act upon
crowdsourced information.

These results open several directions for future work.
First, we would like to explore settings in which user trust-
worthiness levels are no longer independent which may lead
to coalitions of crowd members with similar behaviours.
Second, we would like to incorporate temporal dynamics
into our model which will make it potentially more inter-
esting for a broader class of space-time dependent crowd-
sourcing settings.
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Figure 5: Performance of the four methods measured by the RMSE (a) and the NCRPS (b).
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