
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Deep Learning Bot for League of Legends

Aishwarya Lohokare,∗ Aayush Shah,∗ Michael Zyda
University of Southern California

Los Angeles, California
{lohokare, aayushsh, zyda}@usc.edu

Abstract

In this paper, we take the first step towards building com-
prehensive bots capable of playing a simplified version of
League of Legends, a popular 5v5 online multiplayer game.
We implement two different agents, one using Reinforce-
ment Learning and the other via Supervised Long Short Term
Memory Network. League of Legends provides a partially
observable game environment with an action space much
larger than games like Chess or Go. Source code and demon-
strations can be found at https://github.com/csci-599-applied-
ml-for-games/league-of-legends-bot.

Introduction

League of Legends (LOL) is a Multiplayer Online Battle
Arena (MOBA) (Silva and Chaimowicz 2017) game devel-
oped by Riot Games in 2009. On average each LOL game
is 35 minutes long. For the 5v5 mode, each player selects
one unique champion out of 148 possible champions. Each
champion has set of unique offensive and defensive abilities.
Victory in LOL is achieved by destroying the opponents’
Nexus which is essentially the core of their base.

Research has been limited in LOL due to a lack of offi-
cial API support to access underlying game information as
opposed to DOTA2 which has an existing API to access this
information. In 2015, one LOL work (Silva and Chaimow-
icz 2017) used a third party tool known as Bot of Legends, to
capture underlying game information. However, Bot of Leg-
ends also modified game files, which led to them being shut
down in 2017 after losing a $10 million lawsuit against Riot
Games.

Due to this API limitation in LOL, we decided to simplify
the game-space by working on 1v1 game-play in MidLane
only. We use Ashe as our champion and allow only one skill
move, Volley, which is her best offensive skill move. We
do not purchase any items for our champion. We have set
a sub-objective which involves first blood or first kill as the
terminating condition rather than going all the way until the
Nexus is destroyed. Veigar is the champion used by the en-
emy for both approaches. For reward shaping we used the

∗These authors contributed equally to this work
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research done in (Zhang et al. 2019). This work describes a
method to model micro decisions in King of Glory as a Re-
inforcement Learning problem with a simple reward. King
of Glory is a MOBA game similar to League of Legends.
We were able to use this as a reference to formulate rewards
for our League of Legends bot.

One notable related work in MOBA involves OpenAI Five
(OpenAI et al. 2019). OpenAI Five was the first AI system to
defeat professional world champions in Dota 2. OpenAI Five
used a Proximal Policy Optimization (PPO) (Schulman et
al. 2017) + Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) based approach which was continu-
ally trained in a distributed framework consisting of 128,000
CPU cores and 256 P100 GPUs on GCP for a period of 10
months to achieve this superhuman performance. Another
notable MOBA AI contribution involves Tencent AI’s bot
for Honor of Kings (Ye et al. 2020). The AI was trained us-
ing a combination of Actor-Critic Network (Espeholt et al.
2018), LSTM and PPO using 600,000 CPU cores and 1,064
Nvidia GPUs (mixture of Tesla P40 and V100). The trained
AI could defeat professional players in a 1v1 setting.

Proposed Methodology

We have trained a CNN based model to perform object
detection. Our object detection API was motivated by the
work done in (Struckmeier 2019) which involved gener-
ating a synthetic dataset for object detection of 5 classes
in League of Legends. Our model is implemented using
the YOLOv3 (Redmon and Farhadi 2018) architecture. The
model is trained until convergence on 1200 manually anno-
tated frames from League of Legends consisting of 15 differ-
ent classes. The different classes include 2 champions (Ashe
and Veigar), minion, super-minion, canon-minion, turret, in-
hibitor, and nexus for red and blue teams. It also outputs the
mouse location from the screen. Figure 1 shows YOLOv3
output for one frame. We use this data as observations for
our algorithms. The actions (keyboard and mouse clicks)
predicted by our algorithms are simulated in the game us-
ing Python scripts.

322

Figure 1: Bounding boxes from YOLOv3

LSTM

Our first approach involves the use of a Long-short term
memory (LSTM) model. LSTMs are a specific set of Recur-
rent Neutral Networks that are proficient in learning long-
term dependencies. In this method, we used neural networks
to determine the game-playing patterns of the human play-
ers which would then teach the bot to play the game. Figure
2 shows a high level overview of this architecture. Building
the bot included three major stages for the neural network.

The first stage was Data Collection where we developed
a script to capture the game screen, the keyboard presses,
mouse movements, and clicks of a human player playing the
game. The captured game screen images were then passed
through the YOLOv3 object detection network to extract
the salient feature vectors from the images. The keyboard
presses were mapped to a binary value and the mouse clicks
were captured in the form of a tuple of x and y screen coor-
dinates. For every frame, this triple was wrapped to form an
input to our LSTM architecture. A total of 50 games were
played by two advanced League of Legends players to form
the dataset. This amounted to approximately 70,000 frames
of images annotated with keyboard and mouse presses.

The second stage was the Training phase, in which these
champion movements (mouse movement/clicks) and skill
selection (keyboard press) were trained parallelly on two
separate neural networks because both were independent of
each other. One LSTM network was fed with the image fea-
ture vectors and mouse data to learn champion movement,
while the other was fed with feature vectors and keyboard
data to predict whether a skill move must be used.

In the final stage, to make the bot play the game, we wrote
a script to simulate the mouse and keyboard presses based on
the output of our LSTM. This script used weights learned in
the training phase to predict what action to take based on the
current game screen.

PPO + LSTM

The second approach involves a combination of Proximal
Policy Optimization (PPO) and Long-short term memory
(LSTM) models for our bot. PPO is a policy gradient based
algorithm that has achieved state of art performance on sev-
eral Atari-2600 games. It involves clipping policy updates at

Figure 2: LSTM Architecture

each iteration to minimize bad decisions due to large differ-
ences between an old policy and a new policy.

We combine PPO with LSTM as per the OpenAI Five
model for Dota 2 (OpenAI et al. 2019). The reward is cal-
culated based on the distance from our champion’s loca-
tion to that of the enemy champion, turrets, and minion’s.
Our champion’s health points which are read via the Optical
Character Recognition using Tesseract OCR (Smith 2007),
and enemy champion’s health points also contribute to this
calculation. The LSTM observes game state using feature
vectors from our YOLOv3 model and outputs an action
which involves using a skill move, attack enemy champion
or minions, or fleeing from the enemy.

Our agent learns from playing against an inbuilt League of
Legends bot in a custom 1v1 game mode. Our model plays
against this bot repeatedly to update the policy. An itera-
tion (episode) ends when either our champion dies, or when
it kills the enemy champion. The model was trained for 72
hours on a Google Cloud Instance with one Tesla K80 GPU.
We created a custom gym environment to facilitate this train-
ing.

Results

With limited training, both LSTM, and LSTM+PPO agents1

picked up on basic rules of the game - attack minions to gain
minion kills, attack champion to gain kills, stay clear of tur-
rets and run away from a conflict in the event of low health.
Table 1 illustrates a comparative performance of both ap-
proaches. Both agents were successfully able to achieve first
blood against amateur players. The PPO+LSTM bot outper-
formed the LSTM bot in achieving first blood against the
enemy champion.

The LSTM bot had a drawback of moving back and forth
randomly in the presence of an enemy. This was due to
poor interpretation of patterns in training data when a player
moves away to dodge attacks from an enemy. Another limi-
tation of this approach was the lack of training data. The per-
formance of the bot should significantly improve by training
on more hours of game play. The LSTM+PPO bot was more
stable and did not have any sudden erratic movements. It was
performing significantly better than a random agent playing
in our limited environment. With many more hours of train-

1Watch bot in action at https://tinyurl.com/yb54ljx4

323

Minions Attacked Success Rate
LSTM 4 0.55

PPO + LSTM 7 0.70

Table 1: Average comparative performance of our agents
against amateur players for over 20 games until first blood

ing on self-play with a few additions to action-space, we be-
lieve it can get very close to human level performance in our
customized game.

Conclusion and Future Scope

The next steps in our development are completing the 1v1
game mode by including all abilities and items. To add abil-
ities we need to expand our environment’s action space.
Adding these to our action space and retraining requires sig-
nificant computing power which we do not have access to
currently. To add items, we would require a secondary sys-
tem to handle learning what items to buy at a given point of
time for each champion in the game. We would also like to
experiment with self-play methodology for training our Re-
inforcement Learning bot, and change the action space from
discrete to continuous for the Reinforcement Learning bot.
The supervised LSTM bot may be able to perform better
with additional annotated data captured from professional
League of Legends players.

In order to create an entire team of bots for 5v5 game play
we would need to expand our environment and train differ-
ent models for each champion. A communication channel
will be required for multi-agent coordination. Since using
feature vectors from YOLOv3 is not computationally fast on
our machines, we want to experiment with some alternatives
like MobileNet (Howard et al. 2017) for accessing underly-
ing game information. Having access to high performance
computers with powerful GPUs is required for learning good
models for each champion.

References

Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih,
V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.;
et al. 2018. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;
Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki, J.;
Petrov, M.; de Oliveira Pinto, H. P.; Raiman, J.; Salimans, T.;
Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.; Tang, J.;
Wolski, F.; and Zhang, S. 2019. Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv:1912.06680.

Redmon, J., and Farhadi, A. 2018. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silva, V. d. N., and Chaimowicz, L. 2017. Moba: a new
arena for game ai. arXiv preprint arXiv:1705.10443.
Smith, R. 2007. An overview of the tesseract ocr engine. In
Ninth International Conference on Document Analysis and
Recognition (ICDAR 2007), volume 2, 629–633. IEEE.
Struckmeier, O. 2019. Leagueai: Improving object detec-
tor performance and flexibility through automatically gener-
ated training data and domain randomization. arXiv preprint
arXiv:1905.13546.
Ye, D.; Liu, Z.; Sun, M.; Shi, B.; Zhao, P.; Wu, H.; Yu, H.;
Yang, S.; Wu, X.; Guo, Q.; et al. 2020. Mastering complex
control in moba games with deep reinforcement learning. In
AAAI, 6672–6679.
Zhang, Z.; Li, H.; Zhang, L.; Zheng, T.; Zhang, T.; Hao, X.;
Chen, X.; Chen, M.; Xiao, F.; and Zhou, W. 2019. Hier-
archical reinforcement learning for multi-agent moba game.
arXiv preprint arXiv:1901.08004.

324

