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Abstract

Social collaboration has been shown to facilitate problem-
solving activity in diverse sets of environments. Neverthe-
less, if not well designed, social and human computation sys-
tems may achieve results only similar to those of a single
human subject performing a task. This scenario reflects a
need for better understanding of the performance issues of
human problem-solving social networks. Firstly, we propose
a model for simulating social problem-solving. We then carry
out several simulations with artificial agents supported by re-
sults of experiments carried out with human subjects, in or-
der to analyse which parameters influence the performance
of collaborative problem-solving social networks. We anal-
yse the strategies humans follow when solving a problem,
comparing them with alternative ones, and identify the con-
sequences of the employed strategies in the collective perfor-
mance of the social network. Our results also indicate that
copying and guessing are beneficial to the performance of the
social networks. We then propose mechanisms that can im-
prove collaborative problem-solving. Finally, we show that
our results lead to a methodology for the design of efficient
problem-solving systems that can be applied to several kinds
of collaborative social systems.

1 Introduction

Problem-solving has been the subject of intense investiga-
tion since the dawn of Artificial Intelligence (Newell et
al. 1959; Simon 1990). Recently, there has been an in-
creasing interest in the study of human beings as (collab-
orative) problem-solving agents (Law and von Ahn 2011;
Nagar and Malone 2011; Woolley et al. 2010). Such in-
vestigations have shed new light on the way humans in-
teract to solve problems as well as on the dynamics of
working groups (March 1991; Clearwater et al. 1991;
Nagar and Malone 2011; Bernstein ef al. 2012). However,
although these studies can provide us with observations and
hypotheses, there is still much to explain about the observed
collective, human behaviour (Simon 1990). Thus, in order
to better employ, apply or model human problem-solving
cognitive abilities we need a method for studying human be-
haviour and its consequences (Mason and Watts 2011).
Humans are known to easily perform tasks which are still
generally difficult for computers, such as natural language
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communication or image recognition. Modelling human
abilities may thus lead to novel approaches or insights to
computational problem-solving techniques that might even
be more effective than current computational approaches.
Recently, human problem-solving abilities have been ap-
plied to several problems, e.g. the protein structure predic-
tion problem (PSP) in bioinformatics. The success of the
Foldit game (Khatib ef al. 2011) led to significant results in
PSP, which is usually solved by optimization algorithms re-
quiring intense computing power. Such results have been
attributed to human visual problem-solving and decision-
making abilities, but also to social collaboration (Khatib et
al. 2011). However, we still do not know the limits of
human abilities in problem-solving and how they compare
to more traditional computational techniques. In order to
take full advantage of human problem-solving abilities, we
must learn their limitations. Humans are less than effec-
tive in mathematical computation, they are subject to e.g.
physical and psychological conditions that affect their per-
formance, and do not always act rationally (Simon 1990;
Nagar and Malone 2011; Bernstein et al. 2012). In this
paper, we shall use multi-agent based simulation to comple-
ment the study of social computation, in order to explain the
strategies used by humans when solving problems and un-
derstanding their consequences in a collaborative environ-
ment. Such simulations draw inspiration from empirical re-
sults of Farenzena et. al.(Farenzena et al. 2011) which in
turn conducted experiments with human subjects in a social
computing environment. By using our model, it becomes
possible to draw new conclusions from past observations of
human behaviour. The model can be used, e.g. to preview
the results that changes in the infrastructure of a social com-
putation system will have on its overall performance before
actually performing the experiments with humans. Further,
one may use your methodology in the design of social com-
puting systems.

In summary, we introduce a novel method for artificial
social problem-solving that can be used to simulate the be-
haviour observed in humans in collective problem-solving
systems. Section 2 presents related work. Our problem-
solving model is described in Section 3. The methodology is
then applied to simulate a social problem-solving system in
Section 4. We shall simulate human behaviour observed in
previous experiments and compare human problem-solving



strategies with an alternative, artificial strategy. We show
that human strategies may be detrimental to problem-solving
process. A more detailed analysis is provided in Sections 5
and 6. In addition, we analyse the impact that copying
and guessing have on the process of solving the problem.
Our results contribute towards the design of effective social
problem-solving systems.

2 Background

Human and social computation are relatively new research
fields founded on diversified, interdisciplinary areas includ-
ing the social sciences, artificial intelligence, game theory
and network science (Hogg and Huberman 2008; Easley
and Kleinberg 2010). Recent studies on the potential of
human social networks as problem-solving tools have pro-
vided insights into, among other things, the impact of net-
work structure in the collaboration process and the factors
that lead agent’s neighbours proposed solutions to be copied
by their peers (Nagar and Malone 2011; Kearns 2012;
Rendell et al. 2010).

The origins and foundations of human computation can
be traced back to the work of (Dawkins 1986), in which
the evolution of two-dimensional sets of line segments
was guided by the aesthetic perception of human subjects.
Nowadays, the use of human evaluation as a component of
the fitness function in genetic algorithms is known as inter-
active evolutionary computation. However, it is interesting
to note that already in the 1930s people were used as “com-
putors”, as noted in e.g. (Turing 1936). Recently, (von Ahn
and Dabbish 2008), identified the possibility of using enter-
tainment as an incentive to participation of human subjects,
applying it in games in which the participants are actually
performing a computation. That is an idea that also appears
in the Foldit game (Khatib et al. 2011).

The series of experiments summarized in (Kearns 2012)
are among the first to try and take advantage of collective
problem-solving abilities to solve classical computer science
problems. Such experiments are mostly based on the con-
cept of coordination: subjects have individual incentives that
are expected to drive them to cooperate with one another and
lead them toward the collective goal (Nowak 2006).

Other initiatives have appeared, such as the ones
by (Farenzena et al. 2011) and (Mason and Watts 2011),
which take a different approach by having subjects trying
to solve the collective problem individually, with the pos-
sibility of exchanging solutions between neighbours. Those
have resulted in interesting conclusions on human behaviour
when the possibility of copying peers is available. Our ex-
periments build upon this line of research.

3 A Novel Method for Social
Problem-Solving

Several multi-agent methodologies employ information flow
through agents (Montanari and Saberi 2010; Villatoro et
al. 2011). For instance, the model proposed by (Araujo
and Lamb 2008) draws inspiration from the phenomenon of
Cultural Evolution discussed by Dawkins (1976) and has a
network of agents sharing, copying and incrementing units
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Figure 1: Simplified method diagram. Note that the reason-
ing phase output is stored as the agent’s local solution and
that the set of agents that contributed in the communication
phase is not necessarily disjoint from the set of agents to
which the agent’s local solution is to be broadcast.

of information in a similar way that nature, according to
Dawkins, deals with Memes (Dawkins 1976). Nevertheless,
some aspects of social behaviour of great significance to so-
cial computing cannot be properly analysed through these
methodologies. One example is the conformist behaviour
studied in (Efferson et al. 2008). The proper study of these
aspects demands a novel method for artificial collaborative
problem-solving.

We propose a method for solving computational problems
by means of a network of agents endowed with social be-
haviour. Our method is represented in the simplified dia-
gram of Figure 1. Note that reasoning phase output is stored
as the node’s local solution and that the set of agents that
contributed in the communication phase is not necessarily
disjoint from the set of agents to which the individual’s lo-
cal solution is to be broadcast.

Our model employs a meta algorithm, named MASP
(Meta-Algorithm for Social Problem-Solving), which con-
siders an ordered set of IV agents, each encoding a partial
solution to the problem, and a binary N x N matrix repre-
senting possible connections between them. In addition, the
MASP algorithm represents two model stages, namely the
communication phase and the reasoning phase.

In the communication phase, solutions are exchanged be-
tween agents through the network connections. Agents are
thus presented with a multiplicity of messages. There is
a particular probability associated with the behaviour of
agents choosing to copy one of these solutions in contrast to
keeping their current ones. We call this probability the copy
rate. When an agent chooses to copy, it is then supposed
to select for copying a single one of its received messages.
This is done by means of a particular strategy. In the reason-
ing phase, agents are supposed to add local changes to the
solutions copied in the previous stage.



Algorithm 1 MASP: Meta-Algorithm for Social Problem-
Solving, encompassing the communication and reasoning
phases

Initialize N agents, each encoding a partial solution to
the problem;
while termination condition not met do
fori=11to N do
forj=1toN do
if j is connected to i then
A; =iy, agent;
Aj = ju, agent;
Add A;’s solution to the collection of
messages received by A;;

fori=11t Ndo
//Communication Phase ;
A; =y, agent;
selectedMessage = select(A;.messages);
if random(0.0, 1.0) < copyRate then
| Aj;.solution = selectedMessage;

fori= 11t N do
//Reasoning Phase ;
A; =iy, agent;
| Add local changes to A;’s solution

4 Modelling Collaboration

In order to validate our methodology we have modelled a
real-world collaborative Sudoku solving environment and
test it over a set of problem-solving instances.

4.1 Communication Phase

The experiments conducted by (Farenzena et al. 2011;
Rendell et al. 2010) point out a series of observations about
the dynamics of cooperation in problem solving with human
beings. For instance, the authors’ analysis has shown that
human subjects are more likely to engage in the behaviour of
copying the most readily available solutions on the graphic
interface than in that of evaluating the available solutions
and choosing the best one according to some criteria. That
behaviour is referred to as an evidence of conformism in hu-
man subjects. On the other hand, (Mason and Watts 2011)
seem to suggest that their subjects did evaluate the available
solutions, although an in-depth analysis of that fact was not
reported. That might mean that multiple factors might influ-
ence the behaviour of human agents. We analyse possible
reasons in Section 6.

Based on the experiments of Farenzena et. al., we have
modelled two alternative message-selecting strategies in
the communication phase; the first one attempts to evaluate
the solutions and chooses the best one, while the other
mimics human behaviour by selecting the first available
solutions with greater probability. Although we employ
such strategies in the context of the Sudoku puzzle, these
strategies can be applied to different problems. (Farenzena
et al. 2011) report that copying arbitrary solutions is not
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strictly dependent on the problem.

Selective strategy: This strategy selects the most complete
available solution for copying. In the specific case of
Sudoku solving, this strategy selects the Sudoku partial
solution with the largest number of filled in cells. This
strategy evaluates the solutions available to the agent based
on their content. It is important to notice, however, that
it does not guarantee that the chosen solution is actually
better; in the case of Sudoku, a cell might be filled in with a
wrong value.

Positional strategy: In some settings of collaborative
problem-solving, human subjects are likely to copy the first
(from left to right) solutions available on an HCI inter-
face (Farenzena et al. 2011). This behavior is modelled by
(X(k)) = (1 — p)k~1p, where p is fixed as p = 0.5479 and
(X (k)) denotes the probability of an agent copying the ki,
neighbour solution. In order to simulate a graphic interface
we generate a random ordering of neighbours for each agent.
Thus each agent visualizes its neighbours in a specific order.
Secondly, we translated the above mathematical model into
a solution-selecting strategy in which the an agent selects
the k¢, solution with probability (X (k)).

4.2 Reasoning Phase

The techniques employed by the agents to solve a problem
individually are chosen according to the problem in ques-
tion. In the case of Sudoku, problem-solving techniques
abound in the literature (Weber 2005). These techniques are
based on the reasoning usually employed by humans when
solving the puzzles. (Davis 2011) discusses a collection of
such techniques: e.g. the Naked Singles, the Hidden Sin-
gles rule and the Naked Twins rule. These techniques intend
to, given a partial Sudoku solution, generate a set of move-
ments which can be used to mark cells of the Sudoku puzzle.
We implemented five rules, modelling them as functions that
map Sudoku partial solutions to a set of movements. These
functions can be used in the reasoning phase to add local
changes to the Sudoku solution received in the communica-
tion phase.

The rules implemented were the Unique Missing Candi-
date, the Naked Singles, the Hidden Singles, the Two out of
Three and the Naked Twins rule, discussed in (Davis 2011).
In our modelling, each agent knows a particular quantity of
rules, this quantity determining the agent’s level. For in-
stance, an agent of level 3 knows three out of the five rules.
Agents of level 0 know no rules and therefore can only guess
and copy. That way, we model a wide range of skills that
might be found in human agents. Our tests were all con-
ducted with a heterogeneous population of agents of differ-
ent levels.

Guessing and Backtracking: We have consistent evi-
dence that trial-and-error is a part of the Sudoku solving ex-
perience. The need for trial-and-error in Sudoku puzzles is
not a falsifiable conclusion, but a mathematical fact (Davis
2011). Some puzzles are only solvable by the means of a
backtracking procedure.



Number of agents

By level Total
Topology 0 1 4 5
Scale-Free (y=1.58) 6 5 4 4 4 4 27
Ring (k = 2) I 1 1 1 1 1 6
Ring (k = 3) 3 3 3 3 3 3 18
Fully-connected 4 4 4 4 4 4 24

Table 1: Topology configurations used in the experiments.

In our modelling, we associate each agent with a numer-
ical parameter determining the probability this agent has to
guess when incapable of applying a typical Sudoku solving
strategy. We call this parameter the guess rate.

Automatic Sudoku solvers employing a backtracking al-
gorithm are easily programmed and very time-efficient. On
the other hand, the space complexity of these algorithms is
a barrier to most human solvers, who need to write down
tons of observations in order to employ a backtracking strat-
egy. With this in mind, we propose in our modelling a dif-
ferent kind of backtracking, intended to be more similar to
the way human beings employ error correction in Sudoku
solving in a collaborative environment such as the one anal-
ysed in (Farenzena et al. 2011), which we refer to as social
backtracking. In it, when faced with one or more conflicts
in its own solution, an agent copies a solution from one of
its neighbours. In our modelling, this is done by raising the
copy rate of this particular agent to 1.0.

5 Experiments and Results

We modelled our agent networks using four different
topologies: a fully-connected topology, a scale-free topol-
ogy (Barabasi et al. 2001) and two ring topologies, one
with £ = 2 and another with £ = 3, where the degree of
the network is 2 x k (Newman 2010). Table 1 shows de-
tails of each topology used. We implemented the Sudoku
environment using the agent distributions shown in Table 1.
We performed experiments with varying solution selection
strategies, network topologies and values for the copy and
guess rates. We have run experiments for seven different
problem instances, and obtained similar results in each case.

Although different Sudoku instances have varying levels
of difficulty, we have chosen to leave this parameter out of
our experiments. Two reasons justify our decision: (1) there
is no consensus in the literature about an objective quanti-
tative difficulty measure for Sudoku, and (2) at this initial
stage, we are more concerned with variables which are in-
dependent from Sudoku problem-solving itself. This choice
can indeed allow us to generalize our results to other prob-
lems, including brain teasers.

5.1 Comparing Copying Strategies

We ran 10 experiments for each combination of topology
and instance. For all runs, we fixed the values of copy and
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Figure 2: Graphs representing average results for (a) 3-ring;
(b) scale-free; and (c) for all topologies and instances. The
graphs show the proportion of agents obtaining the correct
solution on each round for both the Selective and Positional
strategies; error bars represent a 95% confidence interval.
The lines for both strategies can be fitted to normal distribu-
tions with different values for mean and variance.

guess rate at 0.5. Each experiment ran for 100 rounds com-
posed of a communication phase and a reasoning phase. We
first run the Selective strategy and then the Positional strat-
egy, with the goal of comparing their performance. Our hy-
pothesis was that the Selective strategy would perform bet-
ter, a result which would confirm our belief that problem-
solving social networks respond positively to the employ-
ment of solution evaluation.

We have observed in our experiments that the progress of
the solution, represented by the number of agents that solve



the problem in a given round, follows a normal distribution.
During the first rounds no agents have found the solution.
The round in which the first few agents solve the problem
varies according to the particular instance. From that point
onwards the final solution starts spreading throughout the
network. As more agents obtain the complete solution, it be-
comes more likely that further agents will copy that solution
from their neighbour, which complies with a conformist be-
haviour, as described by (Efferson et al. 2008). The number
of agents with complete solutions increases in the follow-
ing rounds, until it reaches a point where the few remaining
agents take longer to obtain the complete solution.

The solution progress for the Selective and Positional
strategies can be described as normal distributions of dif-
ferent mean and variance. In the experiments, the mean in-
dicates how soon the correct solution was found, and the
variance how long the final solution took to spread through-
out the network. The exact values for these parameters vary
according to factors such as topology and problem instance,
but they follow a particular pattern: in all cases, the Selective
strategy has lower mean - indicating the solution is found
sooner - and lower variance - meaning it spreads faster.

We have chosen the scale-free and 3-ring topologies as
representative examples, and plotted the average of the re-
sults for the same instance of the problem for each topol-
ogy in Fig. 2a and 2b, respectively. Each graph shows
the average of the percentage of agents that find the cor-
rect solution in each round for the two strategies, with
normal curves plotted over the values evidencing the be-
haviour described above. The curves were tested for nor-
mality using D’Agostino’s K? Test (Pearson et al. 1977),
obtaining for the Selective strategy, for the interval [40, 50],
(K? = 7.12,x? = 0.03) in the 3-ring topology and (K? =
5.58, x% = 0.06) in the scale-free topology, and for the Po-
sitional strategy, for the interval [50, 75], (K? = 2.62, x? =
0.27) in the 3-ring topology and (K2 = 1.67, x% = 0.43) in
the scale-free topology.

Fig. 2c depicts the average for all experiments, encom-
passing every topology and instance. In this graph, the pres-
ence of the normal behaviour in the distribution is less clear,
because it combines several different instances and topolo-
gies. Nevertheless, its effects can still be seen. The Selective
strategy displays different residual peaks from particular in-
stances, while the line for the Positional strategy starts flat-
tening with the accumulation of several distributions from
the individual experiments. More importantly, Fig. 2¢ shows
that the results of Fig. 2a and 2b can be generalized: in aver-
age, for every topology and instance, the network converged
to the correct solution between rounds 44 and 60 with the
Selective strategy, and between rounds 54 and 94 with the
Positional strategy, showing that for the Selective strategy
the solution is found earlier and spreads faster.

5.2 Varying Copy and Guess Rates

In the tournament conducted by (Rendell et al. 2010), the
most successful strategies relied heavily in social learning.
Based on that idea, we hypothesised that a higher copy
rate would improve performance, while a higher guess rate
would decrease it. We based such hypothesis on the notion
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that, when an agent makes a guess, it has a high chance of
filling a cell with a wrong value. Once that happens, that grid
will assuredly be unable to lead to the right solution until the
agent copies a grid without errors from one of its neighbours.
Therefore, we hypothesised that if an agent cannot make a
logical move using its level of Sudoku-solving skills, it is
better for the agent to wait for its neighbours to improve the
solution and copy from them, instead of risking making an
incorrect move.

In order to test our hypotheses, we repeated our exper-
iments for the same four topologies, this time varying the
copy and guess rates between 0.0 and 1.0 each. We plot-
ted two surfaces for each strategy and topology. The results
were similar for each topology, so we chose the scale-free
topology as a representative example to present in Fig. 3a
and Fig. 3b.

Fig. 3a and Fig. 3b show the average number of rounds
needed for the network to converge to the correct solution
for the Selective and Positional strategy, respectively. They
both show a maximum in (copy rate: 0, guess rate: 0) and a
minimum in (copy rate: 100, guess rate: 100), with greater
copy and guess rates reducing the number of rounds needed
for the agents to solve the problem. The results also differ
depending on the copying strategy employed in the commu-
nication phase. Fig. 3a shows that, using the Selective strat-
egy, as copying increases the number of rounds needed for
all agents to have the correct solution decreases sharply until
it stabilizes in a roughly optimal level. Similarly, in Fig. 3c
the percentage of experiments in which every agent obtains
the correct solution rises fast as copying increases. Mean-
while, the benefits of guessing are much less pronounced.
On the other hand, when the agents do not evaluate their
neighbours’ solutions, as seen in Fig. 3b and Fig. 3d, their
contributions do not differ as much.

6 Discussion

We now discuss results from the previous sections and anal-
yse their consequences with respect to the design of collab-
orative problem-solving systems.

6.1 A New Model of Human Problem-Solving
Networks

We have proposed a model of human behaviour in a
problem-solving social network. In the model one can sim-
ulate previous experiments performed by humans by mod-
elling the observed behaviour as the reasoning and com-
munication phases. That way, one can examine the conse-
quences of that behaviour without having to enlist human
subjects, which is usually expensive and time-consuming.
We have applied the model in a human computing experi-
ment and reached particular conclusions about the strategies
used by humans. Since the same behaviour was observed for
different problems, we believe these results can be general-
ized to a certain class of problems and systems. We provide
further analyses below.
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Figure 3: Figures (a) and (b) show the average number of rounds needed for all agents to obtain the correct solution, for a
given value of copy rate and guess rate, when using (a) the Selective strategy; and (b) the Positional strategy, for the scale-free
topology. Figures (c ) and (d) show the percentage of experiments in which all agents obtained the correct solution, for a given
value of copy and guess rates, when using (c ) the Selective strategy; and (d) the Positional strategy, for the scale-free topology.

6.2 Evaluating Neighbours’ Solutions is
Advantageous

Our experiments confirm the hypothesis that Selective copy-
ing indeed brings better results. In all topologies, choosing
the solution with the largest number of filled cells not only
allows agents to solve an instance earlier, but also causes the
network to converge faster to the correct solution. That is,
once one individual has found the correct solution, that so-
lution spreads faster through the network if the other agents
are evaluating the solutions that reach them instead of copy-
ing an arbitrary one.

Although choosing a solution based on its position instead
of content is provably inefficient, this behaviour has been
observed in human networks (Farenzena et al. 2011). Per-
haps this can be explained by humans finding it difficult to
evaluate Sudoku partial solutions. We have used the number
of filled cells as a solution evaluation function, but that is
not guaranteed to accurately measure which solution is best,
since individuals might fill in cells with a wrong value.

Our experiments, however, have shown that although
completeness is not necessarily an accurate measurement
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of quality, it was good enough to lead the network to the
right solution. These results might extend to other prob-
lems that do not have an accurate method of solution eval-
uation. Therefore, employing an imperfect solution evalua-
tion method can be sufficient in problem-solving social net-
works.

6.3 Copying and Guessing Improve Network
Performance

Regarding our hypothesis that a higher copy rate would
be beneficial, our experiments indicate that in the topolo-
gies tested copying indeed has a decisive role in improving
the network’s performance. However, our results also indi-
cate that guessing is not detrimental to the problem-solving,
which is somewhat surprising. On the contrary, in several
cases guessing actually contributes to improving the solu-
tion. We understand this is due to the fact that some low-
level agents are incapable of solving some instances of the
problem, ignoring the problem strategies. These agents have
no hope of solving the problem individually without some
guessing mechanism, and a high copy rate allows them to



correct wrong guesses through copying better agents’ solu-
tions. What is particularly unexpected, however, is that the
system did not seem to be detained by wrong guesses, even
at high guess rates. This means that incorrect guesses were
successfully filtered out, allowing the correct solutions to
prevail. The agents seem to have been able to identify soon
when a guess leads to an incorrect solution, eliminating it
before it has a chance to spread.

Comparing the results of the different copying strategies,
one can also observe that if the agents are evaluating their
neighbour’s solutions the copy rate has more influence over
how fast the correct solution spreads through the network.
When copying increases, the network performance also in-
creases much faster for the Selective strategy than for the Po-
sitional strategy. At the same time, guessing has much less
influence over the Selective strategy performance. These re-
sults confirm that the benefit of copying increases when the
neighbours’ solutions are evaluated. Meanwhile, when the
agents do not evaluate the solutions they get less out of the
act of copying, having to rely more on guessing to advance
on their own.

6.4 On the Design of Social Problem-Solving
Systems

Considering our results, social computing systems may take
advantage of the interface to encourage human agents to se-
lect better-evaluated solutions. One possibility is to display
the evaluation of each solution to encourage players to copy
the ones with better score. Another possibility is using the
very human behaviour of copying the first solutions to the
system’s advantage.

By ordering the neighbours’ solutions in the interface ac-
cording to their quality, with better-evaluated ones being dis-
played first, these will be copied more frequently. This strat-
egy may prove to be highly beneficial to the overall perfor-
mance of the system, given the fact that the computational
cost associated with evaluating the quality of a solution may
be negligible compared to the overall payoff of pushing the
players toward the optimal path. It is important to highlight,
however, that “first solutions” is a dangerous expression to
use when we consider the whole spectrum of players’ cul-
tures and nationalities. The nature of the written language
of a player may shape his/her perception of the first so-
lutions: for example, certain populations, notably eastern
players may perceive the rightmost solutions on the graphic
interface as the first, given the right-to-left, top-to-bottom
nature of some eastern languages.

There is also the possibility suggested of limiting the net-
work’s degree: fewer connections allow for all neighbours to
be displayed in the interface at once, without the need for the
user to search for solutions. Moreover, humans might feel
more encouraged to evaluate the solutions if they have fewer
options to choose from. That result is supported by (Ma-
son and Watts 2011), who limited the number of agents’
neighbours to three. In their experiments, the subjects seem
to have indeed evaluated the neighbours’ solutions, which
might indicate this option to be promising.

Our results also show that a network benefits from higher
copy rates. One way to achieve that is to take advantage of a
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phenomenon presented in (Mason and Watts 2011): the au-
thors concluded that subjects copied more frequently when
more than one neighbour shared the same solution. At the
same time, higher local clustering in the network increased
the probability that two neighbours of the same individual
were also connected, which increased the likelihood that
they shared the same solution. Therefore, by using topolo-
gies with higher clustering one can encourage human sub-
jects to copy.

6.5 On a General Model for Social
Problem-Solving

With respect to generalizing our model to other prob-
lems (such as logical problems in general, including brain
teasers), as long as the social situation is similar to the one
modeled in the paper, we believe that our results can be gen-
eralized. In particular, problems that can be framed as con-
straint satisfaction problems (including brain teasers) can
be dealt with by our approach. Exploring whether our re-
sults generalize to problems other than constrain satisfac-
tion problems remains an open question. We expect that
in other real-world problems or scenarios, one may observe
social effects such peer pressure, coalition formation, lead-
ership, functional diversity, learning, exogenous centralized
control among other effects. However, these effects shall de-
mand specific investigations. We are interested in this paper
in analyzing the results of a simple decentralized problem-
solving system.

7 Conclusions and Further Work

Collaborative, social and human computing are growing ar-
eas of interest as researchers better understand human cogni-
tion and problem-solving abilities and strategies. However,
although a lot of data about human social cognition can be
collected from experiments, it is still difficult to explain hu-
man behaviour and its consequences (Lazer et al. 2009).
Knowing the limitations of human strategies is needed in
order to guide the design of social problem-solving sys-
tems. We have proposed a novel method for artificial social
problem-solving that can be used to analyse the behaviour
observed in humans in collaborative, social networks.

We have experimented with human strategies and ob-
tained interesting results. Although humans seemed to
choose a solution to copy based on its position on the in-
terface, we have shown that evaluating the neighbours’ pro-
posed solutions leads to the correct solution being found
sooner and spreading faster throughout the network even if
the evaluation function employed is naive. Another impor-
tant conclusion is that the performance of the network in
problem-solving increases when agents copy more. Surpris-
ingly, increasing the chance that agents will guess is also
beneficial, indicating that the network is successful in filter-
ing incorrect solutions produced by guessing.

With these results in mind, we have proposed some
suggestions to improve the performance of a human social
problem-solving network, using properties of the graphic in-
terface and topology to encourage human subjects to engage
in a more effective behaviour. These include displaying



better-evaluated neighbours’ solutions first - to encourage
subjects to copy from them - and using topologies with
higher local clustering - to encourage a higher frequency of
copy. Future developers of collaborative and social systems
can use these suggestions in their design in order to take
maximum advantage of the problem-solving network. In the
future, it would be interesting to validate these suggestions
through further experiments with human beings. We also
envisage the employment of the proposed method in sim-
ulating other experiments with human subjects, using the
obtained results as guidelines to the design of new systems
of social computation.
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