
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Geometry of Hiding:
Generating Visibility Manifolds

Adrian Koretski, Clark Verbrugge
School of Computer Science McGill University

Montréal, Québec, Canada
adrian.koretski@mail.mcgill.ca, clump@cs.mcgill.ca

Abstract

Understanding what a character observes in a game as they
move through the space is useful for game analysis and de-
sign. In this work we describe a tool that generates visibility
manifolds given a game terrain and game agent path. Our tool
accommodates multiple kinds of game agent motion and con-
siders the impact of visual occlusion in order to efficiently
generate a closed 3D mesh representation of the area seen
over time. The resulting shape demonstrates unintuitive prop-
erties of game agent observations, and an efficient Unity im-
plementation allows the constructed shape to be used in inter-
active game design.1

Keywords: visibility polygon, stealth, geometry

Introduction

In this work, we describe a tool allowing us to generate visi-
bility manifolds, meshes based on game agent paths that rep-
resent the evolution of an agent’s field of view over time.
Such meshes are useful for analysis of in-game properties
by designers, such as for exploring safe player routes in
stealth games and understanding level coverage by guards.
These manifolds can also be used to analyse AI percep-
tion as they represent general visibility data rather than a
single model. The tool generates individual 2D representa-
tions of an agent’s field of view, or visibility polygons, at
discrete timesteps using a simplified angular sweep algo-
rithm (Asano 1985). It then uses properties of the polygon
vertices to establish connections between time-ordered, con-
secutive polygons to generate a final 3D mesh. The applica-
tion itself is implemented in the Unity game engine which
allows easy integration with other game environments. To
generate manifolds, obstacle and guard path game-objects
are tagged as “obstacles” and “paths” respectively. A master
game-object is then added to the scene where it performs all
the calculations for the user.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Demonstration materials can be found here: https://github.
com/AdrianKoretski/AIIDE-2020-demo

Related Work

Our design is influenced by efforts in the medical commu-
nity to create a solution when piecing together MRI and CT
scan slices into 3D representations. These solutions are of-
ten geared towards generating smooth 3D representations by
satisfying constraints and minimising functions (Zou et al.
2015). A large number of the solutions also focus on con-
necting branching shaped, non parallel slices and use lim-
ited or fuzzy data (Bermano, Vaxman, and Gotsman 2011;
Boissonnat and Memari 2007). Although interesting, these
solutions are less applicable to game contexts, as we have
full and precise slice data, and require polygonal (non-
smooth) surfaces for easy computation of intersection. Our
approach shares some similarities with work by Barequet
and Vaxman (2007). Their approach consists of extracting
vertex properties from the slices and using them to establish
connections. We differ in that we use meta properties based
on the slice generation whereas they use geometric proper-
ties.Prior work in game contexts has also been done, based
on stacking individual visibility polygons (Tremblay 2016).
Lack of good connectivity between layers, however, induces
discretization artefacts, requiring expensive, fine-granularity
in timesteps to improve precision.

Methods

In order to generate visibility manifolds, individual visibil-
ity polygons are first created and connected to one another.
To generate the individual polygons, discrete steps and data
in the game agent path are used. The polygons are then aug-
mented with characteristics applied to their vertices referred
to as nodes, and are then used to connect the visibility poly-
gons to one another. Finally, the connections are triangulated
to create the final mesh.

Game Agent Path: The game agents path is broken down
into discrete steps, referred to as pips. Each pip is comprised
of a position and orientation which are used to generate the
visibility polygon, in addition to a timestamp, used to place
the polygon at the correct manifold height. The distance be-
tween pips defines the granularity of the manifold in time.

Visibility Polygon: The construction of the visibility
polygons is based on the sweep algorithm, modified to re-

316



strict the maximum range and angle of view. Once con-
structed, a node is placed at each vertex of the polygon.

Nodes: Nodes connect to one another to form the poly-
gon and carry extra data with them. This data corresponds
to unique identifiers and types determining the characteris-
tics associated to the original vertex they derive from. Node
characteristics may correspond to obstacle vertices, points
of occlusion or result from the boundaries of the visibility
polygon. Two nodes are deemed similar if they share a type
and identifier but may differ in time and position.

Polygon Similarity: Similarity is used to determine
whether two polygons can be trivially connected. Two poly-
gons are deemed to be similar if both have the similar nodes
in the same order around the circumference of their respec-
tive polygons. Non similar polygons occur due to changes
in field view brought on by occlusion, and can cause arti-
facts when connected over large distances. In this event, the
point where the change occurs is found by recursive bisec-
tion over time. Once found, additional polygons are gener-
ated on either side, separated by a small threshold set by the
user, referred to as the non similarity threshold.

Connecting Polygons: Each pair of consecutive polygons
are connected to one another via their nodes. Similar nodes
are connected to one another. Remaining unconnected nodes
are then connected based on proximity. These connections
are formed with the overall structure in mind to ensure no
connections cross one another.

Triangulation: To finish forming the mesh, additional
connections are formed between each layer pair to triangu-
late and produce the final mesh. Given that each node con-
nects to at least one node in the subsequent layer, inter-layer
shapes consist of either triangles or quadrilaterals, which are
easily split into triangles.

Results

The resulting mesh quality depends on two parameters: the
granularity of the step sizes in the path and the size of the
non similarity threshold. We observe how changing these pa-
rameters affects the output and how accurate said output is
to an ideal manifold.

Step Size: For step size analysis, we use simplified exam-
ples where the game agent performs a simple rotation with
no obstacles. Manifolds generated from more complex set-
tings can appear odd and unintuitive, thus making them dif-
ficult to briefly analyse and explain. We see that for very
coarse step size, the triangulation results in a poor approxi-
mation leading to large areas of missing geometry. Scaling
down the step size causes the mesh to become smoother and
limits the size of the missing geometry. These results, along
with an ideal manifold, can be seen in Figure 1.

Non Similarity Threshold: For the non similarity thresh-
old, we start with a very large threshold and reduce it while
observing how the shape of the manifold changes. The ex-
periment consists of the same motion as previously with an
additional obstacle. Large values, illustrated in the left im-
age in Figure 2, lead to inaccuracies where some parts are

Figure 1: Illustration of step sizes. On the left, 2 sec / 18
degree step size versus center, 0.5 sec / 4.5 degree. On the
right we have an ideal manifold.

incorrectly perceived as non visible (above triangle 4 and
5) and others are incorrectly perceived as visible (triangle
1). By reducing the threshold size, we observe how these
inaccuracies shrink to acceptable ranges. Taking this to the
extreme (threshold of 1 millisecond) we see that we get a
nearly perfect manifold.

Figure 2: Illustration of connecting non similar polygons
(top and bottom layers) using different thresholds. On the
left, a large threshold generates an additional polygon, while
the middle generates two closely positioned polygons strad-
dling the point of change. On the right we have an ideal con-
nection.

Conclusions & Future Work

Our tool is capable of real-time generation of visibility mani-
fold meshes that approximate ideal visibility manifolds. Us-
ing small values for the non similarity threshold results in
near ideal manifold construction. A drawback is the poten-
tial for excessively small or thin triangles, although these
can also be removed through post-processing mesh simpli-
fication. Step sizes can, one the other hand, be adapted to
individual areas of the terrain. Our tool generates accurate
mesh data with sufficiently small step sizes even when vis-
ibility changes rapidly. Areas with slow changing visibility
can use larger step sizes as this will minimally impact ac-
curacy. Resulting inaccuracies are caused by naive triangu-
lations of non-planar quads. This can be reduced in future
work by using more detailed triangulations model.

References

Asano, T. 1985. Efficient algorithms for finding the visibility
polygons for a polygonal region with holes. Transactions of
IECE of Japan E-68:557–559.
Barequet, G., and Vaxman, A. 2007. Nonlinear interpola-

317



tion between slices. ACM Symposium on Solid and Physical
Modeling 2007 97–107.
Bermano, A.; Vaxman, A.; and Gotsman, C. 2011. Online
reconstruction of 3d objects from arbitrary cross-sections.
ACM Trans. Graph. 30(5).
Boissonnat, J.-D., and Memari, P. 2007. Shape reconstruc-
tion from unorganized cross-sections. In Proceedings of
the Fifth Eurographics Symposium on Geometry Processing,
SGP ’07, 89–98. Goslar, DEU: Eurographics Association.
Tremblay, J. 2016. Computing Techniques for Game Design.
Ph.D. Dissertation, McGill University.
Zou, M.; Holloway, M.; Carr, N.; and Ju, T. 2015.
Topology-constrained surface reconstruction from cross-
sections. ACM Trans. Graph. 34(4).

318


