Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Chaos Cards: Creating Novel Digital Card Games through
Grammatical Content Generation and Meta-Based Card Evaluation

Tiannan Chen, Stephen J. Guy
Department of Computer Science & Engineering, University of Minnesota
{chen2814, sjguy } @umn.edu

Abstract

We present a novel framework to procedurally generate exe-
cutable cards for Hearthstone-like digital card games, along
with an approach for evaluating card strengths using an
evolved match environment. Here we introduce Chaos Cards,
a digital card game in the style of Hearthstone, but designed
to support the procedural generation of cards, including their
diverse effects, via a grammatical model. To understand the
potential performance of procedurally generated cards in ac-
tual games, we integrate a simulation-based approach to eval-
uate card strengths, and train a neural network model for
fast card strength prediction. Because the strength of a card
is most meaningful when considered in the context of the
pool of competitive decks (know as the meta) it plays in
and against, we propose an evolutionary evaluation approach
which simultaneously evaluates card strength and refines the
environment in which cards are tested. We showcase some
example cards generated by our framework, along with their
strength evaluations. Additionally, we conduct tests between
evaluations from meta game environments and random game
environments to show the importance of the environment in
evaluating card strengths. Lastly, we show our neural network
is able to learn the strength of important cards in a meta envi-
ronments with largely positive correlation.

Introduction

Procedural content generation (PCG), the algorithmic cre-
ation of content with limited or indirect user input (Togelius
et al. 2011), has been adopted in commercial games such as
Diablo III (Blizzard) and No Man’s Sky (Hello Games), and
studied in academic context including generating furniture
layouts (Germer and Schwarz 2009) and textures (Dong et
al. 2019). It is also found in domains beyond entertainment,
such as automatically generating code as test cases for soft-
ware verification (Claessen and Hughes 2011) or randomly
generating math quizzes (Tomds and Leal 2013). As a pow-
erful tool for creating large amounts of diverse data and con-
tinuously introducing new experiences, PCG is often con-
sidered part of a mixed-initiative co-creativity (Yannakakis,
Liapis, and Alexopoulos 2014).

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

196

Collectible card games (CCGs) are a popular type of turn-
based strategy games, where players use decks built from
the cards they collected to compete against other decks.
CCGs date back to as early as the physical form of Magic
the Gathering (Wizards of the Coast) in 1993, but now
appear more often in digital forms, such as Hearthstone
(Blizzard) and Shadowverse (Cygames). CCGs have been
an interesting problem domain for Al, including deck op-
timization (Garcia-Sanchez et al. 2016), gameplay strate-
gies (Swiechowski, Tajmajer, and Janusz 2018), and game
balancing (Jin 2019), due to diverse card effects and com-
plex interactions between cards in an adversarial setting.
These properties of CCGs also make them interesting for
studying the PCG of cards, which has potential applications
in assisting the creation of new cards and introducing new
game modes where cards are generated on-demand.

PCGs for cards in CCGs give rise to three important chal-
lenges. The first challenge is how to model the complex card
effects for procedural generation. Effects can be of various
types (e.g. damaging, or healing) and magnitudes (e.g. how
much damage it deals). Effects can be triggered by different
events (e.g. battlecries and deathrattles are triggered when
minions are played and destroyed respectively), or may re-
quire certain conditions (e.g. having leader’s health below
15). Certain effects may even recursively attach effects to
other cards or spawn other cards.

The second challenge is in understanding the impact
of generated cards on game balance, mainly the strength
of generated cards. Balancing is an important aspect of
games, heavily impacting player experience, and drawing
large amounts of designer effort. Automatic evaluation is
especially important for procedurally generated content be-
cause of their amount and stochasticity. Due to complex-
ity of the interactions and being in an adversarial setting,
card strength is not easily defined on a card in isolation, but
should be tested in the context of (simulated) matches. More
concretely, the strength of a card depends heavily on the
existence of other cards and decks, known as the environ-
ment of the game. In popular CCG games, the environment
evolves quickly to one that contains predominately compet-
itive decks, called the/a meta or meta game, which means
defining card strengths with regard to the meta is highly de-

sired. Additionally, as game simulations are generally costly
as an evaluation method, fast prediction on strengths of new
cards requires training an efficient model, such as a neural
network model, based on simulation results, which has its
own challenge due to the complexity of the cards.

The third challenge is how to integrate card genera-
tion with their in-game execution, i.e., how to generate
executable cards instead of only card descriptors. Card
execution is necessary for cards to participate in actual
games, and is also needed by the simulation-based evalua-
tion scheme. Generating executable cards is important, be-
cause it saves us from the implementation and execution of a
parser/interpreter, and avoids unnecessary ambiguity issues
when using certain descriptor types (e.g. pure text descrip-
tion would be hard for machine interpretation).

To address these challenges, we propose a framework
combining the procedural card generation and card strength
evaluation. First, we create a prototype digital card game,
Chaos Cards, using a recent grammatical PCG tool, Gram-
matical Item Generation Language (GIGL) (Chen and Guy
2018), which helps seamlessly integrate the card genera-
tor with game mechanisms, enabling the procedural genera-
tion of executable cards. Second, we propose a meta-based
card evaluation scheme, where we evaluate card strengths by
simulating matches between decks that are created with an
evolutionary scheme. This scheme enables the environment
to converge to a meta, where card evaluations are likely to
be more meaningful. Third, we train a recursive neural net-
work (Socher et al. 2011) model for fast prediction of card
strengths. Recursive neural networks capture grammatical or
hierarchical structures well, and are suitable for content that
is generated through such models.

Our work here presents three main contributions:

e Chaos Cards: We create Chaos Cards, a novel prototype
digital card game with procedurally generated executable
cards, as a platform for studying PCG for adversarial con-
tent generation with complex grammatical structures.

e Evolutionary Simulation-based Evaluation: We propose
a evaluation method for card strengths that simulates
matches while evolving for the meta, which provides
a new perspective of evaluating combinatorial elements
(cards) in adversarial settings.

e Card Strength Predictor: We train a deep learning model
based on recursive neural networks, providing an efficient
way of estimating card strengths.

Related Work

Here we briefly survey related work in grammatical struc-
tures in PCG and studies on CCG related topics.

Grammatical PCGs

Grammar-based models have been widely used in PCG stud-
ies. Grammars have been used for generating Mario Lev-
els (Smith et al. 2009; Shaker et al. 2012), environments
in an endless-run type game (Toto and Vessio 2014), in-
stances of MMORPG games (Merrick et al. 2013), and 2D
maze or puzzle games (Khalifa and Togelius 2020). They

197

are also used in procedural modeling of 3D scenes (Kreck-
lau and Kobbelt 2012), cities (Parish and Miiller 2001;
Talton et al. 2011), villages (Emilien et al. 2012), and com-
plex buildings and landscapes (Merrell and Manocha 2008).
Grammatical generation is also used with natural languages
to procedurally generate sentences (Kempen and Hoenkamp
1987) and stories (Ammanabrolu et al. 2019).

There have also been work on providing tools to facili-
tate grammatical PCGs, many in the form of domain-specific
languages (DSLs). Recent examples include HyPED (Os-
born, Lambrigger, and Mateas 2017) which targets ac-
tion games, Tracery (Compton, Filstrup, and Mateas 2014)
which support grammar-based procedural story authoring,
and Ceptre (Martens 2015) which encodes rules for inter-
active narratives and strategy games. Other closely related
works include Expressionist (Ryan et al. 2016), which is an
in-game text generator authoring tool based on probabilis-
tic context-free grammars, and CatSat (Horswill 2018), a
logic language for PCG tasks based on answer set program-
ming. Our implementation is able to procedurally generate
executable cards by using GIGL (Chen and Guy 2018), a
DSL supporting the implementation of generic probabilistic
grammars with compile time integration with C++ code.

CCG Studies

CCGs, especially Hearthstone, have been used as the prob-
lem domain for many Al studies. For a recent review on
CCG studies, we refer to an article by Hover et al. (2020).
Most works on CCGs study deck building strategies (Garcia-
Séanchez et al. 2016) or game playing strategies (Grad 2017;
Swiechowski, Tajmajer, and Janusz 2018), and Zook et.
al. (2019) takes this a step further by using trained game-
play Als to discover design flaws. A few studies (Jin 2019;
de Mesentier Silva et al. 2019) work on balancing the game
by analysing or adjusting numerical attributes on existing
cards. Close to our aim is the work of Ling et al. (2016)
which studies the generation of program code given text de-
scription of cards. In contrast though, we rely on authored
grammar rules to directly generate cards so as to guarantee
the results are executable. We then further work to under-
stand the impact of the resulting cards on gameplay.

Chaos Cards

Chaos Cards is a prototype digital CCG we create as a prob-
lem domain for this work, with executable cards generated
via a grammatical model. Players make decks of 20 cards,
where they take turns spending a limited pool of mana to
play cards. The game rules are similar to the game Hearth-
stone where both players try to defeat the opponent leader by
attacking with minions or playing spell cards. As compared
to Hearthstone, some aspects have been simplified such as
the weapon system is replaced with an attack value attached
to the leader (see tinyurl.com/chaoscards-rule). Chaos Cards
is implemented in GIGL/C++, with text-based gameplay.

Grammatical Card Generation

Cards in Chaos Cards and other CCGs have a structured for-
mat of cost, stats, effects, etc. Card effects are diverse with

CardRoot =
| leaderCard(int, int, int, AtkTimes, Abilities, Ef fects)
| minionCard(int, int, int, AtkTimes, MinionType, Abilities, Ef fects)
| spellCard(int, Abilities, Ef fects)

AtkTimes = | zeroAttack() | singleAttack() | multipleAttack(int)
MinionType = | beastMinion() | dragonMinion() | demonMinion()
Abilities = -+

Effects = -

TargetedEff =

| simpleTargetedEf f(BaseTargetedEff, TargetCond)
| srcCondTargetedEff(BaseTargetedEff,TargetCond, TargetCond)

UntargetedEff =
| simpleUntargetedEf f (BaseUntargetedEff)
| srcCondUntargetedEff(BaseUntargetedEff, TargetCond)

TargetCond := -+

BaseTargetedEff =
| healEff
| destroyEff
| giveEffectsEff (Effects)

BaseUntargetedEff :=
| aoeEff(BaseTargetedEff, TargetCond)
| randEff (BaseTargetedEf f, TargetCond)
| selfEf f (BaseTargetedEff)

(a)

single beast
Attack || Minion

B1

Ability: Stealth
Battlecry: Give a friendly minion
the following effect:
Deathrattle: oy all minions
having at least 8 ATK.

(b)

minionCard ‘

FEm o g 7 0

simpleTargetedEff
(1]

[6 [

[noCharge ‘ ‘ hasStealth ‘

giveEffectsEff
[]
// \\D

simpleUntﬁrgetedEff ’ [@ily | .. [noStatcond |

] [/

N
]
‘ ax;y ‘ [atkcond |
>=

Figure 1: Illustration of structured card generation. (a) Item grammar for card generation (*“...” indicates omissions). (b) ren-
dering of an example generated card. (c) Tree representing the internal structure of the example card (curving arrow indicates
omitted paths and branches). Card arts and names (e.g. B1) in this paper are added manually for showcasing. The full grammar
has 33 nonterminal types and 132 rules (see Additional Materials).

various combinations of triggers, conditions, and impacts
which can be well represented in a grammatical structure.
In addition, the possibility of recursive effects, such as ones
giving effects to other cards/characters (seen in the example
in Figure 1) makes probabilistic grammars a good choice
for the procedural card generation. We do not select a sim-
pler model, such as a sequence model, because such repre-
sentations either have difficulties in being executable (e.g.
card text or tokens) or heavily limit the diversity of cards.
The card generator is implemented in GIGL (Chen and Guy
2018), which is designed for encoding grammatical PCGs
and provides compile time integration with C++ code, ac-
commodating the need for diverse executable cards.

The probabilistic grammar to generate content is called an
item grammar in GIGL, which has named expansion rules.
Figure la shows a key part of the item grammar for cards
in Chaos Cards. The grammar contains rules specifying how
a nonterminal node can be further expanded to nonterminal
nodes (to apply additional rules) or terminal nodes (i.e., spe-
cific values, including empty). The card generation process
starts from a starting node (of CardRoot type) and stochasti-
cally and recursively selects from rules to expand nontermi-
nals until all branches reach terminals. For example, a Card-
Root node can be expanded by stochastically choosing from
one of the three rules, leaderCard, minionCard, or spell-

198

Card. If selecting minionCard, then three integer terminals
needs to be determined for cost, attack, health respectively,
and four other nonterminals of type AtkTimes, MinionType,
Abilities, Effects need to be further expanded. The giveEf-
SfectsEff rule (give extra effects to cards) is an example of
recursion, as it goes back to a nonterminal type (Effects) the
expansion already passed through. GIGL allows constraints
to be placed to limit the nesting depth of such effect to pre-
vent over-complicated cards.

Each time a rule is selected, corresponding human-
readable text (text part in Figure 1b) is also generated. The
end result is a card with a clear text description of its ef-
fect, along with an executable C++ object preserving the tree
structure (Figure 1c) of the generated card.

Card Strength Evaluation

Understanding the strength of cards is crucial for balancing.
We adopt a simulation-based evaluation for card strengths,
where cards are evaluated with simulated matches to provide
an objective evaluation of strength. Additionally, these sim-
ulated matches provide an environment (cards and decks),
as the context needed for strength evaluation. Cards are best
thought of not as weak or strong on their own, but rather
as effective or ineffective within the context of other cards

shared in its deck or played against it in the opponent’s deck.

Simulation AI

Automated simulations of matches requires a gameplay Al.
Very strong Al can be slow to compute, which reduces the
number of simulated matches used in evaluation. To balance
effectiveness and performance considerations, we adopt a
one turn look-ahead search-based Al using a heuristic on
game state. The Al does not cheat, but rather perform several
attempts with random cards filling in for unknown cards (e.g
ones in its opponent’s hand). Similar to Monte Carlo Tree
Search (Chaslot et al. 2008), actions are chosen stochas-
tically in a way that balances on exploring less tested ac-
tions and retrying actions which were tested promising. The
heuristic reward at the leaf of the tree is the based on the end
of turn game state, primarily the relative difference on the
total attack plus leader health between the two sides.

Card Strength Evaluation Metric

Evaluating card strength numerically requires defining a
metric based on the data from the simulated matches. In gen-
eral, a card participating in more winning matches should
have a higher strength rating. However, directly considering
win rate may be too noisy, especially for cards which were
rarely drawn or played. Therefore, we use a weighted win
rate as an evaluation metric:

_ Zk We,kTe,k

Zk We, k

where s, is the strength evaluation for card ¢, k goes over
each participating deck in each match (iterate twice for each
match to account for both sides), w,. ;. is a weight denoting
the contribution of the card in the deck for the match, and
7.,k denotes the result (1 for win, O for loss, 0.5 for draw) of
the corresponding match-side pair denoted by index k. The
contribution w,. j, is decided by how many times the card is
drawn, comes on to the field and has an effect on it being
triggered, and normalized to a sum of 1 for all cards in the
deck. This metric essentially means we weight the result of
each match by the participation of the card in the match.

ey

Sc

Evolving for the Meta

As mentioned, card strengths are most meaningful when
considered in a meta game, i.e. an environment with most of
the decks being highly competitive. In order to meaningfully
evaluate them then, we must also establish a meaningful en-
vironment for the cards to participate in, i.e. the meta. We
create this environment through an evolutionary approach
that refines the decks in the environment while perform-
ing simulated matches to evaluate card strengths. Genetic
evolution components are involved in the process, including
cross-over and mutation, as they are effective ways to ex-
plore combinatorial spaces of decks. At each round, decks
with relatively competitive performance are probabilistically
kept for the next round, and are subsequently modified to ex-
plore new potentially better decks.

Our approach to evolving the deck pool used in testing
follows an iterative approach with the following three steps:

199

1. Modification Proposition The deck pool may be modi-
fied in one of three ways: creating a new deck by selecting
individual cards, performing a cross-over of random two
decks from the deck pool which generates two offspring
decks, or performing a mutation on a random deck from
the deck pool by replacing one random card in it. Consid-
ering exploration versus exploitation balance, cards with
higher ratings or less testings are more likely to be chosen
for creating a new deck or mutating.

2. Evaluation Update A set of matches are performed
matching each of the new decks against each deck in cur-
rent deck pool. Each pair in the evolution process is tested
with repeated matches and with alternation in playing or-
der. A deck’s strength rating is based on its win rate.

3. Deck Pool Update Decision The reference deck(s)
which new deck(s) are compared to depends on the type
of modification chosen in step 1. A new deck modifi-
cation attempts to replace the worst rated deck in the
deck pool, a cross-over attempts to replace the parents se-
lected for cross-over, and a mutation attempts to replace
the deck it mutates from. This choice of replacement tar-
gets is made so that we either maximize the potential im-
provement, or improve decks by replacing instead of pop-
ulating decks of similar styles, which prevents the deck
pool from being too homogeneous. Decks which improve
upon the reference deck are always selected, while decks
which come close but do not improve on the reference
deck may still be chosen so as to ensure sufficient ex-
ploration of space of decks using the Metropolis-Hasting
Markov Chain Monte Carlo (Hastings 1970) style rejec-
tion scheme:

P, = min(l, emp(A?m)),

where P, is the probability to accept the modification m,
AFE,, is the change on deck ratings with the modification,
and T is a parameter called temperature to control the
exploration versus exploitation balance.

2)

The three steps above form an evolution round. The evo-
lution process is run over a fixed number of rounds. As the
evolution progresses, the process moves from from global
exploration to local refinement over time: smaller modifi-
cations are preferred in step 1; more repeated matches are
tested in step 2; and the parameter 7' is decreased in step
3 (as in simulated-annealing). The whole evolution process
is initiated by randomly sampling a set of decks from the
card pool of generated cards as the initial deck pool. After
the target number of rounds has been reached, an additional
batch of pair-wise matches are simulated between decks in
the final deck pool as a final refinement. Card strengths and
deck strengths are updated throughout the whole process to
reflect their evaluations in the context of the actively evolved
environment, which converges to a meta towards the end.

Deep Learning Model for Card Strengths
Although automatic simulation of games is much faster than
actual players playing games, the performance cost is still
significant for evaluating card strengths. Therefore, we wish

to explore the option of using a deep learning model to pro-
vide quick estimates on card strengths.

Recursive Card Strength Predictor

There are two important technical challenges in designing
neural network models for card strength predictors. First,
each instance from the grammar (i.e., each card) is of a dif-
ferent size, so that a fixed input network model cannot be
used. Second, grammars have recursive, hierarchical struc-
tures which should ideally be reflected in the predictions.
For these reasons, we adopted a network structure based
on recursive neural networks (Socher et al. 2011). Recur-
sive neural networks can be considered as a generalization
of recurrent neural networks (RNNs) that support not only
recursion, but also branching structures.

Our network architecture design is illustrated in Figure 2.
We conceptualize the strength predictor as a series of infor-
mation compression operations finally resulting in a single
number. We build the recursive neural network with basic
building blocks called nonterminal units. Each nonterminal
unit encodes the compression of information when passing
through the rules expanding a type of nonterminal, but in the
reverse direction (i.e. merging the info from its children as
the encoding for the parent node). The input to a nontermi-
nal unit includes the following (when applicable): the choice
of rule for the expansion (one-hot encoded), the terminal in-
formation (normalized, e.g. the mana cost mapped linearly
to [—1, 1]), and the outputs from nonterminal units, depend-
ing on the specification in the grammar (see Figure 2b for
an example). Different instances of rule application through
the same nonterminal type share weights. The implementa-
tion of a nonterminal unit is generally a fully connected net-
work layer with a sine activation. The output from the final
CardRoot unit is followed by three fully connected network
layers (not shown in the figure) with first two using sine ac-
tivations and the final one using a sigmoid to produce the
prediction of card strengths in the range of (0, 1).

Experiments and Discussions

To show our framework’s capability of understanding gen-
erated cards, we perform experiments in the following two
main parts. First, we examine the meta-based card strength
evaluation method. Second, we test the neural network
method using the evaluations from the first part as the train-
ing data. Each experiment is repeated with four independent
runs, and any statistic shown is averaged across the runs un-
less specified. Experiments on this paper are executed on a
machine with a 2.3 GHz Intel Xeon CPU and a 64 GB RAM.
The run times for card generation (< 10us) is trivial.

Meta-based Card Strength Evaluation

We use the evolutionary method mentioned in the Card
Strength Evaluation section to evaluate cards strengths. Each
experiment starts with a randomized card pool of 1000 cards
and 30 initial random active decks and evolves a meta envi-
ronment with 1000 evolution rounds. In order to verify the
importance of a meta environment in evaluating cards, we
also create a baseline environment with decks created and

200

minionCard

I election
ncoder.
II cost

i

attack
health

I o e ——] | GordRet
ID I/v from MinionTJr;‘); _)I
i I/ ron e —f
S ooy —
(a) Card Strength Predictor (b) CardRoot Unit

Figure 2: Recursive neural network card strength predic-
tor architecture. Nonterminal units (yellow) compute output
vector (red) based on rule selections (blue inputs), terminal
statistics such as cost (green inputs), and/or outputs from
other nonterminal units. (a) The overall card strength predic-
tor. The input recursively passes through the tree structure of
nonterminal units corresponding to that of the card, and the
output of the root unit derives the final network output (pur-
ple). (b) The CardRoot unit, an example nonterminal unit.

matched in a purely random way (called the random environ-
ment) for comparison. The random environment starts with
the same card pool for each independent run and randomly
creates 3000 decks and performs matches between randomly
selected decks. The number of matches is around 180k ~
190k (not fixed due to stochastic choice of modifications)
in the meta environment and 200k in the random environ-
ment. Each match on average takes around 0.05 ~ 0.1 sec-
onds depending on match lengths in the environment. The
validity of the evolution is confirmed via simulated matches
between the final deck pool of the meta environment and the
top rated decks in the random environment (which shows
an overwhelming win for meta environment; see Additional
Materials); we expect the competitive environment to pro-
vide more faithful card evaluations than the random one.
Figure 3 shows the top cards rated by the meta environ-
ment and their ranks on both the meta and the random envi-
ronment. Both environments agree on the #1 rated card (L1),
which is a overpowered leader card. As playing a leader card
in Chaos Cards replaces leader with the card (including the
stats) and trigger its battlecries if any, the card is strong from
multiple aspects, buffing/healing leaders, board clearing etc.
More interestingly though, is the #2 rated card in the meta
environment (S1), which draws cards with extreme cost effi-
ciency. The random environment vastly underestimates it be-
cause of not having competitive decks of cards for the card
drawing effect to synergize with. In fact, Shadowverse has
the exact same card (Inferno Surge) that is only available as
a token card spawned by playing a high cost legendary card.

Card Strength Predictor Training

We use the recursive neural network model mentioned in the
Deep Learning Model section to train a card strength predic-
tor. The model contains around 40,000 parameters, and are
trained for 50 epochs, with a 800 to 200 training versus val-
idation split on the card strength evaluation data from the

Battlecry: Deal 10 damage to all
enemy characters.

(a) Meta: #1; Random: #1 (b) Meta: #2; Random: #206
Figure 3: Cards rated top-2 in the meta environment simula-
tion in one independent run, with their ranks (out of 1000)
in both the meta and the random environment shown.

Cast: Deal 7 damage to a random
enemy character.

Cast: Deal 6 damage to a friendly
minion.

!

(a) Rank: #34 (b) Rank: #277

Figure 4: Ranks (out of 1000) of the predicted strengths for
two of the zero cost spells in the test set.

first part of experiment in the meta version of environment.
The loss function is log-cosh (a blend of MSE and MAE)
weighted by the participation (defined in the Card Strength
Evaluation Metric section) of the card. These weights are ap-
plied, because we value more on the prediction of important
cards, which are tested more and with less uncertainly, and
because the weighted average of the labels is an invariant
of 0.5. Dropouts are adopted to mitigate over-fitting. Each
training epoch takes less than 3s. Two statistics besides the
loss function are examined on the validation sets, the root
mean squared error and the linear correlation coefficient. We
consider it is important to also incorporate the weight (par-
ticipation) for those statistic for similar reasons in choosing
the loss function. In fact, the results in Table 1 show that
while the statistics without weighting are underwhelming,
we can achieve a small amount of error and largely positive
correlation with weighting, which means the predictor per-
forms well on important cards in the meta environment.

To justify the use of the recursive network network, we
has done a comparison against sequence models including
RNN, GRU and LSTM with approximately the same num-
ber of parameters. The comparison shows our recursive net-
work network learns faster and gives a lower validation loss.

Novel Card Generation. The trained network can be used
to estimate strengths of new cards instantly without the need
for the slow simulation-based evaluation process. For exam-
ple, we can use GIGL to generate 1000 random cards (as the
test set) and evaluate all 1000 using the network in less than
5 seconds. Figure 4 shows the prediction ranks for two of
the zero cost spells. The network successfully learns dealing
damage to enemies is better than doing so to allies (the for-

201

| Non-weighted | Weighted
0.150 0.052
0.152 0.770

RMSE
Correlation (r)

Table 1: The non-weighted and weighted versions of root
mean squared error (RMSE) and linear correlation coeffi-
cient () on the validation sets.

mer one is generally beneficial while the latter one is only
useful in special cases like triggering deathrattles).

Conclusion and Future Work

While our approach to PCG with Chaos Cards has demon-
strated the ability to procedurally generate executable cards
with a variety of interesting effects and provides ways for
evaluating generated cards, there are still important limi-
tations to our approach. First, the card generation is con-
strained by the authoring of the grammar, including what
aspects of the card are created, and what effects are possible
and how they can combine together. Additionally, the deep
learning model performs less well on weak cards, mainly
due to the complexity of cards and insufficient data.
Looking into the future, we would like to explore learning
aspects of cards that are difficult to be authored into formal
grammars, such as card names. Further, we would like to
consider creating not just individual cards, but rather decks
or sets of cards containing interesting interactions, to fur-
ther refine our problem space. Doing so would be a key step
towards understanding game balance in a more holistic fash-
ion. Finally, we are interested in understanding other more
human oriented aspects of PCG applied to Chaos Cards such
as how fun or engaging the generated cards might be to play.

Acknowledgments and Additional Materials

We would like to acknowledge Zachary Chavis for artistic
contributions on cards shown in this paper.

We refer readers to tinyurl.com/chaoscards-grammar for
the full card grammar, and to tinyurl.com/chaoscards-sup-
mat for results not included in the paper, including more card
evaluation/prediction examples, deck match tests for validat-
ing the evolution, neural network comparisons etc.

References
Ammanabrolu, P.; Tien, E.; Cheung, W.; Luo, Z.; Ma, W.;
Martin, L.; and Riedl, M. 2019. Guided neural language
generation for automated storytelling. In Proceedings of the
Second Workshop on Storytelling, 46-55.

Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008.
Monte-carlo tree search: A new framework for game ai. In
AIIDE.

Chen, T., and Guy, S. J. 2018. GIGL: A domain specific
language for procedural content generation with grammati-
cal representations. In Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Claessen, K., and Hughes, J. 2011. Quickcheck: a
lightweight tool for random testing of haskell programs.
Acm sigplan notices 46(4):53-64.

Compton, K.; Filstrup, B.; and Mateas, M. 2014. Tracery:
Approachable story grammar authoring for casual users. In
Seventh Intelligent Narrative Technologies Workshop.

de Mesentier Silva, F.; Canaan, R.; Lee, S.; Fontaine, M. C.;
Togelius, J.; and Hoover, A. K. 2019. Evolving the hearth-
stone meta. In 2019 IEEE Conference on Games (CoG),
1-8. IEEE.

Dong, J.; Wang, L.; Liu, J.; Gao, Y.; Qi, L.; and Sun, X.
2019. A procedural texture generation framework based on
semantic descriptions. Knowledge-Based Systems 163:898—
906.

Emilien, A.; Bernhardt, A.; Peytavie, A.; Cani, M.-P.; and
Galin, E. 2012. Procedural generation of villages on arbi-
trary terrains. The Visual Computer 28(6-8):809-818.

Garcia-Sanchez, P.; Tonda, A.; Squillero, G.; Mora, A.; and
Merelo, J. J. 2016. Evolutionary deckbuilding in hearth-
stone. In 2016 IEEE Conference on Computational Intelli-
gence and Games (CIG), 1-8. 1IEEE.

Germer, T., and Schwarz, M. 2009. Procedural arrange-
ment of furniture for real-time walkthroughs. In Computer
Graphics Forum, volume 28, 2068-2078. Wiley Online Li-
brary.

Grad, L. 2017. Helping ai to play hearthstone using neural
networks. In 2017 federated conference on computer sci-
ence and information systems (FedCSIS), 131-134. IEEE.

Hastings, W. K. 1970. Monte carlo sampling methods using
markov chains and their applications. Biometrika 57(1):97—
109.

Hoover, A. K.; Togelius, J.; Lee, S.; and de Mesentier Silva,
F. 2020. The many ai challenges of hearthstone. KI-
Kiinstliche Intelligenz 34(1):33-43.

Horswill, I. D. 2018. Catsat: A practical, embedded, sat lan-
guage for runtime pcg. In Fourteenth Artificial Intelligence
and Interactive Digital Entertainment Conference.

Jin, Y. 2019. Proposed balance model for card deck mea-
surement in hearthstone. The Computer Games Journal
8(1):25-40.

Kempen, G., and Hoenkamp, E. 1987. An incremental pro-
cedural grammar for sentence formulation. Cognitive sci-
ence 11(2):201-258.

Khalifa, A., and Togelius, J. 2020.

level generator generation with marahel.
arXiv:2005.08368.

Krecklau, L., and Kobbelt, L. 2012. Interactive modeling
by procedural high-level primitives. Computers & Graphics
36(5):376-386.

Ling, W.; Grefenstette, E.; Hermann, K. M.; Kocisky, T.;
Senior, A.; Wang, F.; and Blunsom, P. 2016. Latent

predictor networks for code generation. arXiv preprint
arXiv:1603.06744.

Martens, C. 2015. Ceptre: A language for modeling gener-
ative interactive systems. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.

Merrell, P., and Manocha, D. 2008. Continuous model syn-

Multi-objective
arXiv preprint

202

thesis. In ACM transactions on graphics (TOG), volume 27,
158. ACM.

Merrick, K. E.; Isaacs, A.; Barlow, M.; and Gu, N. 2013.
A shape grammar approach to computational creativity
and procedural content generation in massively multiplayer
online role playing games. Entertainment Computing
4(2):115-130.

Osborn, J. C.; Lambrigger, B.; and Mateas, M. 2017. Hyped:
Modeling and analyzing action games as hybrid systems. In
Thirteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference.

Parish, Y. I., and Miiller, P. 2001. Procedural modeling
of cities. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, 301-308.
ACM.

Ryan, J.; Seither, E.; Mateas, M.; and Wardrip-Fruin, N.
2016. Expressionist: An authoring tool for in-game text gen-
eration. In International Conference on Interactive Digital
Storytelling, 221-233. Springer.

Shaker, N.; Nicolau, M.; Yannakakis, G. N.; Togelius, J.; and
O’neill, M. 2012. Evolving levels for super mario bros using
grammatical evolution. In Computational Intelligence and
Games (CIG), 2012 IEEE Conference on, 304-311. IEEE.

Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2d platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, 175-182. ACM.

Socher, R.; Lin, C. C.; Manning, C.; and Ng, A. Y. 2011.
Parsing natural scenes and natural language with recursive
neural networks. In Proceedings of the 28th international
conference on machine learning (ICML-11), 129—-136.

Swiechowski, M.; Tajmajer, T.; and Janusz, A. 2018. Im-
proving hearthstone ai by combining mcts and supervised
learning algorithms. In 2018 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 1-8. IEEE.

Talton, J. O.; Lou, Y.; Lesser, S.; Duke, J.; Méch, R.; and
Koltun, V. 2011. Metropolis procedural modeling. ACM
Transactions on Graphics (TOG) 30(2):11.

Togelius, J.; Kastbjerg, E.; Schedl, D.; and Yannakakis,
G. N. 2011. What is procedural content generation?: Mario
on the borderline. In Proceedings of the 2nd international

workshop on procedural content generation in games, 3.
ACM.

Tomads, A. P, and Leal, J. P. 2013. Automatic generation
and delivery of multiple-choice math quizzes. In Interna-
tional Conference on Principles and Practice of Constraint
Programming, 848-863. Springer.

Toto, F. S. G., and Vessio, G. 2014. A probabilistic
grammar for procedural content generation. In Sixth Work-
shop on Non-Classical Models of Automata and Applica-
tions (NCMA 2014), 31.

Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity.

Zook, A.; Harrison, B.; and Riedl, M. O. 2019. Monte-carlo

tree search for simulation-based strategy analysis. arXiv
preprint arXiv:1908.01423.

