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Abstract

Understanding event sequences is an important aspect of
game analytics, since it is relevant to many player modeling
questions. This paper introduces a method for analyzing event
sequences by detecting contrasting motifs; the aim is to dis-
cover subsequences that are significantly more similar to one
set of sequences vs. other sets. Compared to existing meth-
ods, our technique is scalable and capable of handling long
event sequences. We applied our proposed sequence mining
approach to analyze player behavior in Minecraft, a multi-
player online game that supports many forms of player col-
laboration. As a sandbox game, it provides players with a
large amount of flexibility in deciding how to complete tasks;
this lack of goal-orientation makes the problem of analyzing
Minecraft event sequences more challenging than event se-
quences from more structured games. Using our approach, we
were able to discover contrast motifs for many player actions,
despite variability in how different players accomplished the
same tasks. Furthermore, we explored how the level of player
collaboration affects the contrast motifs. Although this paper
focuses on applications within Minecraft, our tool, which we
have made publicly available along with our dataset, can be
used on any set of game event sequences.

Introduction
Analyzing player behaviors can be beneficial for myriad
purposes including improving user experience, support-
ing administrative tasks, and assisting social science stud-
ies (Müller et al. 2015b). Event sequences are a valuable
data type for game analytics as they provide not only the
frequency of events but also the temporal order in which
those events occurred. The most popular unsupervised ap-
proach for analyzing player action sequences is Sequential
Pattern Mining (SPM) (Makarovych et al. 2018; Kastbjerg
2011; Leece and Jhala 2014). However, these techniques are
memory- and time-consuming for large datasets or long se-
quences (Saraf 2015). In this paper, we present a more ef-
ficient approach for finding common subsequences of a se-
quence group that can handle long sequences with minimal
memory consumption and reasonable execution time. This

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

paper demonstrates the usage of our technique to analyze
Minecraft player action sequences.

Minecraft is a multiplayer online game, where players
can explore a 3D world, mine materials, and craft tools and
structures. It is a sandbox environment where players are
afforded a great deal of freedom in how they interact with
the game world. Most Minecraft servers are maintained by
players rather than by private companies, making it an ideal
laboratory for studying player behaviors and social interac-
tions. Minecraft offers many opportunities for collaboration,
including joint crafting and combat. Prior research indicates
that players prefer to cooperate with players who have sim-
ilar action preferences in terms of building, mining, fighting
and exploring (Müller et al. 2015a).

Game events form sequences that provide valuable infor-
mation about the play style and high level goals of the play-
ers. The observable events are low-level: move, place block,
consume item, etc. High-level actions in the game world,
such as exploring, mining, fighting, or building, are accom-
plished by performing chains of low-level actions. Since
events are logged multiple times per second, the sequence of
low-level game events may be long and filled with superflu-
ous detail. Our aim is to develop an unsupervised method for
detecting common subsequences across different instances
of event sequences related to a group, allowing long se-
quences to be generalized into a few short subsequences. To
that end, we developed a contrast mining approach that dis-
covers subsequences that differentiate groups of sequences.
We aim to not only discover motifs of a group of sequences
but also to refine the motifs to ensure that they represent the
differences between classes of sequences.

In classification, the goal is to guess the category of an
object or data point based on its attribute, as opposed to con-
trast mining which takes the category of data points and re-
verse engineers the attributes that mark the data point as a
member of a category. Contrast mining attempts to detect
meaningful differences between groups of objects. For ex-
ample, given the attributes of categories of online banking
customers, contrast mining would identify dissimilar fea-
tures between fraudulent and normal users. Discovering con-
trasts between specific groups of interest is particularly valu-
able in social science research (Bay and Pazzani 2001).
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Existing contrast mining approaches discover contrasting
sequential patterns which are costly to find for large datasets
or long sequences. To the best of our knowledge, we are
the first to propose a method for discovering contrast mo-
tifs. Motifs are less general than the patterns extracted from
SPM and hence computationally faster to find. We exploit
conceptual ideas from motif finding techniques that were de-
signed for time series data and apply them to sequence data.
The contributions of our research include: 1) a novel contrast
motif discovery approach for discrete sequences 2) an anal-
ysis of action motifs in Minecraft 3) a study of the impact of
collaboration differences on player motifs in Minecraft. To
promote shared progress, we have made our code and data
publicly available 1.

Given multiple groups of sequences, our algorithm, first,
finds a set of candidate motifs for each group. Then, for each
set of candidate motifs, the algorithm selects the subset of
motifs that are significantly closer to their own group com-
pared to other groups. These refined motifs are designated
as the contrast motifs of the group.

This paper describes the usage of our contrast motif dis-
covery algorithm to analyze Minecraft event sequences.
We created event sequences for different Minecraft actions
(fight, mine, explore, and build) and extracted motifs that
differentiate actions from each other. Certain actions, such
as fighting, yielded more contrast motifs, representing vari-
ations in player style. On the other hand, the explore action
did not have any motifs that were distinctive to that class.

Moreover, players can be categorized into different
groups based on style and characteristics such as collabo-
rative vs. non-collaborative, expert vs. novice, and effective
vs. ineffective. Our contrast mining approach can help us
achieve a better understanding of the differences between
various groups of players. We compared the behavior of
highly collaborative and hardly collaborative players by ex-
amining their event sequences. Our investigation revealed
that fighting is a common behavior amongst highly collabo-
rative players while there is no behavior shared between less
collaborative players.

Related Work
Sequence Mining
A sequence is an ordered list of events, where events can
be represented by symbols from a specific alphabet. Pattern
mining in sequences has countless applications in academia
and industry including biological, purchasing, and weblog
pattern mining (Liao and Chen 2013). Because of this, nu-
merous methods have been designed to extract patterns in
sequential data, including traditional sequential pattern min-
ing (Agrawal and Srikant 1995; Pei et al. 2004), maximal
sequential patterns (Luo and Chung 2005), and closed se-
quential patterns (Wang and Han 2004).

Sequence mining techniques have many potential appli-
cations in game analytics as they allow researchers to inves-
tigate patterns of player behavior (Makarovych et al. 2018).
A combination of frequent sequence mining and clustering

1https://github.com/SamanehSaadat/ContrastMotifDiscovery

can be used to visualize common subsequences of player
actions (Kastbjerg 2011). Kang, Kim, and Kim (2014) cre-
ated sequences of user keyboard input and mouse movement
and extracted the repetitive patterns within games using
Lempel–Ziv–Welch (LZW) compression-based algorithms.
Leece and Jhala (2014) applied sequential pattern mining in
Starcraft: Brood War at both the micro and macro level to
discover short-term and long-term patterns of player behav-
ior.

Most prior studies in games use sequential pattern min-
ing approaches, which are designed to find frequent exact
non-contiguous subsequences. The traditional algorithms
for mining sequential patterns (Agrawal and Srikant 1995;
Pei et al. 2004) are appropriate for short sequences such
as supermarket transactions. Consequently, traditional al-
gorithms are ineffective for mining long sequences. Some
of the traditional methods are used to process long se-
quences, but they require extensive run time (Lin 2003;
Pei et al. 2004).

In addition, in situations where there is no clear bound-
aries for sequences (such as the Minecraft dataset used in
this paper), sequential pattern mining approaches that allow
gaps between events might blend two or more actions to cre-
ate a pattern. One of the advantages of using motifs is that
motifs form a continuous subsequence and hence blending
is less likely.

Motif Finding Another type of pattern mining that can be
applied to sequences is motif finding. Motifs are fairly short
subsequences shared between multiple sequences; unlike se-
quential patterns, motifs are contiguous (Das and Dai 2007).
This is a term borrowed from biological sciences where mu-
tations might occur but in many cases, those mutations do
not affect the functions of the genomic sequence.

There are numerous motif discovery approaches that have
been developed for time series or biological sequences
(Mueen et al. 2009; Bailey et al. 2009; Bailey 2011). Bi-
ological methods for finding motifs enforce constraints on
the data to ensure that the discovered motifs are scientifi-
cally plausible (Das and Dai 2007). For example, methods
for finding transcription factor binding site motifs extract
one and only one motif for each sequence and use relatively
short input sequences (Zambelli, Pesole, and Pavesi 2013).
These approaches may not be well-suited for player behav-
ior sequences that are long, may contain multiple motifs, and
are unconstrained.

Since discrete sequences are the categorical analog of
time series data, motif discovery approaches designed for
time series can be applied to discrete sequences with mi-
nor modifications. The matrix profile approach can be uti-
lized to discover motifs of time series. Yeh et al. (2016) ex-
tracted matrix profiles for discrete sequences but they con-
vert the sequences to time series first using a method pro-
posed by Rakthanmanon et al. (2012). This method converts
sequences to time series by assigning an ordinal number to
each symbol in the sequence; then Euclidean distance is used
for measuring the distance between time series. This ordinal
encoding assumes an ordinal relationship between symbols
which may not exist. We developed an approach for extract-
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ing the matrix profile directly from discrete sequences.

Contrast Mining Understanding the differences between
contrasting groups of sequences is an essential task in
data mining and has numerous applications including cus-
tomer behavior analysis and medical diagnosis (Bartle 1996;
Wu, Li, and Chen 2019). Prior research on learning the con-
trast patterns across groups is primarily focused on finding
contrast sequential patterns. A contrast sequential pattern is
a pattern that occurs frequently in one sequence group but
not in the others (Wu, Li, and Chen 2019). Contrast sequen-
tial pattern mining has the same computational limitations
discussed earlier in this paper. To overcome this problem,
we sought to unify the computational strengths of motif dis-
covery with statistical testing techniques to identify contrast
motifs.

Minecraft
Although Minecraft was not explicitly developed for re-
search purposes, it has been used in many learning stud-
ies and scientific experiments (Nebel, Schneider, and Rey
2016). It is an ideal laboratory to study collaboration as the
game can be modified to become more collaborative, track
player activities, and manipulate team compositions (De-
bkowski et al. 2016; Müller et al. 2015a). Intelligent agents
can be developed in Minecraft which makes Minecraft an
excellent platform for studying human-agent teaming. For
example, CraftAssist is an implementation of an interactive
bot assistant in Minecraft (Gray et al. 2019).

Müller et al. (2015b) collected Minecraft data and studied
players’ actions using the frequencies of low-level events.
Additionally, they constructed a classifier that predicts the
high-level action from the low-level event log. To study col-
laboration in Minecraft, Müller et al. (2015a) defined vari-
ous types of collaboration graphs such as contact, chat, and
build graphs. They introduced the collaboration index as a
universal metric to assess and compare the collaborativeness
of players. Their study also identified predictors of collabo-
ration in this game, including player familiarity and simi-
larity. This paper leverages these collaboration metrics and
data structures to conduct a study of how collaboration af-
fects contrast motifs.

Dataset
Our paper uses a dataset collected by the Heapcraft project
across multiple servers (Müller et al. 2015b). The dataset
contains two months of data from 45 players, forming 14
person-days worth of active game-play.

The benefit of this dataset is that it provides ground truth
Minecraft actions for collections of raw events. At random
intervals, players were asked to specify the high-level ac-
tions they are performing: explore, mine, build, and fight.
The four action types used in their data collection were in-
spired by player types in Bartle’s study: killers, explorers,
achievers, and socializers (Bartle 1996). For the fight, ex-
plore, mine, and build actions there are 37, 124, 186, and
297 data points respectively which creates a dataset of size
644.

Several of the events were excluded by Müller et al.
(2015b) from the event log due to low frequency, correla-
tion to other events, and redundancy. Moreover, move, sprint
and sneak events were transformed to their corresponding
distance or duration. We followed the event cleaning proce-
dure presented by Müller et al. (2015b) except move, sprint
and sneak events were also removed as distance and duration
cannot be easily converted to symbols in sequences.

The original study considered the duration of each action
to be two minutes centered around the time of response re-
ceived. These two-minute intervals (labeled with high level
actions) were used to construct our action sequence dataset.
The sequence dataset of players was created by considering
all the events performed by players during the data collec-
tion period. We created the event sequences by assigning
a symbol to each Minecraft event and creating an ordered
list of symbols for each data point. Since our method relies
solely on the order of events rather than their frequencies,
consecutive repetitive events are replaced by one event. For
example, aaabbcccd is transformed to abcd.

Method
This section introduces our approach for finding the top c
most abundant motifs for the group of sequences. Then, we
discuss our procedure for refining motifs to discover the con-
trasting ones.

Motif Finding In order to find the initial set of candidate
motifs, we use a modified SnippetFinder algorithm, which
was designed to detect snippets in time series (Imani et al.
2018). The SnippetFinder algorithm uses a single time se-
ries, rather than a discrete event sequence. The main build-
ing block of this algorithm is the matrix profile, a vector
of real-valued numbers representing the pairwise distance
between subsequences of two sequences (Yeh et al. 2016).
Since our goal is to extract common subsequences shared
across multiple discrete sequences, we made modifications
to the SnippetFinder algorithm. Our motif finding approach
is presented in Algorithm 1. The set of subsequences that are
produced by the algorithm are used as the candidate motifs.

The algorithm takes the list of sequences (S), desired
number of motifs (c) and window size (w) as input and
outputs a list (M ) containing c candidate motifs. As a data
preparation step, sequences shorter than the window size are
removed from the list, since it is impossible that they contain
motifs of length w. The list of all possible motifs (pm) is cre-
ated by moving an overlapping window of size w along all
sequences. Then the matrix profile of every possible motif
is created. This matrix profile contains one value for every
sequence which represents the distance between the possi-
ble motif and the sequence. The matrix profile length (l)
is the length of the profile for each possible motif which
is equal to the number of sequences. The distance between
one sequence and a possible motif is the minimum value
of the sequence profile (i.e. the minimum distance between
the possible motif and subsequences of the sequence). In
this study, LCS distance is used to measure the distance
between subsequences. LCS distance (LCS distance =
window size − LCS score) is based on the well-known
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Input: S: input sequences, c: candidate motifs count
and w: window size

Output: M : top c snippets of S
1: Remove short sequences from S
2: pm = list of all possible motifs of length w in S
3: P = collection of profiles between pm and S
4: m = size(pm) (i.e. number of possible motifs)
5: l = profile length
6: Q = array of length l initialized with inf
7: M = empty array to store candidate motifs
8: while size(M) < c do
9: min area,min idx,min motif =

inf,−1, null
10: for i = 1 to m do
11: cur motif = pm[i]
12: e = element-wise min between P [i] and Q
13: cur area = sum(e)
14: if cur area < min area then
15: min area = cur area
16: min idx = i
17: min motif = cur motif
18: end if
19: end for
20: Q = element-wise min between P [min idx]

and Q
21: Add min motif to M
22: end while

Algorithm 1: Candidate motif finding algorithm

Longest Common Subsequence (LCS) algorithm.
After creating the collection of profiles (P ), the next step

is to find the candidate motifs. The algorithm iteratively
finds candidate motifs and continues to look for new can-
didates until it reaches the user-specified number of motifs.
In Algorithm 1, Q is an array that stores the element-wise
minimum values of the profiles related to candidate motifs
so far. This array is initialized with inf values and is used
in successive iterations to find candidate motifs in new se-
quences. In each iteration, the algorithm loops over possible
motifs to determine which of them has the minimum area
under the e curve. The e curve shows how close the possible
motif is to the sequences for which no motif has been dis-
covered. The algorithm stores the candidate motifs in a list
(M ), which is the output of the algorithm.

Running this algorithm requires O(w2n2) time; where n
is the total length of input sequences. Since w, which is the
motif length, is a small constant number, it can be disre-
garded. Therefore, the time complexity of this algorithm is
O(n2).

Motif Refinement Algorithm 1 generates a list of candi-
date motifs for a group of sequences. Since our goal is to dis-
cover contrasting motifs that are more similar to their group
while being distant from other groups, we need to filter can-
didate motifs of each group. This is a subgroup discovery
task: identifying interesting subgroups of objects with re-
spect to a particular feature. A subgroup of objects is in-

Figure 1: The average distance between motifs and se-
quences of actions. Rows represent motifs, and columns de-
note the action labels. For example, row f-1 and column
fight shows the average distance between motif f-1 and fight
sequences. Motif names are comprised of the action symbol
(f, m, and b for fight, mine and build, respectively) and an or-
dinal number. Darker colors on the heatmap denote a lower
distance between the motif and sequences of that action.

teresting when the feature values within the subgroup differ
in a statistically significant way from the feature values of
the other objects (Langohr et al. 2012). In this paper, we
constructed interesting subgroups of motifs using a Mann–
Whitney U test. Motifs are only selected 1) if the average
distance to the sequences in their group is lower than the
distances to the sequences from other groups and 2) this dif-
ference is statistically significant (i.e. the Mann–Whitney U
test has a p-value lower than 0.05). Our algorithm does not
assume that motifs exist in all sequences of the group, but
it detects the motifs that are closest to all sequences of that
group.

Minecraft Action Contrast Motifs
This section describes the application of our proposed algo-
rithm for analyzing Minecraft action sequences. From the
HeapCraft dataset, we extracted sequences labeled with the
ground truth action. Each action type is considered to be a
group; sequences labeled as that action belong to that group.
Therefore, there are four groups of sequences for actions:
fight (f), explore (e), mine (m), and build (b).

Contrast Motif Distances We ran our contrast motif find-
ing algorithm for window sizes ranging from 3 to 9. The
number of sequences larger than the window size dramati-
cally decreases by increasing the window size. In order to
avoid discarding short sequences, a window size of 5 was
selected. Using this window size, 567 sequences were con-
sidered (34, 102, 171, and 260 for fight, explore, mine, and
build, respectively).

The c parameter in Algorithm 1 is a user-specified input
determining the desired number of motifs. This parameter
has been set experimentally in our analysis. We started from
a low value for c parameter and then we increased this pa-
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Figure 2: Contrast motifs of different actions represented in directed graphs. Nodes are events, and there is an edge between
two events if they appeared consecutively in at least one motif. The thickness of edges represents the number of times that
relationship was observed in the motif set.

Figure 3: Collaboration graph between players. Nodes are
players, edges show collaboration, and the thickness of the
edge represents the duration of the collaboration.

rameter until the number of contrast motifs in each group is
less than the c parameter.

Running the algorithm on the HeapCraft action sequence
data with window size 5 results in 7, 2, and 3 contrast mo-
tifs for fight, mine, and build actions, respectively. Figure 1
shows the average distance between motifs and sequences of
different actions. This heatmap illustrates that motifs of an
action are similar to sequences of the same action class and
distant from other action classes.

More contrast motifs were discovered in the fight action
compared to mine and build. This may occur because there
is more variety in player fighting styles compared to other
actions. Unfortunately, no motif was found for the explore
action. In the Müller et al. study, which attempts to classify
actions, the majority of classifier errors involve the explore
action. As mentioned by the authors, this could be due to the
nature of the game or could be a result of their data collection
procedure. In addition, Figure 1 shows that fight motifs are
less likely to appear in other sequence actions. This shows
that fighting is a more distinctive behavior.

The mining action has the most conservative motifs. Mo-
tifs of mine, with an average distance of 1.1, are closest to
mine sequences as compared to fight and build with average

distances of 1.9 and 2, respectively.
Although m-1 is closer to build sequences than some of

the build motifs and can be considered a motif of build, it
is not a contrast motif for the build action as it is closer in
distance to mine sequences than build sequences.

Minecraft Events of Contrast Motifs To have a visual
representation of the motif set for each action, we con-
structed a graph for each action. Figure 2 illustrates the con-
trast motifs discovered for various actions in a graph format.

To ensure that our results are not entirely dependent on
the window size parameter, we examined the motifs gener-
ated by other window sizes. It appears that smaller or larger
window sizes create motifs that are subsequences or super-
sequences of the motifs identified for this window size.

Our approach provides detailed insight into player
Minecraft actions. Müller et al. (2015b) conducted a fre-
quency based analysis of Minecraft actions and found that
the build action is highly correlated with the frequency of
BlockPlace, but our approach reveals that other events such
as InventoryClose and BlockBreak also occur in the building
process. Unlike prior work, our approach also extracts their
temporal ordering.

Contrast Motifs of Collaborative Players
There are various types of collaboration in Minecraft in-
cluding building together, sharing building/farming infras-
tructure, mutual protection, and practice fights to hone
skills (Müller et al. 2015a). Prior research on Minecraft
quantifies collaboration as the duration of the time play-
ers spend in contact with each other; two active players are
considered to be in contact if their distance is less than 15
blocks (Müller et al. 2015a). Figure 3 illustrates the collab-
oration graph of the players in the dataset.

In the collaboration graph, nodes represent players and
edges indicate collaboration. There are 42 nodes, and 123
edges in this graph, demonstrating that 3 players have no
collaboration at all and there are many pairs of players who
don’t collaborate with each other. The collaboration graph
has an average degree of 5.8, showing that each player col-
laborates with 6 other players on average.
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Figure 4: The highly collaborative players contrast motif. This motif is similar to the fight motif showing that fighting is the
action shared amongst highly collaborative players and fighting is what distinguishes these collaborative players from less
collaborative players.

To make the collaborativeness of players comparable,
Müller et al. normalizes the amount of collaboration of play-
ers by the total active time of the player and calls it the col-
laboration index. We calculated the collaboration index for
players in the dataset. The collaboration index of players in
this dataset has a skewed distribution with minimum, me-
dian, and maximum of 0, 0.014, and 0.79, respectively.

We considered players to be highly collaborative if their
collaboration index is higher than 90% of players, and
hardly collaborative if their collaboration index is in 10th
percentile. Collaboration index is between zero to one with
a 10th percentile and 90th percentile of 0.002 and 0.19, re-
spectively.

To compare players who are more collaborative with less
collaborative players, we applied our algorithm to find con-
trast motifs of these two groups of players. The median
length of player sequences was 2011 in our dataset. We re-
moved players who barely played the game (with sequences
shorter than 10) and conducted the experiments with remain-
ing 41 players. We tested window sizes from 3 to 15 for the
motif. A contrast motif was discovered for window size 8
for highly collaborative players, but no contrast motif was
found for players with lower collaboration index. Figure 4
shows the graph visualization of the contrast motif of highly
collaborative players.

Comparing the motif illustrated in Figure 4 with the ac-
tion motifs of Figure 2 shows that the motif of highly col-
laborative players has the most intersection with the fight-
ing behavior. In other words, the behavior that is shared be-
tween highly collaborative players is fighting. This finding is
aligned with prior research that indicates a strong correlation
between fighting and collaborativeness in Minecraft (Müller
et al. 2015a).

Additionally, we attempted to apply PrefixSpan algorithm
(Han et al. 2001), which is a classic sequential pattern min-
ing algorithm to find sequential patterns of these two groups
of players. On a computer with 16GB RAM and a 4-core
1.9 GHz CPU, the PrefixSpan algorithm ran out of memory
and failed while our motif discovery approach successfully
completed within two hours.

Conclusion and Future Work
By making data collection inexpensive and convenient,
games such as Minecraft advance our understanding of so-
cial science. Sequence mining can assist in this endeavor by
summarizing a large volume of player data into a more in-
tuitive format. This paper presented a sequence mining ap-
proach to facilitate the analysis of players’ actions and col-
laborative behavior in Minecraft.

We introduced a new contrast motif discovery technique

and applied it to a Minecraft dataset. First, we analyzed the
low-level sequences of high-level actions by extracting con-
trast motifs that distinguish actions from one another. The
motifs of each action were visualized in a graph to facilitate
the comparison between motifs of different actions. Many of
the events shown in the graphs are consistent with our intu-
itions on how players would achieve the tasks. Some of them
are aligned with prior research while others were uncovered
only through the use of our algorithm.

Second, we employed our algorithm to compare highly
collaborative Minecraft players with hardly collaborative
ones. We created a collaboration graph across players and
calculated the collaboration index of every player. Our
method discovered a motif that is shared between more col-
laborative players but that does not occur in the sequences of
less collaborative users. Comparing the graph of this motif
with the action motif graphs shows that the behavior shared
between highly collaborative players is fighting.

Our sequence mining approach can be used for the im-
plementation of agents who possess theory of mind about
their human teammates while also providing a glass box for
social scientists to enhance their interpretations of human
behavior. An assistant agent could use these motifs as part
of a plan recognition system to understand what the human
player is doing. Our technique can be employed by psychol-
ogists to analyze player behavior by identifying contrast mo-
tifs of various groups of players. For example, what are the
motifs that occur in event sequences of expert players but
not in the sequences of novice players?

Another application of contrast motifs is knowledge trac-
ing. Knowledge tracing estimates the expertise of the player
across a set of concepts or skills (Kantharaju et al. 2018).
Measuring how often the player follows the motif pattern
while performing an expected action could help scientists
measure the players’ mental models.

In future work, we are collecting our own datasets of hu-
man teams playing Minecraft. There are opportunities for
improvement in the data collection process. For instance,
the ground truth actions could be collected either by record-
ing players describing their behavior using a think out loud
protocol or by hand-labeling behaviors in the replay of a
recorded game.
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