
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Tribes: A New Turn-Based Strategy Game for AI Research

Diego Perez-Liebana, Yu-Jhen Hsu, Stavros Emmanouilidis,
Bobby Dewan Akram Khaleque, Raluca D. Gaina

School of Electronic Engineering and Computer Science
Queen Mary University of London, UK

Abstract

This paper introduces Tribes, a new turn-based strategy game
framework. Tribes is a multi-player, multi-agent, stochastic
and partially observable game that involves strategic and tac-
tical combat decisions. A good playing strategy requires the
management of a technology tree, build orders and economy.
The framework provides a Forward Model, which can be
used by Statistical Forward Planning methods. This paper de-
scribes the framework and the opportunities for Game AI re-
search it brings. We further provide an analysis on the action
space of this game, as well as benchmarking a series of agents
(rule based, one step look-ahead, Monte Carlo, Monte Carlo
Tree Search, and Rolling Horizon Evolution) to study their
relative playing strength. Results show that although some of
these agents can play at a decent level, they are still far from
human playing strength.

1 Introduction

While work in the Game AI field started with domains com-
prising of simple state representation and action sets (such
as Chess, Checkers or Go), nowadays researchers can find
a great variety of games with partial observability, multiple
players or huge branching factors. Strategy games form a
sub-genre that incorporates several of these features at once
and are therefore of interest to Game AI research. However,
the added complexity in these environments results in diffi-
culties in obtaining the engine functionality necessary to run
all classes of AI methods, and, of particular interest, Statis-
tical Forward Planning (SFP) algorithms.

The application of SFP methods to games has been a pro-
lific topic for AI research. During many years, tree search
methods like Monte Carlo Tree Search (MCTS) and (more
recently) Rolling Horizon Evolutionary Algorithms (RHEA)
have been investigated for decision making in board, real-
time and turn-based games. One particular characteristic of
SFP methods is that they require, in order to allow planning
and tree search, a Forward Model (FM) of the game that
permits simulating future states, providing a previous state
and an action to execute. Having a FM that allows this is
not straightforward. Apart from design considerations, the
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two main methods that provide the functionality required
by SFP (next - to advance the game state, and copy - to
clone it) can be computationally expensive in execution time
and memory. That is one of the reasons why the more com-
plex environments (e.g Starcraft II (Blizzard Entertainment
2010)) do not provide a FM API for AI agents.

There has been some previous work on frameworks
that incorporate FM access for SFP in strategy games.
Some of these benchmarks are concerned with the manage-
ment of multiple units, such as HeroAIcademy (Justesen,
Mahlmann, and Togelius 2016) and Bot Bowl (Justesen et
al. 2019). Santiago Ontañón’s μRTS (Ontañón et al. 2018)
also incorporates resource management, partial observabil-
ity and simple terrain analysis. To the knowledge of the au-
thors, however, there is no other framework that, providing
FM access, captures all of the complexities of real-time or
turn-based strategy games.

The aim of the present paper is to introduce Tribes, a new
turn-based strategy game framework that tries to close this
gap. This game is an open source re-implementation of the
popular award-wining game The Battle of Polytopia (Midji-
wan AB 2016), which can be seen as a simplified version of
Sid Meier’s Civilization (Firaxis 1995 2020). Tribes includes
most components that make research in strategy games in-
teresting, such as partial observability, stochasticity, multi-
player, multi-unit management and a vast and variable action
space. The different factions in the game must also manage
resource gathering, economy, terrain analysis, technology
trees and build orders. The balance of resource-cquisition,
expansion, combat and exploration makes this benchmark
interesting for AI research. Although Tribes is not limited to
SFP methods, this paper explores some initial results with
simple versions of Monte Carlo, MCTS and RHEA agents,
which can serve as baseline for future research with this
game. We also analyze the complexity of Tribes by em-
pirically observing the action branching factor and the tree
complexity. The framework facilitates research on procedu-
ral content generation for levels and automatic game balanc-
ing as well, as it exposes a very large set of parameters that
adjust the behaviour of the game. This is an interesting re-
search direction that would open the door to creating more
intersting levels and game variants.
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2 Background

Some of the first applications of AI in turn-based strategy
games were seen in 2004, by Arnold et al. (Arnold, Hor-
vat, and Sacks 2004) in the game Freeciv1, an open-source
free game inspired by Sid Meier’s Civilization series and in-
cluding most of the complexities of the original game in the
interactions between potentially hundreds of players. The
game comes with in-built AI, which uses a set of rules and
a goal priority system to decide its actions. However, the in-
tricacy of the problem and the many sub-problems involved
(e.g. troop movement, battles, resource gathering and man-
agement, city development, technology advancements) led
researchers to only tackle some of the aspects involved.

(Arnold, Horvat, and Sacks 2004) tackled the initial place-
ment of settlements for the player’s civilisation by using a
Genetic Algorithm (GA) to adjust the parameters of the city
placement algorithm provided with the game. The authors
found that achieving good performance even in just this part
of the problem was very difficult, although seemingly good
policies are general enough to be applicable on new maps.
(Watson et al. 2008) discussed instead the problem of city
development in Freeciv, and proposed using an online GA
to evolve a city development strategy; here, they use a 2-
layer genome, where the top layer considers the cities to fo-
cus on, and the bottom layer considers development factors
(e.g. happiness, food supply) for each city. Later, (Wender
and Watson 2008) applied Q-Learning to Civilisation IV for
the city placement problem, to replace the previously ex-
plored rule-based system and create a more dynamic and
adaptive approach. Their results show their method is able
to outperform the rule-based system in short games and on
small maps, but begins to struggle when the complexity in-
creases. With Tribes we aim to make it more attainable to
create an AI player able to fully undertake complex decision
making in large dynamic and multi-faceted environments.

One critical aspect of Tribes is the challenge of multiple
actions executed per turn, and planning turns accordingly to
maximise results. (Justesen, Mahlmann, and Togelius 2016)
address this problem in Hero Academy (Robot Entertain-
ment 2012), where the player controls several agents with
different actions available, with 5 action points per turn each.
The authors introduce Online Evolutionary Planning (OEP),
which is able to outperform tree search methods due to man-
aging the large turn planning problem much better (Justesen
et al. 2017). Later, (Baier and Cowling 2018) propose an al-
ternative which combines evolutionary algorithms and tree
search (EvoMCTS) in order to take advantage of the ben-
efits of both methods to outperform OEP. Both EvoMCTS
and OEP were further applied to other strategic games with
moderate success, although large action spaces prove chal-
lenging to both approaches (Montoliu et al. 2020).

This problem of very large action spaces in turn-based
strategy games was recently highlighted in the Bot Bowl
framework (Justesen et al. 2019), which presents an im-
plementation of the board game Blood Bowl (Jervis John-
son 1986). In this game, players control an entire football
team, where each unit can execute several actions, leading

1The Freeciv Project, 1996-2020, http://www.freeciv.org/

to a very large turn-wise branching factor. In the first com-
petition using this framework in 2019, GrodBot, the rule-
based baseline agent, outperformed all other submissions
(two Actor Critic methods and an evolutionary-tuned Grod-
Bot), showing the difficulty of the problem. Tribes has a
large but smaller action space, but adding several complexi-
ties to the decision making problem beyond troop actions.

Similar tasks can be found in real-time strategy games.
(Ontanón et al. 2013) review challenges presented in these
games, of which Starcraft II has recently seen great success
with the development of AlphaStar (Vinyals et al. 2019), a
deep-learning agent able to play the game with high profi-
ciency. The general and practical applicability of such meth-
ods remains a question, however, and the microRTS com-
petition attempts to promote research into general methods
able to handle different scenarios and maps within a sim-
plified version of a real-time strategy game (Ontañón et al.
2018). This is similar to the approach taken in Tribes, where
the AI is challenged on procedurally generated maps, with
more variation in units available, their interactions, a very
high variance in action space per step and the addition of
technology research and the economic system.

3 Tribes
Tribes is an open-source re-implementation of the game
The Battle of Polytopia, a turn-based award-winning strat-
egy game with more than 11 million downloads worldwide.
This section summarizes the rules of the game, the imple-
mentation of the framework and the AI agents included.

3.1 Rules of the Game

Tribes is a game played for T game turns. In each of these,
each tribe plays one turn t. A tribe can play as many actions
as desired on its turn, until it decides to end it. Ending a turn
is the only action available if all units have finished their
move and the tribe has no more resources available to spend.

The game takes place in a 2D grid of N×N tiles. Each tile
has a terrain type (plain, mountain, shallow or deep water),
can hold up to one unit at a time and can have different types
of resources (forest, cattle, food, crops, ore, ruins, fish and
whales). Tiles may be neutral or owned by a tribe if within
one of the faction cities’ borders. More cities can be added
to the tribe by capturing neutral villages or enemy cities.

Each player controls one of the available tribes (or fac-
tions). Tribes includes 4 of the original’s game tribes:
Xin Xi, Imperius, Bardur and Oumaji. Each player starts
with one city (capital), a unit (Warrior for all but Oumaji,
which starts with a Rider), a technology already researched
(Climbing, Organization, Hunting and Riding, respectively).

A game can be played in one of two different modes, Cap-
itals and Score. In Capitals, a tribe wins the game when it
captures all of the enemy capitals. In the Score mode, the
game ends after 30 game turns and the tribe with the highest
score wins. Score points can be obtained by various in-game
activities such as harvesting resources, exploring the map or
capturing villages. In both game modes, a player is defeated
if its capital is captured.

Tribes’s gameplay can be split into three main com-
ponents: technology research, economy management, and
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Figure 1: Tribes (left) and The Battle of Polytopia (right).

combat. Combining all of them requires effective decision
making and enables different playing strategies. Managing
the economy revolves around the accumulation of game cur-
rency (stars). These are produced by all the cities owned
by the tribe and are awarded at the beginning of each turn.
The collection of resources and construction of buildings
adds population to cities, which then level up every time the
population reaches a target (city level+1). Leveling up aug-
ments the star production of the city and provides bonuses
to choose from (extra production, resources, city border
growth, etc). If a city reaches level 5 or higher, a specially
strong unit (a superunit, or Giant) can be spawned. Each
tribe unlocks new features by spending stars to research up
to 24 technologies in the tech tree, including the construc-
tion of new buildings, ability to gather new resources within
the city borders or traverse water and mountain tiles.

Stars can also be used to spawn units in cities, each
with different attack power, defence, attack range and health
points (HP). Units can be melee (Warrior, Rider, Defender,
Swordsman, Knight) or ranged (Archer, Catapult). All can
embark onto a Boat (which can be upgraded to a Ship, then
a Battleship) and become veteran (higher HP) by defeating
other units. Some units can move and attack (in any order),
some can move or attack multiple times, and others can ei-
ther move, or attack, in a turn. Finally, the Mind Bender can
heal friendly units and convert enemy units to their faction.
All units, except the Mind Bender, can capture enemy cities
or neutral villages if they start the turn in the respective tile.

As can be seen, Tribes is a fairly complex game that can
hardly be fully explained here. For a more detailed descrip-
tion of the game, the reader referred to the fandom page2.
Figure 1 shows screenshots of Tribes and the original game3.

3.2 Implementation

Tribes is implemented in Java and provides an API for AI
agents. The framework can be run either with partial (PO) or
with full observability. For the PO mode, fog of war is im-
plemented: tiles are not visible until a friendly unit reveals
it. Vision range is set to 1 tile in plains, and 2 in mountains.
Tiles not visible to an agent are indicated by a Fog terrain
type, and they are treated as plain empty tiles by the Forward

2polytopia.fandom.com/wiki/The Battle of Polytopia Wikia
3Tribes code and documentation can be found at https://github.

com/GAIGResearch/Tribes

Model (FM) if revealed in agent simulations. Visible enemy
cities and units always hide information in both observabil-
ity modes: number of kills and original city (for units), and
population, production and units created (for cities).

In order to take actions in the game, each agent imple-
ments the act method, which receives an observation of the
current state (copy of the real game state). This copy is also
equipped with a FM, allowing the agent to simulate possible
future states by providing an action (as if executed by any
player). Agents receive one call to the act method for each
action, until they end their turn returning an EndTurn action.
Actions can be categorized in three types:

• Unit actions (executed by units): Attack unit, move, cap-
ture a village/city, convert units to their tribe, disband, ex-
amine ruins (provides boosts at random), become veteran,
and upgrade (if naval unit). Distinct units can apply one
or more of these actions in different order.

• City actions (executed within a city’s borders): construct
building, destroy building, burn forest (to create crops),
clear forest (to gain stars), grow forest (allows building
lumber huts), gather resource, spawn unit, and level up.

• Tribe actions (global faction actions): research technol-
ogy, build road (to boost movement) in a non-enemy tile,
and end turn.

Actions are returned one by one to the game as Action
objects, which may contain several parameters (e.g. desti-
nation for Move, building type and location for Build). The
game state can be queried for the list of all available actions,
which is computed after each action execution in the game or
in the FM. Note that executing actions can make some other
actions possible (e.g. researching a technology that allows
spawning new types of unit) or impossible (e.g. occupying a
tile that blocks other units’ movement).

Tribes also includes a procedural generator for levels.
This generator is a rule-based system that can be configured
by defining some initialisation parameters (size of the level,
ratio between land and water tiles, which tribes will play
the game, etc.). Each tribe starts in its own unique biome,
which is more likely to have specific types of terrain or re-
sources, fitting their starting technology. The generator first
distributes lands and water tiles around the level, to then
place the starting capitals in land tiles located as far as pos-
sible from each other. Finally, the level is populated with
forest, mountain, village, resource and ruins tiles4.

3.3 Agents

The framework includes 7 agents. Two very simple ones for
testing purposes: DoNothing (ends its turn at every act call),
and Random (returns an available action uniformly at ran-
dom). The other 5 agents are described next:

Rule Based (RB): The first agent is a simple rule-based AI
that chooses actions based on the current state of the game,
without using the FM to reach future game states. It is a

4This level generator is a Java port of an independent one:
https://github.com/QuasiStellar/Polytopia-Map-Generator

254



hand-crafted heuristic agent modeled with domain knowl-
edge of the game. On each action selection, RB scores each
one of the available actions between 0 and 5, to then exe-
cute the action with the highest value. In case of a tie, one of
the highest-valued actions is selected uniformly at random.
Actions are further evaluated by type, prioritizing the most
valuable ones to be executed first.

Attack actions are evaluated based on the attacker’s at-
tack power, the defender’s defence and the health of both
units. The action is given maximum priority if the target
is weaker in defence and HP than the attacker. Attacks re-
ceive a retaliation counter-attack if the defender unit is not
defeated, hence lower priority is given to attack actions tar-
geting stronger units with high HP. Move actions are pe-
nalised if they move the unit in range of stronger enemy
units. Higher scores are given to actions that bring units
closer to weaker enemy units, villages and enemy cities.

Capturing cities and villages, examining ruins and mak-
ing a unit a veteran are always given the highest possible
score. For leveling up, the following bonuses are preferred
at each level: extra production; extra resources; city border
growth; and spawning a superunit (levels 5 and up). Upgrad-
ing and spawning a unit are scored based on the type of unit,
resources available and the presence of enemy units within
city borders. Similarly, building and resource gathering con-
sider resource and population gain. The Mind Bender’s con-
vert action is scored higher for stronger enemy units and its
heal action values the number of units affected. Researching
a technology is scored based on the tier the target technology
is in, giving higher priority to those in lower tiers. Disband-
ing a unit and destroying a building are never executed5.

While this agent incorporates some useful domain knowl-
edge, its main weakness comes from the fact that actions
are evaluated independently. Thus, the agent lacks overall
planning, unit coordination and an efficient resource man-
agement strategy. However, it provides a baseline for com-
parison with other agents in the game.

One-Step Look Ahead (OSLA): One-Step Look Ahead is
a simple method that uses the FM to advance the current
state of the game once for each action available in a given
turn. Each action is then given a score based on the evalu-
ation of the state it leads to. This state is scored using the
state evaluation function described at the end of this section,
breaking ties uniformly at random. The action with the high-
est value is then executed in the game.

Monte Carlo (MC): Monte Carlo search repeatedly exe-
cutes rollouts (sequences of random actions) from the cur-
rent game state (S0) to a predetermined depth while within
budget. The last state reached by the rollout is evaluated with
the same state evaluation function. MC returns the action
that, starting from S0, achieved the highest average value
over all iterations.

Monte Carlo Tree Search (MCTS): MCTS is a well
known tree search method that grows an asymmetric tree
by balancing exploration of new actions and exploitation

5These actions are often available, but they are useful only in
specific circumstances that require more careful planning.

of the most promising moves (Browne et al. 2014). In
each iteration, four main steps are executed in the de-
fault MCTS algorithm: Selection, Expansion, Simulation,
and Back-propagation. The selection step uses a tree pol-
icy (such as Upper Confidence Bound for trees; UCB (Koc-
sis and Szepesvári 2006)) to navigate the tree from the root
until reaching a non-fully expanded node. At this point, the
expansion step adds a new node at random and starts the sim-
ulation step, performing a rollout until reaching the terminal
state, which is evaluated with the same state evaluation func-
tion described below. The back-propagation step updates all
nodes traversed in this iteration with the score of the evalu-
ated state. Once a given budget is expired, MCTS returns the
action corresponding to the most visited child of the root.

Rolling Horizon Evolutionary Algorithms (RHEA):
RHEA (Perez et al. 2013)) evolves sequences of actions
(individuals) that are evaluated by executing them from
the current state until the end of the individual. The state
found at the end of this sequence is evaluated with the
same state evaluation function and constitutes the fitness
of the individual. Once the given budget is exhausted, the
sequence with the highest fitness is selected and its first
action returned to the game. Evolutionary operators are
applied for selection of individuals, crossover, mutation and
elitism. It is common practice in RHEA to use a shift buffer,
which moves all the genes one position towards the start
of the genome after each action selection, adding a random
action at the end to keep the pre-determined length.

State Evaluation Function The value of a state VS is de-
termined by a heuristic function that analyzes the state of
the different tribes. This function computes 7 features (Φ),
evaluating changes from a state (S0) to another (SL). These
features are the differences in production (φ1), number of
technologies researched (φ2), game score (φ3), cities owned
(φ4), number of units (φ5), number of enemy units defeated
(φ6) and the sum of the levels of all owned cities (φ7). A
“difference” value vi0→L is computed, for each player i in
the game, as a linear combination between Φ and W , where
W is a weight vector W = {5, 4, 0.1, 4, 2, 3, 2}. These val-
ues have been adjusted to represent the magnitudes and rel-
ative importance of each φi. Finally, the vi0→L values for all
tribes i different to the current player are averaged and sub-
tracted from vj0→L where j is the root player, resulting in the
final score VS for state S.

Intuitively, each vi0→L represents the progress of tribe
i from state S0 to state SL and VS indicates the relative
progress between the own tribe and the others in the game.
This function is used by all agents that use the FM (OSLA,
MC, MCTS and RHEA). For them, S0 is always the current
state of the game and SL is the state reached after each it-
eration (S1 for OSLA, a rollout for MC, maximum depth in
MCTS and the end of the individual in RHEA).

4 Experiments and Analysis

First, we study the relative performance of the implemented
agents (Section 4.1); then we analyze the complexity of the
game for AI decision making (Section 4.2).
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4.1 Agent Performance

An initial piece of work consisted of adjusting the parame-
ters of the different AI agents. For completeness, we report
here some considerations and settings that were attempted
(and, some, discarded) before the final experimentation.

Root Prioritization: On each action request per turn, MC
and MCTS fix a different subset of actions (Unit, City or
Tribe) at random to draw from at the start of each itera-
tion (i.e. first action from S0) during that action selection
call. Once S1 has been reached, all actions become available
again for subsequent steps. This provided a stronger playing
performance than allowing any available action at the root.
This can be seen as an extremely simplified version of Pro-
gressive Widening (Chaslot et al. 2008).

Forcing End Turn actions: given the game’s large branch-
ing factor, MC, MCTS and RHEA rarely have the chance
to execute actions as other players in their simulations. It is
even less likely that they get to play as themselves again in
the same iteration, which may be detrimental to action plan-
ning. Forcing the use of an End Turn action every X steps,
however, did not provide better results overall and was dis-
carded as an option in the final experiments. Investigating
this further is a matter for future research, but it is possi-
ble that this approach would work better using Progressive
Widening techniques with a move ordering function, or en-
hancements like First-play urgency (Gelly and Wang 2006).

MCTS Simulation step: Some recent work with MCTS,
such as (Silver et al. 2017) in AlphaZero or (Baier and
Cowling 2018) in Multi-action MCTS, has shown that skip-
ping the simulation step in MCTS and evaluating the state
reached in the expansion phase can provide better results
than using rollouts. This was also true for Tribes, hence the
MCTS agent does not perform rollouts during its iterations.

Algorithm parameters: The exploration constant for the
tree policy in MCTS is set to

√
2. The iteration length in MC,

MCTS and RHEA is set to 20 (values of 5 and 10 were tried
and consistently provided inferior results). The population
size for RHEA is set to 1 (hence, RHEA behaves as a Ran-
dom Mutation Hill Climber). Some previous work showed
that larger RHEA populations tend to provide better results
in General Video Game Playing (Gaina et al. 2017), how-
ever, sizes of 5 and 20 did not outperform a population size
of 1 in Tribes. A possible explanation for this is an observed
tendency by RHEA of generating invalid actions, which is
likely to be caused by the crossover operator. Additionally,
the actions Disband and Destroy are removed from the se-
lection of possible actions in the SFP methods (as in RB).

Experimental setup Each agent played against each other
agent 500 games: 20 repetitions in the same 25 procedurally
generated levels, all with a 11×11 size and a 1 : 1 water/land
tile ratio. As levels are not guaranteed to be balanced, the
starting position of one of the tribes can be better than the
other in certain levels. To avoid this impacting the results,
agents play 10 repetitions with each tribe. All runs are inde-
pendent, without carrying any information from one game
to the next. The tribes used for these games are Xin Xi and

Imperius and the game mode is Capitals6 played with full
observability. OSLA, MC, MCTS and RHEA use the same
budget of 2000 usages of the FM nextmethod per decision.
Once this limit is reached, the algorithms stop and return a
desired action. Having this limit based on function calls in-
stead of execution time permits comparing these results in
different hardware architectures.

Results Table 1 summarizes the results of these experi-
ments, with rows sorted from stronger to weaker agent. The
left part of the table shows the win rate of the row agent ver-
sus the column. It can be observed that RHEA is able to win
more games against all other agents. It is specially proficient
against the simpler agents (MC and OSLA; > 75% victo-
ries), beating MCTS and Rule Based 63% and 58.6% of the
time, respectively. It is remarkable that the Rule Based agent
ranks second, despite being a very simple heuristic agent.
This is useful to put in perspective the strength of the cur-
rent algorithms included in the framework and the existent
room for improvement. They can play at some degree of skill
(they all achieve practically 100% versus the random agent),
but are still far from optimal play.

Table 1 (right) also shows aggregated statistics for all
games played. The last 4 columns indicate end game mea-
sures that normally correlate with victory (and as such re-
warded by the heuristics employed): final score, percentage
of technologies researched, number of cities owned and fi-
nal production. This also reveals an interesting aspect: RB
is strategically an outlier, achieving less score and technolo-
gies researched than some agents lower in the ranking.

To verify the strength of the AI players, we paired our
top agent (RHEA) against a moderately good human Tribes
player. A game was played for each of the same 25 levels
(same 2 tribes assigned randomly). The results show a clear
dominance on the human side (100% wins). Some interest-
ing observations can be made about the play-style of RHEA:
it makes reasonable short-term decisions (e.g. attacking en-
emy units that try to capture their cities), but lacks tactical
and strategic depth required to coordinate multiple units in a
turn or spend resources efficiently in various situations.

4.2 Game Complexity

One of the main motivations to introduce Tribes is its com-
plexity. Apart from the difficulty for AI agents to create
long-term plans in a multi-agent, multi-player and partially
observable environment, the game provides very large and
dynamic action space. As the game progresses, tribes cap-
ture more cities, increase their production and research more
technologies. All these events allow the tribes to spawn
more units and construct new buildings. Therefore, the ac-
tion space for the players is not only more varied as the game
progresses (more types of actions) but its size also grows ex-
ponentially. Actions are dependant on researched technolo-
gies, terrain types, stars and the interaction between the dif-
ferent friendly and enemy units, which makes the analytical
computation of the action space not trivial. This section pro-
vides an empirical analysis of Tribe’s action space.

6For completion purposes, Capitals games end after 50 game
turns, declaring the faction with most points the winner.
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Agent wining rate (row player vs column player) Aggregated results at the end game

Agent RHEA RB MCTS MC OSLA RND Wins Rank Score Techs Cities Prod.

RHEA * 58.60%
(2.20)

63.00%
(2.16)

77.80%
(1.86)

74.80%
(1.94)

100.00%
(0.00)

74.84%
(1.50)

1.25
(0.03)

11610.56
(134.34)

88.95%
(1.78)

2.68
(0.05)

20.68
(0.41)

RB
41.40%
(2.20) * 56.20%

(2.22)
62.40%
(2.17)

70.20%
(2.05)

98.80%
(0.49)

65.80%
(1.32)

1.34
(0.03)

8076.32
(81.58)

71.14%
(1.42)

2.98
(0.06)

20.29
(0.41)

MCTS
37.00%
(2.16)

43.80%
(2.22) * 62.00%

(2.17)
60.80%
(2.18)

98.60%
(0.53)

60.44%
(1.21)

1.40
(0.03)

9966.55
(106.19)

85.27%
(1.71)

2.23
(0.04)

16.96
(0.34)

MC
22.20%
(1.86)

37.60%
(2.17)

38.00%
(2.17) * 54.80%

(2.23)
99.00%
(0.44)

50.32%
(1.01)

1.50
(0.03)

8065.96
(71.22)

82.35%
(1.65)

2.23
(0.04)

14.73
(0.29)

OSLA
25.20%
(1.94)

29.80%
(2.05)

39.20%
(2.18)

45.20%
(2.23) * 99.40%

(0.35)
47.76%
(0.96)

1.52
(0.03)

8927.05
(88.84)

82.31%
(1.65)

2.05
(0.04)

15.17
(0.30)

RND
0.00%
(0.00)

1.20%
(0.49)

1.40%
(0.53)

1.00%
(0.44)

0.60%
(0.35) * 0.84%

(0.02)
1.99

(0.04)
3708.76
(12.51)

58.54%
(1.17)

0.39
(0.01)

0.01
(0.00)

Table 1: On the left, win rate for each row agent averaged across 500 games. On the right, statistics for all games averaged
across 2000 game ends. Values between brackets indicate standard error of the measure.

We ran 400 games for 50 game turns between RHEA
and RB in the previously set 25 levels. The following was
recorded: average number of moves played per turn, average
number of available actions per move and branching factor
per tribe’s turn. In order to appreciate the difference between
the start and the end of the game, values are also analyzed
during the turn blocks h0 = [1, 25] and hF = [26, 50]. The
number of moves per turn grows linearly, with an average of
9.86 moves for the whole game. This average is 6.47 during
h0 and doubles to 13.11 for hF .

Figure 2 shows the progression of the action branching
factor per move (left) and per turn (right). Every time an
agent makes a move, there is an average of 54.47 possi-
ble actions to choose from (21.86 for h0 and 85.83 in hF ).
The turn branching factor can be calculated as the product
of these values per step, averaging at 1015 for the whole
game (107 for h0 and 1023 for hF ). It is useful to put
this in perspective comparing with the branching factor of
other games: Chess (30), Go (300), Hero AIcademy (108)
and Bot Bowl (1051). It is worth noticing, however, the im-
pact that strategy has in these numbers. Figure 2 averages
these measures by which bot won each game. It is clear
that there is a difference between winning and losing play-
ers. Both branching factor and number of actions available
are higher in winning players, correlating victory and action
space. Winning bots reach a branching factor of 1032 in the
last 5 turns of the game. Thus one cannot dismiss the idea
that more skilled players could experience even larger ac-
tion spaces, and longer games with more players and larger
board sizes are likely to increase this size as well.

The size of the game tree, in a two-player game of 50 turns
with an average branching factor would be ((1015)2)50 =
101500, compared to Chess (10123), Go (10360), Hero
AIcademy (10711) and Bot Bowl (103264).

5 Conclusions and Future Work

This paper introduces a new framework for strategy games,
Tribes, based on the popular award winning game The Bat-
tle of Polytopia. This is a multi-agent, multi-player, stochas-
tic and partially observable game that offers several inter-
esting challenges for AI, requiring unit coordination, long-
term planning, opponent modeling and build ordering in a
vast and variable action space. The game includes a For-

Figure 2: Actions per move and branching factor (log scale).

ward Model to facilitate the creation of SFP methods (like
MC, MCTS and RHEA). This paper describes these base-
line agents and their relative performance. Although some
of these agents are able to play at a decent level (matching
a simple heuristic implemented for a rule-based agent), their
play strength is clearly inferior to human players.

Already ongoing work is expanding this study to analyze
results in the Score game mode, games with more than two
players and partial observability, as well as implementing
other agents that have shown good performance in multi-
agent games in recent research, such as Online Evolution-
ary Planning (Justesen, Mahlmann, and Togelius 2016) and
Evolutionary MCTS (Baier and Cowling 2018).

Additionally, other lines of possible research for this
work include the implementation of model-free reinforce-
ment learning (RL) or deep RL agents for the game. In par-
ticular, the GUI of the current framework provides an ideal
input for methods that use screen capture for decision mak-
ing. The game is also highly parameterizable (about 150 val-
ues determine features of units, buildings and economy), fa-
cilitating research in automatic game design. Last but not
least, this framework also provides the chance of investigat-
ing new procedural generations that can create interesting
and/or challenging levels for the game.
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2017. Analysis of vanilla rolling horizon evolution parame-
ters in general video game playing. In European Conference
on the Applications of Evolutionary Computation, 418–434.
Springer.
Gelly, S., and Wang, Y. 2006. Exploration exploitation in go:
Uct for monte-carlo go. In NIPS: Neural Information Pro-
cessing Systems Conference On-line trading of Exploration
and Exploitation Workshop. hal-00115330.
Jervis Johnson. 1986. Blood Bowl.
Justesen, N.; Mahlmann, T.; Risi, S.; and Togelius, J. 2017.
Playing multiaction adversarial games: Online evolutionary
planning versus tree search. IEEE Transactions on Games
10(3):281–291.
Justesen, N.; Uth, L. M.; Jakobsen, C.; Moore, P. D.; To-
gelius, J.; and Risi, S. 2019. Blood bowl: A new board game
challenge and competition for ai. In 2019 IEEE Conference
on Games (CoG), 1–8. IEEE.
Justesen, N.; Mahlmann, T.; and Togelius, J. 2016. Online
evolution for multi-action adversarial games. In European
Conference on the Applications of Evolutionary Computa-
tion, 590–603. Springer.
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