Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

A Demonstration of Mechanic Maker: An Al for Mechanics Co-Creation

Vardan Saini, Matthew Guzdial
Department of Computing Science
University of Alberta
Edmonton, AB, Canada
{vardanl, guzdial} @ualberta.ca

Abstract

Developing games is challenging as it requires expertise in
programming skills and game design. This process is costly
and consumes a great deal of time. In this paper we describe
a tool we developed to help decrease this burden: Mechanic
Maker. Mechanic Maker is designed to allow users to make
2D games without programming. A user interacts with a ma-
chine learning Al agent, which learns game mechanics by
demonstration.

Introduction

Game development requires specialized knowledge, in terms
of designing and coding skills. These skill requirements
serve as a barrier that restricts those who might most ben-
efit from the ability to make games. For example, educa-
tors, activists, or those who cannot afford the time or mon-
etary cost of learning traditional game development. Re-
searchers have promoted automated game design as a po-
tential solution to this problem, in which computational sys-
tems build games without human interaction. However, au-
tomated game design doesn’t fully reduce the difficulties
surrounding game development. These existing systems rely
on knowledge about game design inputted into the sys-
tem by their developers (Cook, Colton, and Gow 2016;
Summerville et al. 2018). This means that extending the tool
to be able to produce new games requires the same knowl-
edge as if a human was developing the game. In compari-
son, our tool is made to automatically learn implicit game
mechanics from a human user.

In our tool, a user creates the frames of a non-existent
game, demonstrating visually how they would like the game
to work. We built out the graphical user interface (GUI) for
this tool in Unity, a game engine, to bring user creations
closer to end products. A backend rule-learning Al learns
the implicit rules from the demonstrations of the user (Guz-
dial, Li, and Riedl 2017). Our goal for this tool is that it
can be used in the creation of educational, scientific, and en-
tertaining games currently infeasible given the resource re-
quirements of modern game development. We refer to this

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

325

tool as “Mechanic Maker”, as it is a variation of the existing
Morai Maker (Guzdial et al. 2019).

Related Work

There have been attempts to make game development tools
that are easy to use. All these approaches are unique but none
of them allow for game development without programming.
For example, Scratch is a “block based programming tool
for creating simple games and applications” (Resnick et al.
2009). The major difference between our project and Scratch
is that our tool does not require any kind of programming,
making use of a backend Al to approximate the code a user
would author. This is similar to visual programming (Myers
1990). However, visual programming traditionally relies on
classic artificial intelligence instead of machine learning.

Other game development tools exist that draw on Al. For
example, Gemini is a recent tool capable of both automatic
understanding and automated generation of games (Sum-
merville et al. 2018). Users can specify a target meaning for
a game, and then Gemini uses hundreds of rules to produce
a game that fits that meaning. Instead, our system employs
an iterative design process, where an Al and human work
together over time to produce a final game.

Other automated game design approaches incorporate Al
to create a game autonomously. For example, Mike Cook’s
ANGELINA is an automated game designer (Cook, Colton,
and Gow 2016) which designs entire games on its own. An-
gelina is envisioned as a ‘continuous’ system, not stopping
in a single interaction but continually producing games. Our
tool uses an Al that is also continuously on, but our Al is
watching a user’s actions and trying to respond appropri-
ately to them. Shopping for game mechanics (Machado et
al. 2016) is another Al powered tool which provides rec-
ommendations of existing game elements to users in order
to create a game. In comparison, we learn entirely new me-
chanics from demonstrations. Our own prior work in auto-
mated game design produces new games based on machine
learned knowledge from gameplay video (Guzdial and Riedl
2018). Similarly, our tool produces new knowledge, but now
using a user’s input in place of video, with a user essentially
producing gameplay video for a game that does not exist.



Figure 1: Example of the Mechanic Maker UI and using the
system to define simple mechanics.

Editor UI Overview

The UI of Mechanic Maker is based on the user interface
(UI) of Morai Maker (Guzdial et al. 2019). However, that UI
was focused on building levels collaboratively with an Al
in a turn-based fashion. Comparatively, our tool is set up to
allow a user to define frames of a non-existent game, while
a continuously running backend Al learns to approximate
mechanics that match the user’s demonstrations.

We present the Ul in Figure 1. On bottom left of the screen
you can see the frame and input section. The frame manager
identifies the current frame (frames O to 3 are shown in Fig-
ure 1) and arrow keys to the left and right to allow a user to
go step through these frames. These frames represent a time-
line of events in the user’s game. Each frame is a particular
moment in the game, for example the single character stand-
ing alone in Frame 3. On a frame a user can specify what
that moment in a game should look like. They can then go
to the next frame to demonstrate how things have changed
between frames. The input buttons at the bottom left allow
a user to define what input (arrow keys and space bar) are
pressed in the current frame. This allows a user to specify
when changes should be caused by user action. For example,
clicking the space and then having a character jump from
frame O to 1. This can also define interactions between char-
acters as in frames 1 to 2 where two characters collide trans-
forming them into a new character after collision in frame
3.

At the midpoint of the bottom of the screen we have a set
of sprites that a user can select to place in various positions
in the frame. At the far right we have a color changer for
adjusting the background color of the game. The bin icon
clears the screen of current frame and the gear icon loads the
settings, for example specifying grid width and height. The
“PLAY” button allows a user to play their game in realtime.

We note that some basic game components, like win/loss
conditions, game goals, inventory, counters, UI, condition-
als, etc cannot be defined in this version of Mechanic Maker,
but we hope to expand it in future work.

326

Al Rule Learner

Our backend AI agent makes use of the same rule learn-
ing system first described by Guzdial et al. (Guzdial, Li,
and Riedl 2017). Essentially, each frame of the game is re-
represented as a series of percept-like components we call
facts (i.e. location, sprite, velocity, and relative position in-
formation). From these facts our system learns rules, which
are made up of conditions (a list of facts that must be true
for the rule to fire), a pre-effect (a fact in the current frame
that will be replaced), and a post-effect (the fact that replaces
the pre-effect). These rules are learned through a search pro-
cess, which adds, modifies, and deletes rules to a sequence
of rules we call an engine. The engine begins as an empty
sequence, with initial rules added based on taking every fact
in a frame where a change occurred as the set of conditions
required for that change to occur. These rules are not pa-
rameterized, and the sequence of rules is only limited by the
input and time to search the space of possible engines. For
further detail on this process please see (Guzdial, Li, and
Riedl 2017).

Once we have a set of learned rules, we employ a hand-
authored automated translation module to convert the rules
into Unity C# code. This is relatively straightforward, as the
structure of the rules already follows simple if-then rules in
a sequence. Thus, during every update tick we need merely
check if each of the rules fire in order.

Discussion

Our next immediate goal is a human subject study to validate
the utility of Mechanic Maker as a tool for defining mechan-
ics. We are particularly focused on users who do not other-
wise have programming experience. Our plan is to compare
the performance of these users to users with programming
experience in a study where they attempt to reproduce a tar-
get game already created in the tool. This will allow us to
compare the success rate of these different users by com-
paring their output games to the target. Eventually after the
study we plan to make our tool more efficient by learning
from all the games made by study participants, so that we
can identify and add common, related rules.

Conclusions

We have presented a tool for defining game mechanics, sets
of game rules visually, rather than requiring any direct pro-
gramming. We hope that Mechanic maker will prove to be a
useful tool in the future. In this demonstration we will show-
case our initial UI and the experience of interacting with our
Al rule learning system. Our plan is to continue to develop
this tool towards the ability to support the development of
any 2D game.

Acknowledgements

This material is based upon work supported by a start-up
grant from the University of Alberta.



References

Cook, M.; Colton, S.; and Gow, J. 2016. The angelina
videogame design system—part i. [IEEE Transactions on
Computational Intelligence and Al in Games 9(2):192-203.
Guzdial, M., and Riedl, M. 2018. Automated game design
via conceptual expansion. In Fourteenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Guzdial, M.; Liao, N.; Chen, J.; Chen, S.-Y.; Shah, S.; Shah,
V.; Reno, J.; Smith, G.; and Riedl, M. O. 2019. Friend,
collaborator, student, manager: How design of an ai-driven
game level editor affects creators. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Sys-
tems, 1-13.

Guzdial, M.; Li, B.; and Riedl, M. O. 2017. Game engine
learning from video. In IJCAI, 3707-3713.

Machado, T.; Bravi, I.; Wang, Z.; Nealen, A.; and Togelius,
J. 2016. Shopping for game mechanics.

Myers, B. A. 1990. Taxonomies of visual programming
and program visualization. Journal of Visual Languages &
Computing 1(1):97-123.

Resnick, M.; Maloney, J.; Monroy-Herndndez, A.; Rusk, N.;
Eastmond, E.; Brennan, K.; Millner, A.; Rosenbaum, E.; Sil-
ver, J.; Silverman, B.; et al. 2009. Scratch: programming for
all. Communications of the ACM 52(11):60-67.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: Bidi-
rectional generation and analysis of games via asp. In Four-
teenth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.

327





