
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Image-to-Level: Generation and Repair

Eugene Chen, Christoph Sydora, Brad Burega, Anmol Mahajan,
Abdullah, Matthew Gallivan, Matthew Guzdial

University of Alberta, Department of Computing Science
{echen, csydora, burega, mahajan, ab11, mbgalliv, guzdial}@ualberta.ca

Abstract

Procedural content generation via machine learning
(PCGML) has recently gained research attention due to its
ability to generate new game content with minimal user
input. However, thus far those without machine learning
expertise have been largely unable to use PCGML to generate
content to fit their needs. This paper proposes the use of
images as the input for a PCGML process to generate game
levels. Intuitively, a user can submit an image, with the
system returning the closest valid Super Mario Bros. game
level. Our results indicate that at least for domains like Super
Mario Bros. we can recreate a target level with high fidelity.

Introduction

Procedural content generation (PCG) is the algorithmic pro-
cess to generate game content. In practice, creating accept-
ably coherent and engaging content using PCG requires time
and expertise, with no guarantee of success (Schreier 2017).
To help reduce the amount of human input required for
PCG, some turn to procedural content generation via ma-
chine learning (PCGML) (Summerville et al. 2017), which
trains ML models on existing content to generate new con-
tent. However, content generation using PCGML currently
requires deep domain expertise in ML and existing data.

To address the expertise problem, PCGML mixed-
initiative systems have been created. These systems allow
users to interact with and apply PCGML without ML exper-
tise (Guzdial et al. 2019; Schrum et al. 2020). However, they
still require a fairly high degree of effort to use effectively.
For example, prior approaches require users to label existing
data (Guzdial et al. 2018), to learn the impacts of altering
certain parameters (Schrum et al. 2020) or to implicitly train
an ML agent (Guzdial et al. 2019). These requirements serve
as barriers to more widespread adoption of mixed-initiative
systems (Lai, Latham, and Leymarie 2020).

One approach to level design begins with first sketching
out a level. For example, the original levels of Super Mario
Bros. were sketched out on graph paper (Murphy 2015).
Inspired by this, we developed a PCGML mixed-initiative
system called Image-to-Level that translates an input image

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

into a game level.1 This system allows for a simple interac-
tion with a PCGML model, rather than having to learn to
use a more iterative approach. One could anticipate that a
direct conversion of an image to a game level might not ac-
curately reflect the aesthetics and mechanical requirements
of the game. As such, we employ a two step process, first
converting an image into a rough level and then “repairing”
the level to make changes so that the style of the level is
more similar to the original game’s levels. In this paper we
use the running example of Super Mario Bros. as it is a well-
understood PCG research domain, however the system can
also produce Lode Runner levels.

Related Works

We overview related work on three major categories:
PCGML, co-creativity in PCGML, and computer vision as
it intersects with PCG. We include the last of these as our
system can be thought of as a type of image processing.

PCGML

Procedural content generation via machine learning
(PCGML) describes the use of machine learning in the
creation of video game content (Summerville et al. 2017).
PCGML attempts to generate novel game content based
on existing examples. We focus on PCGML approaches to
generate game levels.

Our system employs a convolutional neural network
(CNN), Markov chain, and autoencoder. Markov chains
have been frequently applied to Super Mario Bros. and a
number of other games (Snodgrass and Ontanón 2016), we
specifically draw on Markov Chains due to their ability to
capture local coherency. Autoencoders and CNNs have also
seen a good deal of use in Super Mario Bros. (Guzdial et
al. 2018; Sarkar, Yang, and Cooper 2020), we draw on these
neural networks as they tend to perform well with image-
like data. All of these prior approaches generate levels from
input random noise, instead we make use of images.

One common method in PCGML approaches is to include
an explicit repair step due to the noisy nature of ML-based
generation. Jain et al. (Jain et al. 2016) used a denoising
autoencoder to repair unplayable level sections and to clas-
sify levels into different styles. Mott et al. (Mott, Nandi, and

1The tool is available at http://ImageToLevel.com

189



Figure 1: The Image-to-Level System at a Glance.

Zeller 2019) used a long-short term memory recurrent neu-
ral network (LSTM) to repair locally incoherent sections of
generated levels. Shu et al. (Shu et al. 2020) developed a
method for repairing errors in pipe tile placement in Super
Mario Bros. with an evolutionary algorithm. Our work in-
cludes a repair step, with two options: an autoencoder and
a Markov chain. Our repair step differs from this existing
work as it repairs the results of translating an image into a
level instead of repairing a level generated from scratch.

The closest prior PCGML work to ours is Rebouças
et al.’s model for generating game sprites from sketches
(Rebouças Serpa and Formico Rodrigues 2019). They em-
ployed a Generative Adversarial Neural Network (GAN)
to turn sketches into the animation states of game entities.
However, this can be understood as a refinement of the input,
whereas our approach requires a translation from an image
representation (pixels) into a level representation (tiles).

Co-Creativity

Co-creative systems are ones where humans and AI agents
work together, they are also referred to as mixed-initiative
systems (Liapis, Smith, and Shaker 2016). A variety of co-
creativity approaches exist but most of these approaches rely
upon search-based or constructive PCG methods (Smith,
Whitehead, and Mateas 2010; Baldwin et al. 2017).

There have been some examples of PCGML co-creative
systems. Guzdial et al. (Guzdial et al. 2019) employed a
Deep Reinforcement Learning agent to collaborate with a
user to produce a Super Mario Bros. level, acting as an equal
partner. Schrum et al. (Schrum et al. 2020) employed a GAN
trained on Super Mario Bros. and allowed users to explore
the GAN’s learned latent space. Machado et al. (Machado
et al. 2019) employed an AI agent with learned probabilities
to suggest different game components to add to a game. All
of these systems involve a prolonged series of interactions
with a user. In comparison, Image-to-Level accepts user in-
put in the form of an image, but it is a much more lightweight
system, requiring only a single interaction. We chose co-
creativity over other similar terms (e.g. mixed initiative and
tool vs. designer (agent)) because of the large contribution
of the AI system to the final level and how it can be used by
a human designer in an iterative fashion.

Vision in Games

Computer vision represents the field of research into and
techniques for automated image processing (Forsyth and
Ponce 2002). Image-to-Level can be considered a special-
ized example of image processing. To the best of our knowl-
edge it represents the first instance of employing AI to con-
vert an image directly into a game level.

Computer vision does not frequently intersect directly
with level generation, but there have been some instances of
prior work. Guzdial et al. (Guzdial et al. 2017) used CNNs
for visual procedural content generation, recolouring an ex-
isting level. However, their work does not directly impact
level structure. Snodgrass (Snodgrass 2018) outlined an ap-
proach to automatically identify tiles from images of Su-
per Mario Bros. levels, converting these images to a tile-
representation. This work differs from our own as it gen-
erates a unique tileset for a given image, whereas we are
attempting to convert an image into a general tileset repre-
senting a shared representation for all levels of a game. Clos-
est to our work, Stephenson et al. (Stephenson et al. 2019)
developed a system to convert sketched images of structures
made up of rectangular blocks into analogous structures in
Angry Birds. While these structures are important portions
of Angry Birds levels, they do not include enemies or the
terrain found in complete levels. Image-to-Level produces
all of these tile types and thus creates full game levels.

There is more research on how computer vision can im-
pact textures, which are used for many 3D games. Cham-
pandard (Champandard 2016) demonstrated how low de-
tail segmented image layouts can be used to generate new
images that match the artistic style extracted from another
trained image, a process also known as Image Style Transfer
(Gatys, Ecker, and Bethge 2016). Image Inpainting refers to
the programmatic repair of images, used to fill in image gaps
(Guillemot and Le Meur 2013). This is similar to our meth-
ods that take advantage of known statistical properties of ex-
isting game levels to repair existing images. The difference
is that our levels do not have missing gaps, but rather have
areas that do not satisfy the local statistical tile properties
present in existing game levels. Isola et al. (Isola et al. 2017)
developed the pix2pix system which uses a GAN to perform
image-to-image translation. This differs from our work as

190



the output of Image-to-Level are tile-based level representa-
tions, rather than images. To apply pix2pix to generate game
content, a method for converting images to a game level rep-
resentation would still be required.

System Overview

Image-To-Level has a two step process in which we generate
an initial level from a source image (Generation) and then
repair that level (Repair) to produce a final level as demon-
strated in Figure ??. The intuition is that an image converted
directly into a level would likely not include the mechani-
cal and aesthetic constraints of the original game. Thus, we
solve this problem with the addition of a Repair step. The
Repair step alters the generated level structure to better fit
the local patterns from the original game levels.

For each step we implemented two approaches. In the
Generation step we have an approach we call Tile Transla-
tion and a Convolutional Neural Network (CNN) to convert
an image into a game level in a tile representation. By tile we
indicate one of a limited set of possible game components
that could occur at each position of a level (e.g. a ground,
an enemy, etc.). A Markov chain and an autoencoder are the
two approaches we implemented for the Repair step.

We chose to employ multiple approaches as we believe
that the primary value of this system is in the two steps of
Generation and Repair. By implementing two approaches
for each step, we can assess the value of these steps more
generally than if we only implemented a single, potentially
faulty approach for each. In addition, by building the sys-
tem to allow for multiple approaches for either step the sys-
tem becomes extendable to allow for other approaches to be
implemented in the future. We expect different approaches
to work better for different inputs and for different target
games.

Our system learns from Super Mario Bros. and Lode Run-
ner game levels and can generate repaired levels for both
games from an input image. We use Super Mario Bros. as
a running example in this paper as it is well understood
in PCGML (Summerville et al. 2017) and hugely popular
(Roach 2020). We avoid further discussion of Lode Run-
ner due to lack of space. We use data from the Video Game
Level Corpus (VGLC) (Summerville et al. 2016). The level
data from the VGLC represents a simplification of the origi-
nal Super Mario Bros. levels. For example, only one type of
mobile enemy, the goomba, is represented within each level.

Generation

The initial step in our system is the generation of a level in
a tile representation from an image input. This represents a
major difference between our approach and most PCG meth-
ods, which use some random noise as input. We chose to
focus on converting images into levels that look as close as
possible to the source image; this allows a designer to use
the source image as the starting point of level creation. We
implemented two major approaches for this step: Tile Trans-
lation and a CNN.

Tile Translation Our desired output for the Generation
task is a level in a tile representation. Our first approach is

Figure 2: Tile Translation

what we call Tile Translation (TT). At a high level, the TT
approach slices a source image into multiple square cells and
matches each with the most similar tile from the target game.
This process is shown in Figure ??. The input image, in this
case the Shot Marilyns, is converted into square cells as can
be seen in the bottom left. For each cell we extract a nor-
malized histogram H of red, green, and blue colors (RGB).
Each cell is matched to the closest tile from the target game
according to some distance function. We visualize this pro-
cess in the bottom right, with the output after each cell has
been matched at the top right. Notably, we use two different
distance functions for matching image cells to their closest
game tiles. We employed two distance functions as we an-
ticipated that different types of images and games might be
better suited to different distance functions.

We chose to compare image cells with game sprites using
color because the approach is straightforward and intuitive.
A deep red cell should be matched with the closest deep red
tile from the game.

Our first distance function for comparing color between
an image cell and game tile is the Bhattacharyya distance
formula (Guorong, Peiqi, and Minhui 1996). The Bhat-
tacharyya distance is meant to measure the overlap between
probability distributions, which are similar in representa-
tion to the color histograms described above. Given that we
directly compare the histograms, we refer to this distance
function as Histogram. We theorized that an even simpler
distance function could result in better tile matching. Thus
for our second distance function we directly compare the av-
erage color for each cell and tile in Red, Green, Blue (RGB)
space. We refer to this as the Average distance function.

Convolutional Neural Network The Convolutional Neu-
ral Network (CNN) takes an ML approach to converting im-
ages into game levels. Our TT approach is dependent on
having a separate set of tile images for comparison, but the
CNN can be trained using only images of a game level and
the game in the tile representation. Theoretically, it can also

191



Figure 3: Network architecture for the CNN.

handle decorative elements more robustly, avoiding convert-
ing them into tiles when desired. We note that the VGLC
representation that we use ignores decorative elements.

A CNN is typically trained on square images, while Super
Mario Bros. levels are rectangular in shape. To address this,
we slice each Super Mario Bros. level into a set of smaller
images, each with a width equivalent to two tiles (16 pix-
els/tile, thus 32x32). These images constitute our inputs to
train our CNN. For the training output, we use the equivalent
2x2 matrix of tiles. This lead to a training set of size 30,874.
We experimented with 3x3, 4x4, all the way up to 8x8 but
found that 2x2 lead to the best performing model. We use
a one-hot encoding for the representation of each tile in a
generated chunk. Our Super Mario Bros. data includes 13
different tile types (e.g. sky, ground, enemy) resulting in a
one-hot encoding of size 13 and 2x2x13 as the output shape.
We train our CNN using the architectures shown in Fig-
ure ??, which is composed of four convolutional layers, with
the parameters given above, followed by a dropout, fully-
connected, and reshape layer, all using ReLU activation We
arrived at this architecture through iterative experimentation
on our training set. We trained this CNN for 50 epochs with
a batch size of 16, using the adam optimizer and the mean
square error loss function. Once trained, we iterate through
an input image in 32x32 pixel slices until the CNN has fully
converted the entire source image into a game level.

Repair

An image converted directly into a level in a tile represen-
tation may not accurately reflect the design of the existing
levels. This is especially a concern when the input image
is more abstract or is representative of something different
from a game level (e.g. the Shot Marilyns in Figure ??).
Therefore, we are using this additional step to rearrange the
tiles in a way to accommodate for different title combina-
tions to make the output from the Generate step closely re-
semble the original game. For this step we drew on two ap-
proaches, an autoencoder and a Markov chain.

Autoencoder An autoencoder is a deep neural network
model that learns to map input to itself, essentially learn-
ing a space of valid inputs, which has shown success in re-
pairing level content (Jain et al. 2016). To create an autoen-
coder for repairing video game levels, we first need to gather
training data. To tackle this problem, we split our levels in
the tile-representation into 8x8 windows. We chose this size
because it represents the smallest chunk of a level that still

captures local structure, which we determined empirically.
We again used the one-hot encoding used for the CNN Gen-
erate approach, meaning our input and output had a 8x8x13
shape. This lead to a training set of size 19,726 from the
Super Mario Bros. levels from the VGLC.

Our autoencoder architecture is informed by the work of
(Guzdial et al. 2018). Figure ?? depicts our architecture. We
use a convolutional autoencoder which uses the 8x8x13 ten-
sors. The encoder is made up of two convolutional layers
with Tanh activations. The output of the second layer then
passes through a fully connected embedding layer. This em-
bedding then passes through the decoder, made up of two de-
convolutional layers mirroring those of the encoder. We ob-
served the best results when using a ReLU activation on the
output layer. The loss function used was the mean squared
error and the model was optimized with adam. We trained
the model for 40 epochs with a batch size of 64.

At inference time, a level passed to the autoencoder must
first be split into 8x8 chunks. These chunks are passed
through our autoencoder, which then maps the chunk to the
closest legal chunk in its learned latent space. Chunks re-
paired by the autoencoder are concatenated in the same fash-
ion as they were created using a sliding window method. The
result is a one-hot encoding of a full level, which can then
be converted to a level in our tile-based representation by re-
placing each vector with its corresponding tile. Training the
autoencoder requires fixed input dimensions, but levels pro-
duced by the generation step may not have consistent height
and width. In this way, the autoencoder can repair levels re-
gardless of the level dimensions.

Markov Chain Even by converting the images into 8x8
slices, the Autoencoder still has a relatively small training
set. One method that does not require as large of a train-
ing set is a Markov Chain (MC) (Snodgrass and Ontanón
2016). A MC learns a mapping between a tile and its sur-
roundings, what is the probability of a tile being placed in
a position given the surrounding tiles. To train the MC, we
used the Super Mario Bros. levels. For each tile (center), we
can consider it to be surrounded by eight other tiles as seen
in Figure ??. A MC requires keys and values, for our pur-
poses we used the center as the value and a key made from
the tile values of the North and West tiles in that order. We
wanted to use as few tiles as possible to gain the most infor-
mation and found these two tiles gave the best results. The
model builds a representation of local structure in the form
of a probability distribution by associating the key with the

192



Figure 4: Network architecture for the autoencoder.

Figure 5: Tiles used in building MC model

center tile (label) in the existing game levels. For example,
if half the time when north and west were both the blue sky
tile as in Figure ?? we saw the top left of a pipe, then the
top left of a pipe would have a probability of 50% for this
key. This is a smaller and therefore less descriptive key than
other Markov PCGML approaches (Snodgrass and Ontanón
2016), but we still found success with it since this applica-
tion is focused on repairing content instead of generating it
from scratch.

Given a generated level, the MC iterates over each tile and
gathers the surrounding north and west tiles to form the key.
It then checks the model to see if the key exists or not. If
the key exists then it queries to see if there is any probability
for the center tile to occur with this key, if so then nothing
is changed. If the key exists but there are no instances of the
center tile in the model then we sample a valid center tile
from the model randomly to ensure variability in the output.

Evaluation

The primary metric for success for our Image-to-Level sys-
tem is its ability to translate from images to game levels.
This can be subjective and we plan to do a human subject
study to follow this work. In the meantime, we want to quan-
titatively assess the translation of an image into a level us-
ing ground truth, and we chose to focus on two sets of im-
ages with known tile-based level representations. The first
set, known as the Training set, was composed of sections of
each of the original Super Mario Bros. levels used for train-
ing our CNN, autoencoder, and Markov chain. The second
set, the Test set, was comprised of Super Mario Bros.: the
Lost World levels from the VGLC, which were not used in
the training of the system. As not all levels in Super Mario
Bros.: The Lost Levels are the same height, we selected only
those that contained exactly 14 tile rows for consistency.
This resulted in the use of 15 levels in the Training set and

8 in the Test set. Since all levels are not the same width we
cropped all levels from the 50th column up to the 90th col-
umn of tiles in the level. For the evaluation, we calculated
the percentage of tiles that were correctly converted back to
the true level tile after the image passed through Image-to-
Level. This was done for each of the possible Generation
and Repair approaches. In this way we can evaluate all vari-
ations of the system on its primary task where we have a
gold standard answer.

Results

Table 1 shows the results from running the two level sets
though Image-to-Level and calculating the percentage of
correctly translated tiles, averaged over all levels. The “No
Repair” column indicates the average tile accuracy prior to
the Repair step. The results indicate that the Tile Translation
(TT) approach was able to perfectly reproduce Super Mario
Bros. and Super Mario Bros.: The Lost Levels levels from
their level images. This follows from the fact that two games
are nearly identical in terms of their tiles, only differing in
decorative elements (which are ignored by the VGLC) and
the ground tile. The results also indicate that the relatively
simple “Average” distance function performed as well as the
much more complex “Histogram” distance function. How-
ever, given that this tile translation task was straightforward,
we don’t take it as conclusive evidence that one should al-
ways stick with Average.

The CNN performed worse than TT at the Generation
step. However, it performed equivalently on both the training
and testing tasks. This indicates its ability to perform well,
with only 5% error in cases similar to the original Super
Mario Bros. However, we anticipate the CNN may struggle
with input that varies significantly from its training set.

Both the autoencoder and Markov Chain repair methods
slightly degraded (around 1%) the accuracy from the Gen-
eration step, with the latter performing slightly better. This
indicates that overall both approaches performed well as a
repair functions, correctly identifying that almost no repair
had to be done. The Markov chain created more changes
to the levels on average, leading to a small improvement
in the accuracy of the CNN levels both in the training and
test cases. While small, this indicates that the Markov chain
is capable of improving levels to better reflect Super Mario
Bros. structure. The Markov Chain’s slight degrading for the

193



Category Generation Step No Repair Autoencoder Markov Chain

Training
CNN 94.4524 94.1786 94.7143
TT: Histogram 100 98.9881 99.7738
TT: Average 100 98.9881 99.7857

Test
CNN 96.1384 96.0491 96.3839
TT: Histogram 100 99.1964 99.3973
TT: Average 100 99.1964 99.0402

Table 1: The average percentage of tiles matching the true
tiles in the training set versus the test set. TT refers to the
Tile Translation method, followed by the underlying dis-
tance function used for the generation step.

TT methods is due to the fact that we selected the second 40
tiles of each level to enforce uniformity. Because of this, the
beginning of the level did not match any beginning of any
level in the Markov chain’s training data. Therefore, we sur-
mise that the Markov chain is overall the stronger method
when there are greater repairs to make.

These results are positive, but don’t reflect the subjective
performance of our system with images that are not already
representative of Mario levels. This is where we expect our
Repair step to improve the generated levels, and we address
this here through a qualitative example. To avoid bias in our
choice of input, we chose the first for-public-use result when
searching for “landscape” on Google images. We chose the
word “landscape” as it seemed likely to describe the kind
of scenic photo we imagined a user might use as input to
our system. We scaled the image to match the 40x14 game
tile resolution used in our quantitative results. The result of
passing the image through Image-to-Level can be seen in
Figure 6. We selected one particular image which was gen-
erated using the TT method with the Average distance func-
tion and repaired it using the MC approach. After Genera-
tion, the output level is composed of almost all “Goomba”
enemies, which would immediately fall off the screen if the
level was loaded into a Mario engine. The repair method
changed most of these Goomba tiles to block tiles, reduced
the number of coins, fixed a cannon tile, and added ground to
the base of the level. Overall, we believe that after repair the
resulting level image better demonstrates Mario constrained
while strongly resembling the original image.

Limitations and Future Work

Our results demonstrate that Image-to-Level can be success-
ful at transforming images into levels. One significant ben-
efit of Image-to-Level is the modularity of the Generation
and Repair steps. We saw the utility of these variations in
our quantitative results. We plan to explore other Generation
and Repair methods such as (Shu et al. 2020) in future work.

We have not yet run a human subject study to determine
the system’s utility as a design tool. We have begun the pro-
cess of extending our system to specifically handle turning
sketches into levels, based on the inspiration of the historical
design of Super Mario Bros. levels on graph paper. We plan
to investigate this further with additional improvements to
our user interface. Potential avenues include real-time trans-
lations of sketches into immediately playable levels. We an-
ticipate, due to the simplicity of the system, that it could also
be used for outreach or as part of a public installation.

Figure 6: A Randomly selected image passed through
Image-to-Level, using the Average generation and Markov
chain repair methods. More examples are available at http:
//imagetolevel.com

The system currently provides no guarantee that we can
output good levels. Undesired patterns can still exist af-
ter repair: for example, there are enemies trapped inside
the ground in our repaired version of Figure 6. Further,
there is no guarantee that either of our currently supported
games (Super Mario Bros. and Lode Runner) will be good
fits for an input image. Extending this towards other non-
platforming games, such as Pacman, Brick Breaker, or
Mario Kart would increase the expressivity of the system.
Further, since these games have a resolution closer to a stan-
dard “portrait” resolution, it would allow users to create lev-
els from images like selfies.

One regular issue with PCGML broadly is a lack of train-
ing data. If we can extend this approach to more games,
we could allow PCGML researchers to translate images into
tile-based levels that can then serve as training data. To fur-
ther benefit the PCGML community, one immediate goal is
to make our system open-source and extendable so that other
researchers can add additional PCGML techniques.

Conclusions

We present a system that takes images as inputs and outputs
game levels using PCGML techniques. Our Generation and
Repair approach has yielded positive results, both quantita-
tively in recreating game levels from screenshots and quali-
tatively in producing a novel level from a photograph.

Acknowledgements

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the
Alberta Machine Intelligence Institute (AMII) in supporting
this research.

194



References

Baldwin, A.; Dahlskog, S.; Font, J. M.; and Holmberg, J.
2017. Towards pattern-based mixed-initiative dungeon gen-
eration. In Proceedings of the 12th International Conference
on the Foundations of Digital Games, FDG ’17. New York,
NY, USA: Association for Computing Machinery.
Champandard, A. J. 2016. Semantic style transfer and
turning two-bit doodles into fine artworks. arXiv preprint
arXiv:1603.01768.
Forsyth, D. A., and Ponce, J. 2002. Computer vision: a
modern approach. Prentice Hall Professional Technical Ref-
erence.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image style
transfer using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2414–2423.
Guillemot, C., and Le Meur, O. 2013. Image inpaint-
ing: Overview and recent advances. IEEE signal processing
magazine 31(1):127–144.
Guorong, X.; Peiqi, C.; and Minhui, W. 1996. Bhattacharyya
distance feature selection. In Proceedings of 13th Interna-
tional Conference on Pattern Recognition, volume 2, 195–
199. IEEE.
Guzdial, M.; Long, D.; Cassion, C.; and Das, A. 2017. Vi-
sual procedural content generation with an artificial abstract
artist. In Proceedings of ICCC Computational Creativity
and Games Workshop.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M.
2018. Explainable PCGML via game design patterns. CoRR
abs/1809.09419.
Guzdial, M.; Liao, N.; Chen, J.; Chen, S.-Y.; Shah, S.; Shah,
V.; Reno, J.; Smith, G.; and Riedl, M. O. 2019. Friend,
collaborator, student, manager. Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems - CHI
’19.
Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 5967–5976.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoder for level generation, repair, and recognition. In
ICCC Workshop on Computational Creativity and Games.
Lai, G.; Latham, W.; and Leymarie, F. F. 2020. To-
wards friendly mixed initiative procedural content genera-
tion: Three pillars of industry. arXiv arXiv–2005.
Liapis, A.; Smith, G.; and Shaker, N. 2016. Mixed-
initiative content creation. In Procedural content generation
in games. Springer. 195–214.
Machado, T.; Gopstein, D.; Nov, O.; Wang, A.; Nealen, A.;
and Togelius, J. 2019. Evaluation of a recommender system
for assisting novice game designers.
Mott, J.; Nandi, S.; and Zeller, L. 2019. Controllable and
coherent level generation: A two-pronged approach. In 6th
Experimental AI in Games Workshop at AIIDE 2019.

Murphy, M. 2015. The original super mario game was de-
signed on graph paper.
Rebouças Serpa, Y., and Formico Rodrigues, M. A. 2019.
Towards machine-learning assisted asset generation for
games: A study on pixel art sprite sheets. In 2019 18th
Brazilian Symposium on Computer Games and Digital En-
tertainment (SBGames), 182–191.
Roach, J. 2020. The bestselling games of all time.
Sarkar, A.; Yang, Z.; and Cooper, S. 2020. Control-
lable level blending between games using variational au-
toencoders. arXiv preprint arXiv:2002.11869.
Schreier, J. 2017. The story behind mass effect: An-
dromeda’s troubled five-year development.
Schrum, J.; Gutierrez, J.; Volz, V.; Liu, J.; Lucas, S.; and
Risi, S. 2020. Interactive evolution and exploration within
latent level-design space of generative adversarial networks.
arXiv preprint arXiv:2004.00151.
Shu, T.; Wang, Z.; Liu, J.; and Yao, X. 2020. A novel cnet-
assisted evolutionary level repairer and its applications to su-
per mario bros. ArXiv abs/2005.06148.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209–216.
Snodgrass, S., and Ontanón, S. 2016. Learning to generate
video game maps using markov models. IEEE transactions
on computational intelligence and AI in games 9(4):410–
422.
Snodgrass, S. 2018. Towards automatic extraction of tile
types from level images. In AIIDE Workshops.
Stephenson, M. J. B.; Renz, J.; Ge, X.; and Zhang, P. 2019.
Generating stable, building block structures from sketches.
IEEE Transactions on Games 1–1.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tanón, S. 2016. The vglc: The video game level corpus.
arXiv preprint arXiv:1606.07487.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(PCGML). CoRR abs/1702.00539.

195


