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Abstract

Cooperative games are an important challenge for AI re-
search. One example of this genre of games is the board
game Pandemic, characterized by the challenges it presents,
including its considerable search space and hidden informa-
tion, especially when the cooperators are not able to com-
municate explicitly. The game pushes players to prioritize
between short term and long term objectives, which forces
them to not only plan their own individual actions but also
to cooperate with the other players in order to win the game.
In this paper we present a planning agent which uses state-
space planning with a domain-specific heuristic, combined
with a Monte Carlo sampling approach to predict possible
outcomes in the face of hidden information. We performed
several experiments with our agent, including a comparison
with a baseline version that does not use planning. Our ex-
periments showed that our agent is able to win about a third
of the games played in a realistic game setup.

Introduction
Games provide an ideal environment for AI research, be-
cause they grant researchers a controlled environment with
a specific set of rules and, usually, a scoring system that
eases the evaluation of the agents (Bowling et al. 2006;
Bellemare et al. 2013).

Previous applications of AI research in games were
mainly focused on competitive game play, be it as part of
the game itself (controlling the non-playable characters) or
as a way to compete against experienced players in various
games, as is the case of Deep Blue for Chess (Campbell,
Hoane, and Hsu 2002), Alpha Go for Go (Silver et al. 2016),
Alpha Star for Starcraft II (Vinyals et al. 2019), or OpenAI
Five for DotA 2 (Berner et al. 2019). However, when dealing
with cooperative environments, in which players must work
together to achieve a common goal, research has been more
limited and often focused on explicit communication.

In this paper we will describe agents that use planning to
play the cooperative game Pandemic, which we previously
proposed as a new domain for AI research because provides
new challenges regarding cooperation (Sauma Chacón and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Eger 2019). The game presents the players with the prob-
lem of competing goals, hidden information and a large ac-
tion space which make the problem challenging. We treat
the game as a closed system, explicitly excluding commu-
nication between the players about the game state, in order
to focus on cooperation by observation. We will first explain
the game, and the restrictions we placed on it, then describe
our agent design and how it approaches the game, before we
present the results of our experiments.

Pandemic
Pandemic is a cooperative board game developed by Matt
Leacock (Leacock 2008) in which a group of two to four
players must work together to discover the cures to four dis-
eases spreading through the world. The game is played on a
board with the image of a map of the world with forty-eight
important cities connected to one another through paths.
Each city has a specific color which defines which of the
four diseases will appear in the city when an infection takes
place. Each player is represented by a meeple, which shows
the current location (=city) of the player on the board. There
are seven roles that give the players bonuses. Each players is
assigned a different role at the beginning of the game.

The game makes use of two main card decks: the infec-
tion deck and the player card deck. The infection cards make
up the infection deck and are used to randomize the process
in which the next city to get an infection is chosen. There is
one infection card for each city. The player cards, together
with the event cards and epidemic cards are grouped into
a single deck to make up the player card deck. The player
cards, of which there is also one per city, are used by the
players to discover the cures to the diseases, build research
stations, can be traded between players and can be used to
move quickly from one place to another. The event cards al-
low a player to perform a special action particular to each
such card. The epidemic cards, when revealed, cause an epi-
demic to happen in a city, spreading one of the diseases to
that city. The city which is being infected this way is selected
by getting the bottom card of the infection deck.

The game keeps track of the infections in each city by
using disease cubes of four different colors to represent in-
fections of the four illnesses. When a city is getting infected
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a disease cube of the disease’s respective color is added to
the city. Whenever a city is going to get infected and would
get a total of more than three cubes of the same color an
outbreak occurs. During an outbreak each of the neighbor-
ing cities is infected and also gets another disease cube. This
may cause chains of outbreaks to occur, if one of the neigh-
boring cities already had three cubes on it, which must be
resolved in order to continue. An epidemic causes a city to
be infected by three cubes of its own color and then the in-
fection deck discard pile is shuffled and added on top of the
infection deck. This results in the same cities that were al-
ready affected by the diseases to be affected again when the
next cards are drawn.

The players have to work together to discover the cure
to the four diseases. The challenge of the game Pandemic
comes from keeping the diseases at bay while the main ob-
jective of finding the cures is being completed. The players
can lose if any one of three conditions is met: The diseases
spread too much (there are more than twenty-four disease
cubes of the same color on the board), a “world panic oc-
curs” (eight or more outbreaks happen throughout the game)
or the players run out of time (there are no more cards in the
player card deck and a player needs to draw).

Each turn, one of the players (taking turns in order) will
perform four actions, will draw two player cards and draw
a given number of cards from the infection deck, infect-
ing the corresponding cities. For their actions, the players
may choose among four different types of movement actions
(some of them requiring the use of a player card or having
cities with research stations), treating a disease (removing
an infection cube from the city they are currently in), build-
ing a research station in the current city (by discarding a
player card with its name), transferring player cards to or
from other players (if both players are on the same city and
the transferred card is the one of the current city) and discov-
ering a cure (which requires five cards of the same color).

The players are assigned one of the seven different roles at
the beginning of the game which grant them special bonuses:
• The Scientist can discover cures using only four cards of

the same color.
• The Medic removes all infection cubes of a color when

treating a disease and does this for free after the cure for
the disease is discovered.

• The Quarantine Specialist prevents infections from hap-
pening in their current city and all neighboring cities.

• The Researcher can transfer their cards to other players
regardless of the city name.

• The Dispatcher can move other players’ meeples as their
own and rally a player to another’s position.

• The Operations Expert can build research stations without
discarding cards and move from a city with a research
station to any other.

• The Contingency Planner can keep an additional event
card in their hand and reuse discarded event cards a sec-
ond time.
To be successful, the players must move around the cities

on the board, trying to prevent the spread of the diseases,

transfer cards among them (which requires them to be in the
same city as that card), and manage to discover cures be-
fore any of the loss conditions are triggered. This forces the
players to make decisions about whether to spread out across
the board to contain the disease or stay together to help
each other and exchange cards. The players must reevaluate
this decision every turn to adapt to the new situation, which
makes the game an interesting challenge for players and as
a research problem.

Restricted Pandemic
Pandemic, as a game, presents a major challenge for AI re-
search. In order to reduce the complexity of the game, while
still keeping the core gameplay intact, we placed some lim-
itations on the game. First of all, the event cards, which a
player can play at any moment (even between steps of a
phase) were removed. The removal of these cards does not
impact the core mechanics of the game since the main ob-
jectives and player actions remain the same. However, their
removal has a slight impact on the game, since having fewer
cards in the player deck results in fewer turns for the play-
ers to win the game (aside from not having the event cards
which are an additional tool for the players). Many of the
event cards, aside from being playable at any given moment,
have effects that can target the whole map (setting a research
station at any city or moving a player anywhere on the board)
which greatly increased the complexity of the game by the
amount of options available to the player and the possible
times in which it could be played.

We limited our work to four out of seven roles, which
will still provide significant variation in game play. The roles
removed from the original game were the Dispatcher and
the Operations Expert because of how they greatly increase
the number of available movement actions. The Contingency
Planner was removed too, since it has abilities related to the
use of event cards.

The focus of our research was game play and the coopera-
tion itself, and as such we view every player as its own, inde-
pendent entity. In a tabletop setting, players may talk freely,
but our version of the game does not allow for any explicit
communication between the players, and instead collabora-
tion must rely on observing the other players’ actions and
reacting to them appropriately.

Related Work
There has been an increasing interest in the study of coop-
erative games in recent years. Perhaps one of the most stud-
ied games in this area is the game Hanabi (Bauza 2010),
which faces the players with the challenge of working to-
gether in a game of restricted communication and unknown
information. Hanabi has been proposed as an ongoing chal-
lenge for AI research (Bard et al. 2019). Research on Han-
abi focuses mainly in its communicative aspects. Therefore
agents have mainly relied on using protocols to convey in-
formation (Bouzy 2017) or communication theory to address
the problem (Eger, Martens, and Cordoba 2017).

There have also been efforts to utilize planning for AI
agents in games. Planning is the process by which, given
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an initial state, a set of actions that can be performed and
a goal condition, a sequence of actions is found that trans-
form the initial state into a state that satisfies the goal (Fikes
and Nilsson 1971; Weld 1994). Planning has been used in
games with great success as is the case of the game F.E.A.R
were agents are able to plan ahead of the player to devise
a plan to defeat them (Orkin 2006). This approach proved
successful especially because of the versatility it provided
towards different types of agents: the planning process can
be performed regardless of the particular characteristics of
the various enemies in the game, and a single planner can
therefore be used by all the different kinds of enemies de-
signed for the game.

Similar approaches to planning have been taken in fu-
ture games, like in Shadow of Mordor (Higley 2015) and
in Tomb Rider (Conway 2015). While these planning agents
were competing with the human player, they implemented
some degree of cooperation between the different non-
player characters by communicating their plans.

However, in the previous mentioned examples, the plan-
ning agents engage in systems with little to no hidden infor-
mation, which is not the case in Pandemic. For games with
hidden information, which make the future unpredictable,
other approaches have proven more useful, such as Monte
Carlo Tree Search (Coulom 2006) which performs simu-
lations of the game, building up information to decide the
best course of action. This kind of approach has been used
successfully in card games like in Poker (Van den Broeck,
Driessens, and Ramon 2009) and Magic: The Gathering
(Cowling, Ward, and Powley 2012).

While there has been some prior treatment of Pandemic in
a research contest, the game has been approached in a rather
different way than what we propose. Berland et al. used the
game to study computational thinking among groups of hu-
man players (Berland and Lee 2011), while Wallace et al.
evaluated the impact of automation in digital tabletop board
games in various degrees (Wallace et al. 2012). The game
has previously been proposed as a domain of interest for arti-
ficial intelligence research (Sauma Chacón and Eger 2019).
More recently, the development of an agent for the game
was performed using the Rolling Horizon Evolutionary Al-
gorithm (RHEA) obtaining a winrate of up to 22% in games
with randomized setups (Sfikas and Liapis 2020). This ap-
proach used a macro-action encoding to reduce the com-
plexity of the plans and used an evolutionary algorithm to
develop a better plan to be taken by the agent. Similar to
our work, the authors also opted to remove event cards, and
simplify the game. However, our approach does not need a
macro-action encoding, and outperforms their agents in al-
most all scenarios.

Planning Agent
This section describes the agent we developed to play Pan-
demic, which uses a planning-based approach that we aug-
mented with a sampling strategy to account for the unknown
information. We will first describe how game states are en-
coded in our game and how game actions can be use to ex-
pand these states resulting in a state-space encoding of the
game. Afterwards, we will discuss which goals our agent

may choose to pursue, and how it determines which one to
use in a particular situation. To handle the unknown infor-
mation present in the game, we will then elaborate on the
sampling procedure used by the agent, before describing the
state evaluation heuristic we use to aid the search process.

State Space Search
In order to perform a planning procedure, our agent needs a
representation of the game state and the actions it can use,
and which would be the resulting state of applying an action.
We can think of a game state as a node in a graph and all the
possible actions as the edges which connect a game state to
all “neighboring” game states which would result from tak-
ing each specific action in the current state. This representa-
tion allows us to view the problem as that of traversing the
graph to a desired destination. To this end, we perform plan-
ning using the A* algorithm which requires a heuristic, to
assign a value to each game state, and goal function to eval-
uate if a given state satisfies the desired objectives. When a
state that satisfies the goal is found, the sequence of actions
(edges) taken by the agent to arrive at it is the resulting plan
to be executed.

However, there are some challenges to planning which are
imposed by the game itself that must be taken into account.
Not all of the information is known to the player at any given
moment. The two card decks of the game are a source of
unknown information for the player. This increases the dif-
ficulty planning by making the outcome of a given plan un-
predictable.

Our game state representation allows the agent to know
which cards are currently in each players’ hand, their po-
sition, the different infections among cities, the cures dis-
covered, the current turn and actions remaining. For the un-
known information we only keep track of the cards still re-
maining in the decks, and any known order should there be
one (e.g: after shuffling the discard into the top of the deck
in an epidemic). This representation also allows the agent
to know which actions are currently available at that point
in the game and the states that would be obtained for per-
forming each of those actions (e.g: treating a disease would
reduce the number of infections in that city).

In many cases, trying to plan until the end of the game be-
comes unfeasible given how quickly the search space grows
with each action to be taken by the players (about six-fold
for each action). Furthermore, the game presents the player
with the problem of deciding which objective to focus on:
should they focus on discovering the cures or should they fo-
cus on fighting the diseases. This objective is quickly chang-
ing during the game, as the players change and adapt their
strategies each time new information is revealed.

Competing Goals
We defined two different goals for our agent to decide be-
tween: the discover cure goal and the survive goal. The dis-
cover cure goal is directly related to the main objective of
the game, discovering all four cures. The goal is satisfied
when a state is found that has one more discovered cure than
the current game state. The survive goal is directly related
to the maintenance goals required to not lose the game: the
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prevention of the spreading of the diseases. This goal is con-
sidered to be satisfied when the agent managed to reach a
state that is two turns ahead of the current state (it managed
to survive). However, as there will usually be several states
satisfying this condition, the agent uses its heuristic evalua-
tion of state to choose the most favorable one.

With these two goals available, our agents uses a rule
based approach to choose its current goal. Whenever the
agent must perform an action, and new information has be-
come available since the last planning pass, an evaluation of
the game state will be performed to choose the agent’s goal.
The agent evaluates if it is possible to discover a cure with
the current cards. If that is the case, it chooses the discover
cure goal, otherwise it chooses the surviving goal.

Unknown Information
As previously mentioned, the two decks used in Pandemic
(player and infection decks) make the game have a degree
of uncertainty because their order is (mostly) unknown. This
hidden information makes the results of turns unpredictable
since players rarely know for certain which cards are go-
ing to show up during their draws and as such are forced to
“hope for the best” for their player cards and “prepare for
the worst” for the infection cards.

To handle the problem of the uncertainty related to the
card draws, a Monte Carlo sampling approach is used by
our agent to simulate the card draws performed at the end of
the turn. During the planning process, the drawing and in-
fection phases are skipped, only coming up with a plan with
the information that is currently known. When a possible
goal state is encountered it is evaluated performing a hun-
dred rollouts simulating possible card draws and evaluating
the resulting states. The expected value is then used as the
value of the goal state and the planning continues, allowing
for other plans which may have a better expected result to be
found before concluding the planning.

State Evaluation Heuristic
Our agent depends on a way to evaluate the states it can
visit to guide the search procedure and when comparing dif-
ferent potential goal states it reaches. This is necessary as
its goals do not represent the end of the game and there-
fore a way to find more desirable states (closer to winning
the game) is necessary. For this purpose our agent uses a
heuristic function which evaluates a game state using differ-
ent terms which it tries to minimize.

The agent uses two main in-game distance values which
are used depending on the current goal of the agent. The
first one, seen in equation 1 measures the distance to all the
cities times the number of disease cubes (infection) present
in them, these are then averaged over the total number of
disease cubes in the game. The purpose of this equation is to
motivate the agent to remain closer to groups of cities with
high infection count when pursuing its “survive” goal. The
second distance term, seen in equation 2, calculates the dis-
tance to the closest city with a research station in it. This re-
wards the player for staying close to research stations when
trying to discover a cure (“discover cure” goal).

hdsurv =

Player∑

p

∑City
c distance (p, c) · infection (c)

∑City
c infection (c)

(1)

hdcure =

Player∑

p

min
c∈City∧cRS

distance (p, c) (2)

To measure the value of the player cards in the game, the
agent uses an equation for the cards in the players’ hands and
another equation for the cards in the discard pile. The value
of the players’ hands is calculated, as seen in equation 3, as
the minimum number of cards missing to discover a cure for
each disease color among the players’ hands (R being 4 for
the Scientist and 5 for every other player). This has the effect
of motivating the grouping of cards of the same color. The
value of the cards in the discard is calculated, as shown in
equation 4, as the sum of the number of discarded cards for
each of the active diseases still missing a cure.

hcards =

Color∑

k

activek · min
p∈Player

R− cards (p, k) (3)

hdisc =

Color∑

k

activek · discard (k) (4)

The total number of infections, as seen in equation 5 is
used as a means to motivate the agent to control the propaga-
tion of the diseases. As to give a value to the construction of
research station, whose value is more related to its ability to
reduce the required number of future actions, the agent uses
the value present in equation 6, which calculates the aver-
age distance required to move from each city to another city
with a linearly decreasing value associated with the num-
ber of turns remaining (taken from the amount of cards still
remaining in the player deck). Lastly, the final measure, pre-
sented in equation 7, counts the number of active diseases
which are still lacking a cure. This value is strictly related to
the main objective of the game which requires the players to
discover all four cures (minimize the value of the term to 0)
to win.

hinf =

City∑

c

infection (c) (5)

hdist =

City∑

c1

City∑

c2

distance (c1, c2)

48 · 47 · turnsremaining

turnsmax
(6)

hcures =

Color∑

k

activek (7)

When evaluating a state, the agent takes the terms defined
by these equations and multiplies each of them by a weight
to give different importance to the different terms, and sums
them to calculate the heuristic value of a state. These weights
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Table 1: Winrate for the heuristic agent over 3000 games
with varying amount of players and difficulty (±0.54% with
a confidence of 95%).

Epidemics 4 5 6
2-players 2.27% 0.83% 0.37%
3-players 0.60% 0.10% 0.03%
4-players 0.03% 0.00% 0.00%

can be seen as hyper-parameters of our heuristic. These val-
ues are used in the search process when executing the A*
algorithm to perform the planning and when performing the
rollouts of the possible card draws to obtain the expected
values.

In order to determine the weights we performed a simple
grid search procedure resulting in the overall definition of
our heuristic as shown in equation 8. The values used in the
grid search were chosen from preliminary tests.

hstate = 0.5 · hdsurv + 0.5 · hdcure+ (8)
1 · hcards + 0.5 · hdisc+

0.6 · hinf + 0.6 · hdist+

24 · hcures

Results
In order to evaluate the performance of our agent, we per-
formed an experiment in which it played 3000 games with
itself for each of several different setups, varying the num-
ber of players and the number of epidemic cards in the player
deck. Concretely, we performed experiments with each com-
bination of 2, 3 and 4 players, using random possible role
assignments of the four roles Scientist, Researcher, Quaran-
tine Specialist and Medic to the players (which means, that
for games with 2 players there were

(
4
2

)
= 6 different com-

binations, while a 4 player game only affords on possible
combination), as well as a number of pandemics equal to 4,
5 and 6.

We implemented a simple heuristic agent as baseline,
based on the state evaluation heuristic presented above. The
heuristic agent will greedily choose its actions based on the
immediate best option, as measured by the evaluation func-
tion (equation 8), minimizing the cost of the next state.

We measure the success of the agent using two metrics:
the winrate and the average number of cures that were dis-
covered in a game. The winrate is calculated as the percent-
age of games won by the agent, while the average discov-
ered cures per game allow us to predict how close the play-
ers were to winning the game. The winrate for the heuristic
agent is shown in table 1 and the winrate of the planning
agent over 3000 games is shown in table 2, while the results
for the average cures per game can be seen in the table 3.

When comparing the winrate results of the heuristic and
the planning agent it becomes evident that a naive, greedy
approach does not perform very well, but that planning
greatly increases the amount of games won. When playing
with two players it is still possible for the heuristic agent
to win the game, though it is unlikely, only winning around

Table 2: Winrate for the planning agent among 3000 games
with varying amount of players and difficulty (±1.70% with
a confidence of 95%).

Epidemics 4 5 6
2-players 34.27% 17.63% 5.67%
3-players 21.73% 8.73% 2.53%
4-players 15.60% 5.13% 1.70%

Table 3: Average number of cures discovered by the plan-
ning agent among 3000 games with varying amount of play-
ers and difficulty (±0.04 with a confidence of 95%).

Epidemics 4 5 6
2-players 2.80 2.27 1.67
3-players 2.41 1.83 1.30
4-players 2.22 1.54 0.92

1 out of 50 games. Planning seems to be a crucial part of
this game since it is required for cooperation (what will my
teammate do? how can I assist with it?), while also playing
an important role in preparing for the possible outcome of
events.

As for the results of both of the tables of the planning
agent, two different patterns can be seen: as the number of
players increases both the winrate and the average number
of discovered cures decrease; and the same happens when
increasing the number of epidemics in the game. The reduc-
tion of the winrate and the average discovered cures caused
by the increment of the epidemics was to be expected, sim-
ply by the fact that increasing a game’s difficulty tends to
lower the players’ winrate.

The agent’s performance in games with more players is
caused by each individual player performing fewer actions,
which would require more direct cooperation, and perhaps
even communication, than our agents are currently attempt-
ing. It can also be explained by the fact that the planning
agent applies limits to how far ahead it plans (when “surviv-
ing”). We limit the search to 2 turns ahead, which means that
with a larger amount of players, our agent doesn’t take into
account the possible plays performed by the other agents.

A final observation regarding these results is how the av-
erage number of discovered cures impacts the winrate. For
example, in the case of the games with 4 epidemics, the dif-
ference between the averages of the games with 2 players
and the ones with 4 players is 0.58, however this small re-
duction represents a reduction of 18.67% in winrate.

The agent’s performance varies depending on the as-
signed roles. In figure 1 the different winrates obtained by
the agent in the games with 2 to 4 players and 4 to 6 epi-
demics with the different combinations are presented.

The Scientist (S) role has an impact in the 2 player games,
combinations containing the Scientist have a greater winrate
than the others. This overall increase in winrate can be ex-
plained by the fact that the Scientist can discover cures with
only four cards of the same color, rather than 5 compared to
the rest of the players, reducing the number of cards required
to win the game up to 20%.
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Figure 1: Winrate for the planning agent when using differ-
ent role combinations. ‘S’ for Scientist, ‘R’ for Researcher,
‘Q’ for Quarantine Specialist and ‘M’ for Medic.

The Researcher (R) role, which can hand their cards to
other players more easily than other roles, also seems to have
an important effect on the winrate on the combinations with-
out Scientist. The difference can be explained by the fact that
while the Scientist and Researcher are cure-focused roles,
they lack abilities to help contain the diseases, so while their
abilities might help them to win the game more easily, they
are failing at preventing the spread of the diseases and los-
ing the game before they can discover the cures. In contrast,
the Scientist-Medic combination allows the Scientist to fo-
cus solely on discovering the cures while the Medic (M) fo-
cuses on preventing the spread of the diseases.This explains
why the S-M combination gets a larger winrate than S-R,
even though the Researcher plays the biggest role in non-
Scientist 2 player combinations. The worst result was ob-
tained by the Medic-Quarantine Specialist (M-Q) combina-
tion, which lacks any role specialized in discovering cures
which might explain why the combination makes it difficult
to win the game.

In the 3 player game however, the Scientist role seems to
become second in importance to the Researcher role. This
is supported by the fact that when there are more players
in the game, each player has fewer turns which also affects
the number of cards they draw. The Researcher role can give
other players their cards which helps the other players to ac-
quire the cards required to discover cures and win the game,
while the Scientist suffers from the reduction in drawn cards.
The two combinations of 3 player games in which the Scien-
tist and Researcher participate are the ones with the highest
winrates because they can focus on discovering cures while
the third player focuses on treating the infections. However,
when the Scientist plays with the Medic and Quarantine Spe-
cialist it gets the worst result of the four combinations, likely
due to the reduction of card draws by the Scientist and the
treatment-focus of the team.

Finally, for the 4 player game with a single combination
the obtained results are still better than some combinations

of the 2 player and 3 player game. This once again can be
explained by the fact that, even if there’s a reduction in the
number of turns and cards drawn by each player, the synergy
of the Scientist and Researcher roles can work in favour of
the team while the other players focus on fighting the spread
of the disease.

Conclusions
In this paper we presented our implementation of a planning
agent for the game Pandemic. We explained how we decided
to simplify the mechanics of the game to reduce its complex-
ity, as well as the different challenges an agent faces in the
game, while also detailing how we approach each of them.

We presented the results for our agent with varying num-
bers of players and epidemics, obtaining a winrate of over a
third of the played games for the two-player four-epidemic
scenario. This agent demonstrates a new way of facing co-
operative challenges with unknown information through the
use planning and sampling. We demonstrate how planning
provides a significant improvement over greedy, heuristic-
based approaches when dealing with complex scenarios with
competing goals.

There is still ground for improvement in our agent, new
heuristic functions can be tested which take into account
other factors of the game or use different ways of measur-
ing values. A different set of goals can be defined which
might impact the results, as well as refining the goal choos-
ing heuristic. The agent could be upgraded to be able to in-
teract with a higher number of players, since currently it just
takes the next player’s turn into account when planning. To
this end, plan recognition could be considered as a way to
increase the effectiveness of the cooperation by the agent,
by allowing it perform teammate modelling.

Cooperative game play with humans can be considered as
a future project. This would be done by measuring how the
interaction between a human player and a planning agent
change the results obtained. To this end, plan recognition
could be a useful tool in improving cooperation with human
players.

Finally, other approaches without planning can be used
for developing an agent for Pandemic. The planning agent
can be used as part of a training stage for a neural network
approach, be it through reinforced learning or supervised
learning. For this reason, the source codes of the agents
and experimental setup have been made available pub-
licly for free in the repository: https://github.com/BlopaSc/
PAIndemic.
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