
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Exploring Level Blending Across Platformers via Paths and Affordances

Anurag Sarkar,1 Adam Summerville,2 Sam Snodgrass,3 Gerard Bentley,4 Joseph Osborn4

1Northeastern University
2California State Polytechnic University

3modl.ai
4Pomona College

sarkar.an@northeastern.edu, asummerville@cpp.edu, sam@modl.ai,
gbkh2015@mymail.pomona.edu, joseph.osborn@pomona.edu

Abstract

Techniques for procedural content generation via machine
learning (PCGML) have been shown to be useful for generat-
ing novel game content. While used primarily for producing
new content in the style of the game domain used for training,
recent works have increasingly started to explore methods for
discovering and generating content in novel domains via tech-
niques such as level blending and domain transfer. In this pa-
per, we build on these works and introduce a new PCGML ap-
proach for producing novel game content spanning multiple
domains. We use a new affordance and path vocabulary to en-
code data from six different platformer games and train vari-
ational autoencoders on this data, enabling us to capture the
latent level space spanning all the domains and generate new
content with varying proportions of the different domains.

Introduction

Procedural content generation via machine learning
(PCGML) (Summerville et al. 2018) refers to techniques
for PCG using models trained on existing game data. This
enables the generation of game content that is novel but
still captures the characteristics and patterns of the data
used for training. While a lot of prior PCGML work has
looked at generating content for a single domain such
as Super Mario Bros. (Summerville and Mateas 2016),
The Legend of Zelda (Summerville and Mateas 2015) and
Doom (Giacomello, Lanzi, and Loiacono 2018), recent
works have started to focus on more creative PCGML
techniques (Guzdial and Riedl 2018b) that attempt to learn
models capable of producing content outside of the domain
used for training. That is, rather than attempting to produce
novel variations of content within an existing domain, these
techniques blend existing domains into entirely new ones
and generate content for these new domains. This yields
models that can generalize better across different domains—
a key challenge of PCGML. Moreover, such cross-domain
models could prompt the discovery of novel game designs
previously hidden in the combined design space of the input
domains. Techniques for such PCGML approaches have
involved domain transfer (Snodgrass and Ontañón 2016),

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

blending separate models to produce generators (Sarkar and
Cooper 2018), and constructing game graphs using learned
models of levels and game rules (Guzdial and Riedl 2018a).
Our paper most directly builds on the approach of training
models on multiple domains to learn a new blended domain
space (Sarkar, Yang, and Cooper 2019).

We extend the prior method in a number of ways. We in-
crease the input domain from two to six games thus greatly
expanding the possibility space of the learned, blended do-
main in terms of new content. We also introduce a new,
unified affordance vocabulary consistent across all domains
which expands significantly on such vocabularies used in
prior PCGML work. Rather than ignoring game mechanics,
we annotate the input domains with paths generated by an
A* agent informed by the jump arcs of each domain. Finally,
like prior blending work, we use variational autoencoders
(VAEs) to learn our models but train two varieties—one
composed of linear layers and another using GRU layers—
and compare their performance. To the best of our knowl-
edge, this is the first application of a GRU-VAE for PCGML.

Related Work

Procedural content generation via machine learning
(PCGML) (Summerville et al. 2018) describes a collection
of PCG techniques that leverage existing data to build a
model from which new content can be sampled. There has
been extensive work on developing and adapting various
models (e.g., LSTMs (Summerville and Mateas 2016),
GANs (Volz et al. 2018), Bayesian Networks (Guzdial
and Riedl 2016), etc.) to be used in specific domains (e.g.,
Super Mario Bros. (Snodgrass and Ontañón 2017a), The
Legend of Zelda (Summerville and Mateas 2015), Kid
Icarus (Snodgrass and Ontañón 2017a), etc.). The drawback
of these PCGML approaches is that they require training
data from the domain they are meant to create content for,
limiting their use in new domains.

Several researchers have considered the limitation of re-
quiring training data in the target domain. Snodgrass and
Ontañón (2016) presented a domain transfer approach that
tried to find mappings between domains to enable data in
one domain to supplement the training data in another. This
still requires some data from a target domain and cannot

280



generate content for new domains. We instead extend prior
work that blends domains together to produce new domains.
Sarkar and Cooper (2018) used LSTMs trained on a com-
bined dataset as well as weighting separately trained LSTMs
to generate blended levels with segments from both Su-
per Mario Bros. and Kid Icarus. Sarkar, Yang, and Cooper
(2019) further applied VAEs for level blending, training
models on a combined dataset of segments from Mario and
Kid Icarus to admit interpolation between these domains.
We extend the above blending and transfer approaches by:
incorporating several additional domains to blend; defining a
unified level representation for the domains; annotating level
data with path information (so models can train on gameplay
as well as structural information); and evaluating a GRU-
VAE approach to level blending.

Other approaches have also been considered for blend-
ing games. Gow and Corneli (2015) presented a framework
for blending VGDL (Schaul 2014) descriptions of games,
demonstrating their approach by creating Frolda—a game
created by blending Zelda and Frogger. However, their ap-
proach was manual and limited to the VGDL framework.
Guzdial and Riedl (2018a) presented conceptual expan-
sion—an ML-based approach which creates game concept
graphs that can be blended and recombined to produce new
games. Recently, Snodgrass and Sarkar (2020) combined bi-
nary space partitioning and VAEs to generate blended plat-
former levels using a sketch-based level representation.

Like some past blending works, we use variational au-
toencoders (VAEs). VAEs (Kingma and Welling 2013), as
well as vanilla autoencoders (Hinton and Salakhutdinov
2006), have been used in several prior PCGML works. Jain
et al. (2016) used autoencoders for generating and repairing
Mario levels while Guzdial et al. (2018) used autoencoders
to generate Mario level structures conforming to specific de-
sign patterns. Thakkar et al. (2019) applied both vanilla and
variational autoencoders for generating Lode Runner levels.
Aside from level generation, Alvernaz and Togelius (2017)
used an autoencoder to learn a low-dimensional representa-
tion of the VizDoom environment and used it to evolve con-
trollers while Soares and Bulitko (2019) used VAEs for clas-
sifying procedurally generated NPC behavior.

Level Representation
We evaluate our approaches using six classic NES platform-
ing games, namely, Super Mario Bros., Super Mario Bros.
II: The Lost Levels, Ninja Gaiden, Metroid, Mega Man, and
Castlevania. Levels in these games vary greatly in their spe-
cific tile-based representations commonly used by PCGML
techniques (Summerville et al. 2018) and the VGLC (Sum-
merville et al. 2016) (e.g., different tile types defined for en-
emy types, power-ups, obstacles, etc.). For our models to
reason across domains, we need to unify the representations.
We accomplish this by leveraging the tile affordance work of
Bentley and Osborn (2019) to derive a common language.

We describe tiles in terms of the following affordances:
solid (the player can stand on this tile); climbable (the player
can use this tile to climb); passable (the player can pass
through this tile); powerup (this tile strengthens the player
in some way); hazard (this tile harms the player); moving

(this tile changes location); portal (this tile transports the
player somewhere); collectable (the player can pick up this
tile); breakable (the player can destroy this); and null (this
tile indicates a position outside of the actual level geometry).
This differs from the Bentley and Osborn affordances and is
specialized for side-scrolling games. Using the above affor-
dances, we defined a uniform set of tile types to represent all
of the domains in our experiments:
X: solid, (e.g., ground or platforms)
S: solid, breakable, (e.g., breakable bricks in SMB)
#: solid, moving, (e.g., moving platforms)
|: solid, passable, climbable, (e.g., ladders)
v: hazard, (e.g., spikes)
ˆ: solid, hazard, (e.g., lava or solid spikes)
e: moving, hazard, (e.g., enemies)
E: solid, moving, passable, hazard, (e.g., enemies the
player could pass through or jump on)
o: collectable, (e.g., coins)

*: collectable, powerup, (e.g., weapon refills in MM)
Q: solid, collectable, (e.g., coin blocks in SMB)
!: solid, powerup, (e.g., mushroom blocks in SMB)
$: portal, (e.g., doors in Metroid)
@: solid, null, hazard

We further annotate our levels with A∗ agent-generated
paths, where the agent is tuned to each domain prior to an-
notation according to the possible jump arcs in that domain.
We annotate our levels with paths because 1) incorporat-
ing pathing information has been shown to be beneficial to
PCGML techniques when learning the level geometry (Sum-
merville and Mateas 2016; Snodgrass and Ontañón 2017b),
and 2) it is our longer term goal to learn and blend not only
the level geometry, but the jump physics as well.

Lastly, the levels in each domain have vastly different
sizes and dimensions. We address this by breaking each level
into 15 × 32 sized segments, padding them vertically when
needed. For this work, we used the horizontal portions of
these levels to enable more holistic blending across domains
and leave considerations of vertical level segments in Ninja
Gaiden, Metroid and Mega Man for future work. Thus, to
generate our training data, we slid a 15 × 32 window hor-
izontally across all levels. Since some of the games have
discrete rooms (Castlevania, Mega Man, Ninja Gaiden, and
Metroid), if a door is found in the segment and it does not
lie on the edge of the segment, the segment is discarded.
Duplicate segments are also discarded (these often appear
in Metroid). We produced 775 segments for Castlevania
(CV), 1907 segments for Mario (SMB) (henceforth, we use
Mario and SMB to refer to the combined domain of both
Super Mario Bros. and Super Mario Bros II: The Lost Lev-
els), 924 segments for Mega Man (MM), 1833 segments for
Metroid (Met) and 504 segments for Ninja Gaiden (NG). We
oversampled all domains other than SMB to obtain approxi-
mately equal number of segments from all games in order to
prevent the learned blended models from skewing towards
any specific game(s).

281



(a) CV level window (b) NG level window (c) Met level window (d) MM level window (e) SMB level window

(f) CV basic tileset (g) NG basic tileset (h) Met basic tileset (i) MM basic tileset (j) SMB basic tileset

(k) CV uniform tileset (l) NG uniform tileset (m) Met uniform tileset (n) MM uniform tileset (o) SMB uniform tileset

Figure 1: This figure shows a window from a level from each of our domains (top row), that window represented using that
domain’s defined tileset (center row), and that window represented using our uniform tileset (bottom row).

Modeling and Generation

We used two different variants of VAEs for building our
models. Both were implemented using PyTorch (Paszke et
al. 2017) and are described in the following sections.

Linear VAE

For the linear model, the encoder and decoder each con-
sisted of 4 fully-connected linear layers using ReLU acti-
vation. Encoder layers had dimensionalities (11520x1024),
(1024x512), (512x256) and (256xlatent size) with decoder
layers having these in reverse order. We trained four ver-
sions of this model using latent dimensions of 32, 64, 128
and 256. All models were trained for 5000 epochs using the
Adam optimizer and a learning rate of 0.001.

GRU-VAE

The GRU-VAE is a sequence-to-sequence recurrent archi-
tecture that has encoder and decoder Gated Recurrent Units
(GRU) (Chung et al. 2014) with a variational latent sam-
pling. All GRU-VAEs were trained with the same numbers
and sizes of recurrent layers, with the only differences be-
ing the latent dimensions of 32, 64, 128 and 256—similar
to the Linear VAE. As in the earlier work of Summerville
and Mateas (2016), a top-to-bottom approach is used to turn
the 2D levels into a 1D sequence. The encoder had 3 hid-
den layers of size 1024, and the decoder had 2 hidden layers
of size 256—both had a dropout rate of 50%. To aid in the
convergence of the model, the variational loss was annealed
with a linear rate from 0 to 0.05 times the variational loss
over 5 epochs before the rest of the training continued at
that rate—for a total of 50 epochs using the Adam optimizer
and a learning rate of 1e−5. Note that the GRU-VAE is non-
deterministic in its decoding. At decoding time, the decoder
is initialized with the latent embedding and then proceeds
to decode in an auto-regressive manner with sampling. For
each generation, 10 segments are sampled and the one with
the lowest perplexity (highest likelihood) is kept.

Evaluation

Tile-Based Metrics

For each model, we generated 1000 segments and evaluated
them against the training data with the following metrics:

• Density: proportion of a segment not occupied by back-
ground or path tiles

• Non-Linearity: how well the topology of a segment fits to
a line; measured by fitting a line to the topmost point of
columns in a segment using linear regression

• Leniency: the proportion of a segment not occupied by
hazard tiles; this acts as a very simple proxy for difficulty

• Interestingness: the proportion of a segment occupied by
powerups, portals and collectables

• Path-Proportion: the proportion of a segment occupied by
the optimal path through it

For our evaluations, we computed the E-distance (Székely
and Rizzo 2013) which measures the distance between two
distributions. Summerville (2018) suggests E-distance as a
metric for evaluating generative models. Lower values of E-
distance imply higher similarity between distributions. We
calculated E-distance with the above metrics for the gen-
erated segments against the training segments, per domain.
The 5 metrics were combined into a 5-dimensional feature
vector for each distribution and the E-distance was com-
puted using these combined features.

Agent-Based Evaluation

We tested our models’ ability to blend domains by interpo-
lating between level segments. For this, we randomly se-
lected 10 level segments from each domain, passed each
segment through the encoder of the VAE to get the latent
vector representation of that segment, and then interpolated
between such latent vectors in increments of 25% (e.g.,
25% domain A, level n and 75% domain B, level m). We

282



Figure 2: Linear Samples

Figure 3: GRU Samples

Model ALL CV MM Met SMB NG
LIN32 0.58 1.66 3.53 12 4.76 3.88

-64 0.6 0.9 5.52 10.6 3.1 2.54
-128 0.99 0.86 6.58 13.72 3.25 2.29
-256 0.88 0.97 5.92 14.14 3.00 2.82

GRU32 2.28 1.22 4.16 0.4 0.38 1.22
-64 1.25 1.15 2.4 0.89 0.34 1.9

-128 0.46 0.76 5.08 2.45 2.07 1.36
-256 0.32 0.66 4.81 0.52 3.13 1.78

Table 1: E-distances between each model and all games to-
gether as well as each game taken separately. For both cases,
p < .01 for all models, using 100 resamples. For separate
games, Italics denote the best for the specific NN architec-
ture, and Bolds denote the best across all architectures.

then generated level segments by forwarding interpolated la-
tent vectors through the VAE decoder. Recall that the mod-
els generate sections annotated with beliefs about the path
through the section. To evaluate an interpolated section, we
compared the generated path to the paths found by A* agents
for each of the blended domains by computing the discrete
Fréchet distance (Eiter and Mannila 1994) between the gen-
erated paths and the agents’ paths. The Fréchet distance
has been used previously to measure the similarity of agent
paths (Snodgrass and Ontañón 2017b); it can be thought of
as the length of rope needed to connect two people walk-
ing on separate paths over the entirety of the paths. Agents
that cannot traverse the entire level segment are said to have
failed and their attempts are not included in this metric.

The Fréchet distance between the generated and agent
paths in interpolated segments gives insight into how well
such segments capture both pathing and structural informa-
tion in the component domains. Intuitively, if a segment is
meant to be 75% MM and 25% NG, we expect the MM A*
agent to find a more similar path to the generated path. Ad-
ditionally, we can examine which domains our model strug-
gles with by comparing the distances across domains e.g.,

determining if SMB A* paths are typically more similar to
the generated paths than Met A* paths.

Results

The E-distances between the samples from each of the gen-
erators and the original games taken together and separately
are shown in Table 1. The distributions for the generated
segments were all statistically different from the original
games (p < 0.01) meaning that no generator successfully
replicated the expressive range of the original levels; how-
ever, we see that when compared across all games, the lin-
ear models generally have lower distances, although the two
largest GRU models surpass all linear models. We also see
how each generator does when primed to generate segments
that are targeted to be like a specific game, done by sampling
the latent space using the means and variances of the latent
encodings of the segments for that game. In this case, the
GRU models are generally closer to the original games than
the linear models, although no one model dominates. For
e.g., GRU-32 and GRU-64 both outperform all linear mod-
els for Met, SMB and NG with GRU-64 also doing better
than all linear models for MM but both these GRU models
do worse than 3 out of the 4 linear models for CV. Simi-
larly, we do not see any particular advantage for latent size
when compared using games separately, unlike when com-
pared against all taken together. The GRU-32 and GRU-64
models are tied for the most games that they are closest to,
but GRU-256 still beats both for CV.

A key contribution of this work is the inclusion of agent
paths across multiple games, with the goal being the devel-
opment of novel physics models for blended content. To-
ward that end, we assess how well agents designed for the
input games perform on levels created by these models. Ta-
ble 2 shows the Fréchet distance between the generated path
from game-specific samples and agents capable of playing
that game. The agent failure rate is the percentage of gener-
ated levels that the A* agent failed to complete. The GRU
models do better than the linear models in generating paths
that are more similar to those in the target domains—with

283



Domain Agent Failure
RateModel CV MM Met SMB NG

LIN-32 4.12± (2.66) 4.83± (2.38) 4 .59 ± (2 .15 ) 5.24± (2.75) 4.56± (2.67) 11.46%
LIN-64 4.12± (2.49) 4.85± (2.49) 4.69± (2.16) 5.23± (2.75) 4 .41 ± (2 .52 ) 11.72%
LIN-128 3 .87 ± (2 .59 ) 4 .70 ± (2 .49 ) 4.60± (2.38) 5.12± (2.91) 4.44± (2.61) 11 .25%
LIN-256 4.06± (2.69) 4.89± (2.54) 4.74± (2.38) 5 .01 ± (2 .87 ) 4.54± (2.65) 11.14%

GRU-32 1.81± (1.99) 2.18± (2.00) 1.98± (1.74) 2.43± (2.14) 1.81± (1.85) 4.52%
GRU-64 2.30± (2.34) 2.65± (2.53) 2.27± (2.17) 3.25± (2.76) 2.19± (2.28) 5.12%
GRU-128 1.94± (2.15) 1.97± (2.25) 2.13± (2.13) 2.02± (2.16) 1.98± (2.14) 4.81%
GRU-256 2.10± (2.22) 2.24± (2.48) 2.38± (2.25) 2.26± (2.30) 2.18± (2.27) 4.55%

Table 2: Fréchet distances for each model on each domain. Columns include blended levels using that domain. Values in cells
are the average Fréchet distance between the generated paths in the blended levels and the agent paths for the blended domains.

GRU-32 CV MM Met SMB NG
CV 1.76± (2.38) 1.95± (2.12) 1.63± (1.70) 2.18± (2.19) 1.51± (1.73)
MM 1.95± (2.12) 2.45± (1.83) 2.02± (1.67) 2.92± (2.36) 1.81± (1.63)
Met 1.63± (1.70) 2.02± (1.67) 2.21± (1.30) 2.41± (1.70) 1.74± (1.88)

SMB 2.18± (2.19) 2.92± (2.36) 2.41± (1.70) 2.69± (2.24) 2.10± (20.12)
NG 1.51± (1.73) 1.81± (1.63) 1.74± (1.88) 2.10± (20.12) 1.85± (1.51)

LIN-128 CV MM Met SMB NG
CV 2.79± (2.22) 4.10± (2.53) 3.92± (2.43) 4.14± (2.84) 3.57± (2.53)
MM 4.10± (2.53) 3.64± (1.98) 4.56± (2.07) 5.81± (2.80) 4.57± (2.25)
Met 3.92± (2.43) 4.56± (2.07) 3.70± (1.55) 5.30± (2.61) 4.71± (2.35)

SMB 4.14± (2.84) 5.81± (2.80) 5.30± (2.61) 5.62± (3.08) 5.10± (3.01)
NG 3.57± (2.53) 4.57± (2.25) 4.71± (2.35) 5.10± (3.01) 3.31± (2.34)

Table 3: Fréchet distances for pairs of blended domains for the best performing Linear (LIN-128) and GRU model (GRU-32).

a commensurate decrease in agent failure rate. This is ex-
pected as a key advantage of recurrent models is the mem-
ory during decoding which allows them to remember where
they have generated paths so far, thus better generating con-
nected, sensible paths. The best performing model is GRU-
32 with the lowest failure rate and the lowest Fréchet dis-
tances for three of the five games. The best performing linear
model is LIN-128 with the lowest failure rate amongst the
linear models and the lowest scores for two of five games.

Fréchet distances for blended levels generated by GRU-
32 and LIN-128 are shown in Table 3. Distances for the
GRU model are lower than the linear model, across the
board; however, we see some commonalities. The distances
for games blended with SMB are higher than other games
across both models. Additionally, the blends for both CV
and NG produce lower distances across models—both have
more predictable jump physics (players do not control jump
height) so their physics models may be simpler to learn.

Examples of randomly sampled levels generated using
both models are shown in Figures 2 and 3 using a neutral
sprite representation for all games (taken from Kenney1).
Both the linear and the GRU models are able to learn differ-
ent “styles” of levels—e.g., some are cave-like while some
are more open. The GRU model produces contiguous paths
while the linear model’s paths are noisier and less coherent.
Example interpolations between all pairs of games using the

1https://www.kenney.nl/assets/platformer-art-deluxe

GRU model are shown in Figure 4. Figure 5 shows a single
such interpolation using the linear model. The GRU model
has a number of segments that it finds highly likely—e.g.,
a flat section with a hill (SMB ↓ Met, NG, CV) or a long
cavelike corridor (CV ↓ MM, Met). The autoregressive gen-
eration of the GRU is possibly a reason such segments show
up—it tries to produce sequences that are likely based on
what has been generated so far. The linear model’s output
looks much closer to a straight interpolation of the two seg-
ments (tiles that appear in one and are empty in the other
disappear in the interpolation) with the patterns that emerge
looking noisier than the endpoints of the interpolation. The
GRU model’s interpolations are more coherent with none of
the noise of the linear model; however, the interpolations are
also less obviously interpolations. Many interpolations make
sense: SMB ↓ MM goes from a lot of destructible blocks
and little empty space to the opposite; CV ↓ MM goes from
a wide-open space to a cave-like hallway with the interpola-
tions getting more and more filled in; and MM ↓ Met goes
from wide open to more constrained with doors, and the 50%
mark looks like a compromise of the two. On the other hand,
the interpolations between SMB ↓ NG, SMB ↓ CV, and Met
↓ NG seem to be determined by their respective endpoints.
MM ↓ NG has very little variation in the interpolations, per-
haps due to the end point similarity.

284



(a) GRU SMB ↓ MM (b) GRU SMB ↓ Met (c) GRU SMB ↓ NG (d) GRU SMB ↓ CV (e) GRU CV ↓ MM

(f) GRU CV ↓ Met (g) GRU CV ↓ NG (h) GRU MM ↓ Met (i) GRU MM ↓ NG (j) GRU Met ↓ NG

Figure 4: Example interpolations for all pairs of games.

Figure 5: Linear SMB ↓ MM

Conclusion and Future Work

We presented a new PCGML approach that leverages path
information and a new affordance vocabulary to extend ex-
isting VAE-based level generation and blending techniques
to produce traversable blended levels across a greater num-
ber of game domains. In the future, our approach to generate
traversable level blends by incorporating paths from multi-
ple domains could enable learning blended physics models
spanning multiple games. Physics models are useful for in-
forming game-playing agents such as the A* agents used
to encode paths in this work. Thus, learning and extracting
such models across multiple game domains would comple-
ment the multi-domain blended levels presented above.

We limited our approach to horizontal level sections in
this work. Future work can explore blending vertical sec-
tions from Metroid, Mega Man and Ninja Gaiden along with
games like Kid Icarus. Blending levels and physics for hor-
izontal and vertical domains will support future work in
blending games that simultaneously scroll in two directions.
Finally, while prior PCGML works have looked at other

285



game genres, techniques like blending and domain transfer
have not been applied outside of platformers. Future work
should test such approaches in other genres such as action-
adventure games and dungeon crawlers.

References
Alvernaz, S., and Togelius, J. 2017. Autoencoder-
augmented neuroevolution for visual doom playing. In IEEE
Conference on Computational Intelligence in Games.
Bentley, G. R., and Osborn, J. C. 2019. The videogame
affordances corpus. 2019 Experimental AI in Games Work-
shop.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. In NIPS 2014 Workshop on Deep Learn-
ing, December 2014.
Eiter, T., and Mannila, H. 1994. Computing discrete Fréchet
distance. Technical Report 94/64, Technische Universität
Wien.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018. Doom
level generation using generative adversarial networks. In
IEEE Games, Entertainment, Media Conference (GEM).
Gow, J., and Corneli, J. 2015. Towards generating novel
games using conceptual blending. In Proceedings of the
Eleventh Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Guzdial, M., and Riedl, M. 2018a. Automated game design
via conceptual expansion. In Fourteenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Guzdial, M., and Riedl, M. 2018b. Combinatorial creativity
for procedural content generation via machine learning. In
Workshops at the Thirty-Second AAAI Conference on Artifi-
cial Intelligence.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M.
2018. Explainable PCGML via game design patterns. In
Proceedings of the AIIDE Workshop on Experimental AI in
Games.
Hinton, G., and Salakhutdinov, R. 2006. Reducing the
dimensionality of data with neural networks. Science
313(5786):504–507.
Jain, R.; Isaksen, A.; Holmgard, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair and recognition. In
ICCC Workshop on Computational Creativity and Games.
Kingma, D., and Welling, M. 2013. Auto-encoding varia-
tional Bayes. In The 2nd International Conference on Learn-
ing Representations (ICLR).
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Sarkar, A., and Cooper, S. 2018. Blending levels from dif-
ferent games using lstms. In 2018 Experimental AI in Games
Workshop.

Sarkar, A.; Yang, Z.; and Cooper, S. 2019. Controllable level
blending between games using variational autoencoders. In
2019 Experimental AI in Games Workshop.
Schaul, T. 2014. An extensible description language for
video games. IEEE Transactions on Computational Intelli-
gence and AI in Games 6(4):325–331.
Snodgrass, S., and Ontañón, S. 2016. An approach to
domain transfer in procedural content generation of two-
dimensional videogame levels. In Twelfth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.
Snodgrass, S., and Ontañón, S. 2017a. Learning to generate
video game maps using Markov models. IEEE Transactions
on Computational Intelligence and AI in Games.
Snodgrass, S., and Ontañón, S. 2017b. Procedural level gen-
eration using multi-layer level representations with mdmcs.
In 2017 IEEE Conference on Computational Intelligence
and Games (CIG), 280–287. IEEE.
Snodgrass, S., and Sarkar, A. 2020. Multi-domain level
generation and blending with sketches via example-driven
bsp and variational autoencoders. In Proceedings of the
15th International Conference on the Foundations of Dig-
ital Games.
Soares, E. S., and Bulitko, V. 2019. Deep variational autoen-
coders for npc behaviour classification. In IEEE Conference
on Games.
Summerville, A., and Mateas, M. 2015. Sampling hyrule:
Sampling probabilistic machine learning for level genera-
tion. Proceedings of the Foundations of Digital Games.
Summerville, A., and Mateas, M. 2016. Super Mario as a
string: Platformer level generation via LSTMs. Proceedings
of 1st International Joint Conference of DiGRA and FDG.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and
Ontañón, S. 2016. The VGLC: The video game level corpus.
In Seventh Workshop on Procedural Content Generation at
First Joint International Conference of DiGRA and FDG.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games.
Summerville, A. 2018. Expanding expressive range: Eval-
uation methodologies for procedural content generation. In
Fourteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Székely, G. J., and Rizzo, M. L. 2013. Energy statistics: A
class of statistics based on distances. Journal of statistical
planning and inference 143(8):1249–1272.
Thakkar, S.; Cao, C.; Wang, L.; Choi, T. J.; and Togelius,
J. 2019. Autoencoder and evolutionary algorithm for level
generation in lode runner. In IEEE Conference on Games.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space
of a deep convolutional generative adversarial network. In
Proceedings of the Genetic and Evolutionary Computation
Conference, 221–228. ACM.

286


