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Abstract

Deep reinforcement learning (DRL) has gained a lot of at-
tention in recent years, and has been proven to be able to play
Atari games and Go at or above human levels. However, those
games are assumed to have a small fixed number of actions
and could be trained with a simple CNN network. In this pa-
per, we study a special class of Asian popular card games
called Dou Di Zhu, in which two adversarial groups of agents
must consider numerous card combinations at each time step,
leading to huge number of actions. We propose a novel
method to handle combinatorial actions, which we call com-
binatorial Q-learning (CQL). We employ a two-stage network
to reduce action space and also leverage order-invariant max-
pooling operations to extract relationships between primitive
actions. Results show that our method prevails over other
baseline learning algorithms like naive Q-learning and A3C.
We develop an easy-to-use card game environments and train
all agents adversarially from sractch, with only knowledge of
game rules and verify that our agents are comparative to hu-
mans. Our code to reproduce all reported results is available
on https://github.com/qq456cvb/doudizhu-C.

1 Introduction

Recently, deep reinforcement learning has gained its ad-
vancement in games. AlphaGo (Silver et al. 2016) first uses
deep neural networks in board game Go to reduce the effec-
tive depth and breath of the search tree. AlphaGo efficiently
combines the policy and value networks with Monte Carlo
Tree Search (MCTS) and achieves superhuman performance
in the game of Go. AlphaGo Zero (Silver et al. 2017) is pro-
posed and trained solely by self-play reinforcement learn-
ing, starting from random play, without any supervision or
use of human data and it only uses only the black and white
stones from the board as input features. In addition to board
games, card games are a kind of games that also have an ex-
ponential number of states and are hard to solve. DeepStack
(Moravčı́k et al. 2017) is an algorithm that is able to solve
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Poker under imperfect information settings. It combines re-
cursive reasoning to handle information asymmetry, decom-
position to focus computation on the relevant decision, and a
form of intuition that is automatically learned from self-play.

Though many games can be well solved by DRL, current
DRL techniques, such as A3C (Mnih et al. 2016) and dou-
ble Q-learning (Van Hasselt, Guez, and Silver 2016), can
not handle another card game called Dou Di Zhu. In this
paper, we study Dou Di Zhu and explore a new solution to
extent the ability of DRL. Dou Di Zhu is a popular game
in China with a large number of players. In 2018, Tencent
online game platform reported 30 million players attending
annual Dou Di Zhu chaimpionship (Tencent 2018).

There are three remarkable properties that make Dou Di
Zhu totally different from previously mentioned board or
card games. We list them as follows,
• Unconventional Representations. The assumption of

convolutional features in 2D board games and video
games fails in Dou Di Zhu, since the knowledge lies
in different combinations of cards at hand. Therefore,
we should introduce an unconventional representation for
such kind of problem.

• Huge Action Space. In Dou Di Zhu, the number of pos-
sible actions increases exponentially with the number of
cards. At each round, a player needs to consider an action
which is a subset of current handheld cards. Due to the
complexity of Dou Di Zhu’s game rule, there are a great
variety of actions that one needs to consider and human
players typically choose one valid action based on their
rich experience and sometimes intuition.

• Complicated Action Relationships. The quality of each
action depends largely on the conjunct influence of the
cards to be handed out and those to be left. One not only
needs to consider the current action but also needs to con-
sider what to give in the next several rounds. Thus rela-
tions between different cards needs to be taken in to con-
sideration and this is what a human expert would do.
To solve these challenges, we develop a two-stage hierar-

chical reinforcement learning approach, which contains two
parts: Decomposition Proposal Network (DPN) and Move
Proposal Network (MPN). During DPN, we choose the
most promising decomposition based on its Q-value com-
puted by order-invariant max-pooling operations; then dur-
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ing MPN, we pick up the final card group to be handed
out. In addition, we random sample decompositions in DPN.
Therefore, the dimension of action space at each level is
considerably reduced and thus becomes computationally
acceptable. Besides, we introduce special designed 1D-
convolutional card representations which give enough infor-
mation required by our networks.

In conclusion, we propose a novel network to handle com-
binatorial actions and show that it solves Dou Di Zhu by pre-
vailing baseline methods like A3C and naive DQN (Mnih et
al. 2013) and achieving human-level performance. We train
three heterogeneous agents adversarially from scratch, with-
out any domain knowledge except game rules.

2 Related Work

AI in Card Games. Previous work on solving Dou Di
Zhu (Whitehouse, Powley, and Cowling 2011) uses deter-
minization to make decisions with stochasticity and imper-
fect information by sampling instances of the equivalent de-
terministic game of perfect information. They introduce a
novel variant of Monte-Carlo Tree Search (MCTS) that op-
erates directly on trees of information sets. However, their
inference speed depend heavily on how much the Monte
Carlo tree is expanded. There are some recent advances in
card playing AI, such as deep RL systems for Mahjong (Li
et al. 2020) and a superhuman AI for multiplayer poker
games (Brown and Sandholm 2019). However, they do not
solve the challenges brought by Dou Di Zhu. For Mahjong,
its action space is quite limited with only five actions, so
combinatorial action space does not apply. Likewise, for
Pluribus (Brown and Sandholm 2019), it only considers a
few (1-14) different bet sizes at any given decision point.

Combinatorial Bandits. Card games like Dou Di Zhu can
be seen as a multi-step combinatorial bandits (Cesa-Bianchi
and Lugosi 2012), which is a combinatorial generalization of
multi-step contextual bandits. Combinatorial generalizations
of single-step contextual bandits (Cesa-Bianchi and Lugosi
2012; Dani, Kakade, and Hayes 2008) has been studied re-
cently (Swaminathan et al. 2017). In their work, for each
context (state), a policy selects a slate (action) consisting of
component actions, after which a reward for the entire slate
is observed. They also introduce a new practical estimator to
evaluate a policy’s performance.

Large Discrete Action Space. Large discrete action
spaces have also been studied recently (Dulac-Arnold et
al. 2015). However, they strongly rely on prior information
about the actions to embed them in a continuous space upon
which their approach can generalize. DRRN (He et al. 2015)
proposes a method to better understand relationships be-
tween discrete actions while the weights scale linearly with
number of actions, so it is not suitable for large action space.
DRRN-Sum and DRRN-BiLSTM (He et al. 2016) further
extends DRRN to combinatorial reddit threads but their ex-
periment setup is of a rather small scale (10 items). AE-DQN
(Zahavy et al. 2018) eliminates sub-optimal actions with an
elimination signal.

3 Dou Di Zhu

Dou Di Zhu (Wikipedia ) is a 3-player gambling card game,
in the class of climbing games but also with bidding ele-
ments similar to trick taking games. Dou Di Zhu originated
in China, and has increased in popularity there in recent
years, particularly with internet versions of the game. Here
we briefly introduce the rules of Dou Di Zhu according to
(Whitehouse, Powley, and Cowling 2011).

Player Setting. There are three players, Landlord, Peas-
ant Up, Peasant Down. During the game, players take their
turns in a counterclockwise order; Peasant Up denotes the
player who plays right before Landlord while Peasant Down
denotes the player who players right after Landlord.

Card Deck. A 3-player Dou Di Zhu uses a deck of 54
cards, which contains 15 different type of cards. These types
are {3, 4, 5, 6, 7, 8, 9, T, J, Q, K, A, 2, black joker, red joker},
sorted by their ranks. There are four duplicate cards for each
type, except for black joker and red joker. At the beginning
of the game, cards are randomly distributed to the three play-
ers and each player does not know others’ cards.

Bidding Phase. Each player takes turns to bid on their
hand with the possible bids being 1, 2 or 3 chips. In this
paper, we omit this process, mainly focused on the actual
play phase.

Card Play Phase. The goal of the game is to be the first
to get rid of all cards in hand. If the Landlord wins, the other
two players must each pay the stake to the Landlord. How-
ever if either of the other two players wins, the Landlord
pays the stake to both opponents. This means the two non-
Landlord players must cooperate to beat the Landlord. The
Landlord always plays first and then play moves around the
table in a fixed direction. The card play takes place in a num-
ber of rounds until a player has no cards left. Whoever plays
first can play any group of cards from their hand provided
this group is a member of one of the legal move categories.
For more details of the rule and legal moves, we refer the
reader to (Whitehouse, Powley, and Cowling 2011).

4 Combinatorial Q-Learning in Dou Di Zhu

4.1 Stochastic Game with Imperfect Information

Multi-Agent Reinforcement Learning can be defined under
the framework of Stochastic Game (van der Wal et al. 1981;
Yang et al. 2018). An N-agent stochastic game G is ex-
pressed by a tuple 〈S,A, p, r, γ〉, where S denotes the state
space and A is the joint action of all agents. Action space A
can be factorized into each agent’s action space Aj , where
j = 1, . . . , N is the agent index. Likewise, r is the re-
ward function for all agents and can be factorized into rj :
S × A → R. At each timestep, each agent takes an action
aj ∈ Aj , forming a joint action a ∈ A = ×{j=1,...,N}Aj ;
then each agent receives a reward rj(s,a). State transition
probabilities are defined by p(s′|s,a) : S ×A×S → [0, 1].
γ ∈ [0, 1] is the discount factor (Sutton and Barto 2018).
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Figure 1: Augmented MDP in Dou Di Zhu. When in sc, agents choose the best decomposition among Ac; then in sf , agents
choose the best final move among Af within previously selected decompisition.

Table 1: Legal Moves
Name Description

Solo Any individual card, for example A or
2. It is also possible to play runs of se-
quential cards with length at least 5, for
example 345678 or 89TJQKA.

Pair Any pair of identically ranked cards
for example 55 or 77. It is possible
to play runs of sequential pairs with
length at least 3, for example 334455 or
TTJJQQKK.

Trio Any three identically ranked cards for
example AAA or 888. It is possible
to play runs of sequential trios of any
length, for example 444555 or TT-
TJJJQQQ. Each trio may also have a
kicker attached, for example 444555TJ
or 999QQ.

Quadplex Any four identically ranked cards with
two kickers attached, for examples
4444TJ or 999955KK.

Bomb Any four identically ranked cards, for
example 5555 or 2222.

Nuke The red joker and the black joker to-
gether.

The policy for each agent j is πj : S → Ω(Aj) where
Ω(Aj) is the probability measure in space Aj and for finite
dimension dim(Aj), Ω(Aj) is just a simplex with dimen-
sion dim(Aj)− 1. π = π1, . . . , πN denotes the joint policy
of all N agents. π is often considered time-homogeneous,
which means that it is independent of current timestep. Our
aim is to maximize the value function for each agent:

V j
π (s) =

∞∑

t=0

γt
Eπ,p[r

j
t |s0 = s;π]. (1)

Notice that it is a function of all agents’ policy π and state
s ∈ S .

We can then define the Q value as:

Qj
π(s,a) = rj(s,a) + γEs′∼p[V

j
π (s

′)]. (2)

Note that this is a function of actions of all N agents.
Notice that Dou Di Zhu is an imperfect information game

where the full state s (including all agents’ handheld cards)
is not observable to any individual so we resort to inde-
pendent Q-learning (Tan 1993). In independent Q-learning,
which is the simplest and most popular approach to multi-
agent RL, each agent learns its own Q-function that condi-
tions only on its observed state sj and its own action aj . In
deep RL, this is often done by having each agent perform
deep Q-learning using the state and its own action. If we de-
note independent Q operator as [IndQj ] for each agent j,

[IndQj ](sj , aj) ≡ r(sj , aj) + Esj ′∼p[γV
j(sj

′
)]. (3)

Specifically, in Dou Di Zhu, each state sj corresponds to
one’s handheld cards and the cards handed out by the other
two at this round. Besides, we augment the state with in-
ferred handheld cards of the other two, which is done by
calculating the distribution of remaining cards. Each action
aj represents a legal move given the cards handed out by the
other two. Positive one is given as rewards when the agent
wins the game and negative one is given when it loses. For
all other state-action pairs (sj , aj), reward zero is given. For
simplicity, we omit the bidding phase. In the following sec-
tions, we abuse the notation s and a for sj and aj , ignoring
their agent index.

4.2 Combinatorial Q-Learning

The original problem can be hard to solve and rarely con-
verges due to our experiments in Section 5.2. The reason for
this lies in the fact that there are over hundreds up to thou-
sands of possible actions given one’s handheld cards and
standard Q-learning performs poorly on such a large com-
binatorial action space.

When considering a human playing Dou Di Zhu, it is
common that human players tend to decompose their hand-
held cards according to the current situation. For example,
when opponents hand “A” out as Solo, a smart player would
consider decomposing his cards if he holds two “2” in his
hand. He would play “2” as Solo instead of Pair to take con-
trol.

This kind of decomposition also takes the relationship be-
tween card groups into consideration. Again consider some
other player hands “3” out as Solo, if a player holds three
“4”, it is not a good idea to split them to give “4” as Solo.

303



A, A, A, 3

A, A, A

A, A, A, 3, 3

A AA

A A A 33

A, A A 3, 3

3, 3

3

3, 3

Decompositions

A, A, A, 3

3

DPN

DPN

A, A, A, 3, 3
handcards

Move Proposal Network (MPN)

Decomposition Proposal Network (DPN)

FC FC

FCFC
maxpool

Global Feat.

Global Feat.

Global Feat.Local Feat.

Local Feat.

C
O

N
V

Figure 2: Our network structure of CQL on Dou Di Zhu. We evaluate each decomposition with an order-invariant maxpooling
operation in the end (DPN) and then each move’s evaluation concatenates with this global feature (MPN). Networks in a single
block share the same weights.

This is because, “4” is of rather small rank and leaving two
“4” in hand is not a good choice; instead, making three “4”
a Trio with extra kicker cards is a more promising action.

Inspired by how a human plays Dou Di Zhu, we employ
a two-stage combinatorial Q-learning (CQL) algorithm that
at each stage, only tens to a hundred actions need to be con-
sidered. For state s in each agent’s original Markov Deci-
sion Process (MDP), we replace it with two states, called
sc and sf (“c” for “combination” and “f ” for “fine-grained
action”). When in sc, agents choose the best decomposition
and then in sf , agents choose the best final move within pre-
viously selected decompisition. At each stage, a new set of
actions need to be defined, Ac and Af respectively.

Denote current handheld cards as a set H, all legal moves
as L, which is a set of card sets. Ac and Af are defined as
follows:

Ac := {A(1)
f ,A(2)

f , . . . ,A(D)
f } (4)

A(i)
f := {C1

(i), C
2
(i), . . . , C

K
(i)} (5)

where D is the number of possible decompositions given
current handheld cards and K is the number of card groups
within each decomposition. Cj

(i) (j = 1, 2, . . . ,K) is the
card group to play at each round, described in section 3. To
ensure that A(i)

f is a valid decomposition, we need:

∪K
j=1C

j
(i) = H, (6)

∩K
j=1C

j
(i) = Ø, (7)

Cj
(i) ∈ L, for all j = 1, 2, . . . ,K (8)

During online update of Q-learning, the original trajectory
sample (s, a, r) is replaced with two samples (sc, ac, 0) and
(sf , af , r), forming a two-stage hierarchical MDP, shown in
Figure 1. To this end, we design two novel networks: De-
composition Proposal Network (DPN) and Move Proposal
Network (MPN), to evaluate corresponding Q values.

DPN. In DPN, to get Q(i)
c := Q(sc, a

(i)
c ) where a

(i)
c :=

A(i)
f , we adopt the idea of PointNet (Qi et al. 2017). For

each card group Cj
(i) ⊆ H represented as a 1D binary vector,

we extract its 1D feature fCj
(i)

through 1D convolution lay-
ers (with average pooling in the end) followed by fully con-
nected layers: fCj

(i)
= FC(CONV (Cj

(i))). Then we per-
form maxpooling on all card groups’ features to get a global
feature: f (i)

g = MAXPOOL(fC1
(i)
, fC2

(i)
, . . . , fCK

(i)
). Fully

connected layers follow and Q
(i)
c = FC(f

(i)
g ).

MPN. After choosing the best decomposition A(i�)
f , in

MPN, to get Q(j)
f := Q(sf , a

(j)
f ) where a

(j)
f := Cj

(i�), we
concatenate each card group’s local feature fCj

(i�)
with the

global feature f
(i�)
g , passing it through fully connected lay-

ers: Q(j)
f = FC(CONCAT (fCj

(i�)
, f

(i�)
g )). The whole net-

work architecture is shown in Figure 2.
There are two advantages of employing this two-stage

combinatorial Q-learning.
• First, it greatly reduces the original action space into a

hierarchical action space. In DPN, only the sampled de-
compositions need to be considered. Besides, after choos-
ing the appropriate decomposition, MPN only considers
each possible moves in this chosen decomposition.

• Secondly, in DPN, the relationship among all card groups
(legal moves) in a single decomposition is also consid-
ered, analogy to human players’ strategy on Dou Di Zhu.
This relationship is extracted by a global order-invariant
element-wise maxpooling, forming a global feature. This
global feature is representative for the decomposition and
can be used to get its Q value.

5 Experiments

In this section, we first describe the implementation details
and then compare CQL with other reinforcement learning
methods that directly flatten out combinatorial actions. Fi-
nally, we compare our self-play trained agents with other
Dou Di Zhu baselines.

304



5.1 Implementation Details

Fast Handheld Cards Decomposition. In our implemen-
tation, to find legal card groups that form a decomposition
effectively, we leverage the method of dancing link (Knuth
2000).

Compared with naive depth-first-search algorithm, it dra-
matically reduces computational time of decomposing hand-
held cards (from tens of seconds to tens of milliseconds),
especially when there are more than ten handheld cards.

Hyperparameters. In our model, hyperparameters are
chosen with Bayesian optimization together with memory
and computational limits. We use 2,500 steps within per
epoch. The maximum size of replay buffer is 3,000. The
number of sampled decompositions in DPN stage is 100 at
training time and 1,000 at evaluation time. The learning rate
is 1e-4 with Adam (Kingma and Ba 2014) optimizer. The
exploration rate is linearly interpolated among anchors at
0,30,100,320 epochs with 1,0.5,0.3,0.1 values respectively.

5.2 Ablation Study on DPN and MPN modules

In this section, we show that how our proposed combinato-
rial Q-learning with DPN and MPN outperforms other meth-
ods that directly learn in the large discrete action space.

We train a single agent with a Recursive Handheld Cards
Partitioning algorithm (CSDN blog 2017) (RHCP, see de-
tails of this algorithm in supplementary material) as oppo-
nents. Here, we only train the agent Landlord. We com-
pare the winning rate of our algorithm with those of A3C
(Mnih et al. 2016) and naive DQN (Mnih et al. 2015;
Van Hasselt, Guez, and Silver 2016). Combinatorial Q-
learning shows a superior performance as shown in Figure
3. The results are obtained by playing against the other two
RHCP agents as environments for 50 episodes after each
epoch.

CQL

A3C

Naïve DQN

Epoch
0 20 40 60 80

W
in

n
in

g
 R

at
e

0.0
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0.2

0.3
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Figure 3: Winning rate of the agent Landlord trained with
combinatorial Q-learning, A3C and naive Q-learning meth-
ods. All methods use RHCP as opponents (two Peasants).
2

2Naive Q-learning’s gradient explodes up even with learning

From Figure 3, we see that our proposed combinatorial Q-
learning wins over all other baselines with a large gap (30%).

Naive DQN does not even converge since there are plenty
of actions (more than 13K); the off-policy learning target
with max-Q operation in Bellman equation becomes ex-
tremely unstable and overoptimistic given large discrete ac-
tion spaces.

A3C works but only up to a limit. A3C introduces a value
approximator and in some extent, it reduces variance intro-
duced by large action spaces. However, it is still too hard for
A3C to learn the special combinatorial structures of actions
in card games like Dou Di Zhu.

Combinatorial Q-learning solves this problem with a
huge improvement. It greatly raise the upper bound that
could be obtained by deep learning approach. When utiliz-
ing combinatorial decompositions of handheld cards, train-
ing becomes much more stable.

5.3 Comparison to Dou Di Zhu Baselines

There are three different roles in Dou Di Zhu namely Land-
lord and two Peasants. We utilize independent Q-learning in
an asynchronous manner. To realize this, we train our agents
simultaneously from scratch with only the information of
game rules. During each training iteration, individuals be-
have in an environment with the other two agents as oppo-
nents. All parameters are updated online. We train the model
on a server with one 32-core AMD Threadripper CPU and
one 1080Ti GPU for 130 epochs in 20 days.

Figure 4: Learning curves for CQL. Up: Winning rates of
different agents, evaluated with RHCP as opponents. Down:
Adversarial winning rates of Landlord and Peasants.

rate smaller than 1e-6 and we use the winning rate of the model
with random assigned weights.
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Figure 5: Winning rates of different models playing against each other. Y-axis denotes the type of model used as agent, which
has three roles Landlord, Peasant Down and Peasant Up. X-axis denotes the type of model used as environments (the other two
agents). For example, the left bottom figure shows the winning rate of MCTS {Landlord, Peasant Down, Peasant Up} player
playing against the other two random players, respectively. Standard derivations are shown in black lines.

Adversarial Training Results. The training curve is
shown in Figure 4. From the top, we see that gradually,
all three agents become stronger and stronger. Landlord
achieves the biggest improvement since Landlord seldom
wins under random actions. Besides Landlord, the two Peas-
ants also learn from playing against Landlord and obtain an
improvement in learning rate of about five percent.

From the bottom, we see that at first, Landlord is rather
weak and wins much less than Peasants. However, through
purely adversarial play, Landlord becomes stronger quickly
and can obtain a comparable winning rate with Peasants.
Throughout the whole training process, we see that our net-
work is not likely to fall into local minima within which, one
could easily defeat another.

Performance against RHCP, Random and MCTS
Agents. Since there is no “oracle” or public rankings for
Dou Di Zhu, to evaluate our model against other base-
line models (random, RHCP, MCTS), and we let them play
against each other. MCTS is the algorithm proposed in
(Powley, Whitehouse, and Cowling 2011), which is a state-
of-the-art Monte-Carlo tree search algorithm for Dou Di
Zhu. We used 50 determinizations with 250 UCT iterations,
similar to (Powley, Whitehouse, and Cowling 2011), with
ten-thread parallelization. For example, to test the perfor-
mance of a single agent of our model, this agent would
play against the other two random or RHCP based agents,
which are considered as environments. All three agents’ per-
formance will be evaluated in this way and the results are
shown in Figure 5. The results are obtained by playing 100
episodes for 10 times with different random seeds.

We can see that CQL based agents achieve a compara-
ble performance playing against RHCP and MCTS based
agents. In contrast, we do not hard-code the conditions that
agents may meet and our agents could potentially learn some
patterns that beyond human’s interpretation.

6 Conclusion

In this paper, we introduce Dou Di Zhu as a challenging re-
inforcement learning environment. Then we propose a novel
learning method combinatorial Q-learning (CQL) to handle
combinatorial action space and complicated action relation-
ships in Dou Di Zhu.

DPN and MPN are introduced to handle non-trivial rela-
tionships among different handheld cards. In our experiem-
nts, we validate that our proposed DPN and MPN together
not only outperforms other reinforcement learning methods
but also achieve a comparable performance against other
strong baselines, by training adversarially.

Our method can be improved by explicit encoding cooper-
ation units between two Peasants and we leave it as a future
work.
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