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Abstract

Variational autoencoders (VAEs) have been shown to be able
to generate game levels but require manual exploration of
the learned latent space to generate outputs with desired at-
tributes. While conditional VAEs address this by allowing
generation to be conditioned on labels, such labels have to
be provided during training and thus require prior knowledge
which may not always be available. In this paper, we apply
Gaussian Mixture VAEs (GMVAEs), a variant of the VAE
which imposes a mixture of Gaussians (GM) on the latent
space, unlike regular VAEs which impose a unimodal Gaus-
sian. This allows GMVAEs to cluster levels in an unsuper-
vised manner using the components of the GM and then gen-
erate new levels using the learned components. We demon-
strate our approach with levels from Super Mario Bros., Kid
Icarus and Mega Man. Our results show that the learned com-
ponents discover and cluster level structures and patterns and
can be used to generate levels with desired characteristics.

Introduction

Variational autoencoders (VAEs) (Kingma and Welling
2013) have found use in games as an approach for Proce-
dural Content Generation via Machine Learning (PCGML)
(Summerville et al. 2018) due to their ability to learn a con-
tinuous, latent representation of game level data which en-
ables the generation of new levels via sampling and inter-
polation. However, not much PCGML work has leveraged
the advantages of using the more advanced, hybrid variants
of VAEs and related methods found in machine learning lit-
erature. One such approach is the Gaussian Mixture Varia-
tional Autoencoder (GMVAE) developed by Dilokthanakul
et al. (2016). Unlike regular VAEs which learn a latent space
by imposing a Gaussian distribution as the prior, GMVAEs
learn a latent space by imposing a prior of a mixture of Gaus-
sians and allowing the means and variances of each compo-
nent to be determined by training. Each component of the
mixture thus learns to encode a meaningful subset of training
data. When applied to game levels, such a model could help
discover clusters of levels with similar characteristics. More-
over, each component could then be used as a generative
model for producing levels with particular discovered fea-
tures. While controllable level generation using latent mod-
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els is also enabled by latent variable evolution (Bontrager
et al. 2018) as well as by other models such as conditional
VAEs and GANs, the GMVAE has the potential of doing so
in an unsupervised manner.

Thus, in this paper, we train GMVAEs on chunks from
Super Mario Bros., Kid Icarus and Mega Man. We motivate
our approach by demonstrating that a GMVAE can cluster
chunks from different level types in Super Mario Bros. We
then show that a GMVAE, with a reasonable number of com-
ponents, can learn to cluster chunks by features such as the
presence of specific game elements or design patterns with
each component then being able to generate chunks from
the corresponding cluster. Finally, we quantitatively confirm
that GMVAEs cluster better than a baseline approach.

Our work thus contributes 1) a new PCGML approach
for unsupervised clustering and generation of game levels of
specific types and 2) to the best of our knowledge, the first
application of GMVAEs, and Gaussian mixtures in general,
for generating game levels.

Background

Methods for Procedural Content Generation via Machine
Learning (PCGML) (Summerville et al. 2018) attempt to
generate game content using models trained on existing
game data. Being a relatively new subfield of PCG research,
most PCGML approaches thus far have focused on per-
forming level generation via more well-known ML tech-
niques such as Markov models (Snodgrass and Ontañón
2017; Dahlskog, Togelius, and Nelson 2014), Bayes nets
(Guzdial and Riedl 2016a; Summerville and Mateas 2015),
LSTMs (Summerville and Mateas 2016; Sarkar and Cooper
2018), autoencoders (Jain et al. 2016), GANs (Volz et al.
2018; Giacomello, Lanzi, and Loiacono 2018) and VAEs
(Sarkar, Yang, and Cooper 2019). More advanced, hybrid
ML models and architectures are not yet extensively used
for PCGML. In this paper, we use such a model, the Gaus-
sian Mixture VAE (GMVAE), for level generation.

GMVAEs were introduced by Dilokthanakul et al. (2016)
as a variant of the VAE (Kingma and Welling 2013) to be
able to perform unsupervised clustering using latent vari-
able modeling. While regular VAEs usually fix the prior dis-
tribution for the latent space to be a unimodal Gaussian,
GMVAEs instead fix this prior to be a mixture of Gaus-
sians. Each component of the mixture thus learns to encode a
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Figure 1: A GMVAE with a k-component GM prior.

unique cluster of the training data. Further, the learned com-
ponents can then be used to generate new data samples con-
forming to the features encoded by their respective cluster.
This makes the GMVAE attractive for PCGML by building
upon much of the work done using regular VAEs. Sarkar,
Yang, and Cooper (2019) used VAEs to generate and blend
levels of Super Mario Bros. and Kid Icarus while Thakkar et
al. (2019) used VAEs to generate Lode Runner levels. More
recently, Snodgrass and Sarkar (2020) combined VAEs and
binary space partitioning to create a multi-domain level gen-
eration approach using an abstract level representation. Out-
side of level generation, VAEs have been used to evolve con-
trollers for Doom (Alvernaz and Togelius 2017) and classify
NPC behavior (Soares and Bulitko 2019).

A number of prior works have utilized clustering for
level generation. Snodgrass and Ontañón (2015) used k-
medoids clustering to discover level structures in Super
Mario Bros. and Lode Runner for generating levels using
multi-dimensional Markov chains. Similarly, Guzdial and
Riedl (2016b) used k-means clustering to categorize learned
level chunks of Super Mario Bros. which were then used to
train a probabilistic graphical model for generating new lev-
els. Our approach differs in that our clusters are GMs in the
latent space and are learned during the course of training the
generative model, rather than fit to the input or output of a
generative model as in the past works mentioned.

Method

Dataset

Our raw data consisted of the player-path-annotated,
character-encoded levels from Super Mario Bros. (SMB),
Kid Icarus (KI) and Mega Man (MM) taken from the Video
Game Level Corpus (VGLC) (Summerville et al. 2016). For
each level, we obtained 16x16 chunks by sliding a 16x16
window across the level one tile at a time. We ended up
with 2698 SMB chunks, 1142 KI chunks and 3330 MM

chunks. We then used integers to encode the chunks. For
training, we converted the integer encoding into one-hot en-
coding and flattened the tensor representing each chunk as a
1-dimensional vector. For visualizing some of the MM and
KI levels, we use a mixture of sprites from those games as
well as SMB. Paths are visualized using the letter ’P’.

GMVAE Architecture

In a VAE (Kingma and Welling 2013) with an l-dimensional
latent space, the encoder takes in an input vector and outputs
l pairs of means and variances that parameterize the input la-
tent distribution corresponding to that input vector. A latent
vector is then sampled from this distribution and forwarded
through the decoder which outputs a reconstruction of the
input vector. Two loss terms are minimized: (1) the binary
cross-entropy loss between the input and output vectors and
(2) the KL-divergence between the input latent distribution
and the Gaussian prior. A GMVAE with a k-component GM
prior (Figure 1) makes the following two modifications to
such a VAE.

First modification The input vector is first passed
through a label-assigning network, whose last layer, the
Gumbel-Softmax layer, produces a k-dimensional label. Its
i-th dimension contains the probability that the input vec-
tor belongs to the i-th GM component. During training, this
set of probabilities is gradually enforced to be concentrated
on one component (Jang, Gu, and Poole 2016). Therefore,
during generation and later stages in training, this layer out-
puts one-hot labels. The concatenation of the input vector
and this label is fed into the encoder.

Second modification The second loss term is changed.
For each input vector, we now minimize the KL-divergence
between its input latent distribution and its assigned com-
ponent latent distribution, which is parameterized by the
component means and component variances obtained by for-
warding its label through the prior-assigning network. This
new loss term is called the GM-prior loss.

GMVAE Modules

Let d be the dimension of input and output vectors (recon-
structions), k be the number of components of the GM prior
and 64 be the latent space dimension. Here, d is game-
specific: 3072 (16 width ×16 height ×12 unique tiles) for
SMB, 1792 (16×16×7) for KI and 4352 (16×16×17) for
MM. Then, the label-assigning network has an input dimen-
sion of d and contains 3 fully-connected layers using 512
neurons per layer and ReLU activations, plus a GumbelSoft-
max layer using k neurons.

The prior-assigning network has two independent sub-
networks. The first has an input dimension of k and con-
tains 1 fully-connected layer using 64 neurons and a lin-
ear activation. Its purpose is to compute the means of the
GM components assigned by the label-assigning network.
The second sub-network is the same as the first except that
it uses the Softplus activation. Its purpose is to compute
the variances of the GM components assigned by the label-
assigning network. The number of neurons in these two sub-
networks corresponds to the fact that an isotropic GM in a
64-dimensional latent space has 64 means and variances.
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The encoder has two connected sub-networks. The first
has an input dimension of d + k and contains 3 fully-
connected layers using 512 neurons per layer and ReLU acti-
vations. The second contains 2 independent fully-connected
layers: one using 64 neurons and a linear activation and an-
other using 64 neurons and a Softplus activation. The second
sub-network takes in the output of the first sub-network and
computes the means and variances of the latent distributions.

The decoder network has an input dimension of 64 and
contains 3 fully-connected layers using 512 neurons per
layer and ReLU activations plus an output layer using d neu-
rons and a Sigmoid activation.

Training GMVAE

Each GMVAE was trained using a batch size of 64 for 10000
epochs with the Adam optimizer at a learning rate of 0.001.
The scalar weights on the GM-prior loss and on the recon-
struction loss were 2 and 1 respectively. All models were
trained using PyTorch (Paszke et al. 2017).

Generating from GMVAE

If a component clusters chunks with a specific design pat-
tern, then chunks of the same style can be generated from
that component. To generate n chunks from the i-th GM
component of a k-component GMVAE, we first create a one-
dimensional array of n component indices i. This array is
then one-hot encoded and fed into the prior-assigning net-
work to get the parameters of the i-th GM component. Fi-
nally, n latent vectors are sampled from this component and
fed into the decoder to obtain generated chunks. Since these
generations are one-hot encoded, an argmax operation on
the one-hot dimension is performed to obtain the integer-
encoded chunks.

Results and Discussion

Visual Inspection of GMVAE Generations

Our goal of applying the GMVAE is to have each GM com-
ponent cluster and generate chunks with similar characteris-
tics. Since this is done in an unsupervised manner, the pri-
mary utility of this approach is the discovery of patterns and
structures in the levels of a game. Thus, while a designer
would not be able to explicitly control what properties the
components learn to cluster, such an approach would be use-
ful for helping designers find new structures and patterns
they hadn’t considered. The learned components can then
be examined by a simple visual inspection of levels gener-
ated using each component as in Figure 2. Due to limited
space, we included only six generations per component.

For a more robust evaluation, we also consider radial bar
charts of mean tile densities for each component (Figure 3).
Note that the mean densities of a specific tile (one value
for each component) are divided by their maximum value
for normalization. Such charts differentiate between tiles
by placing them at different angles. Doing so signifies the
fact that the clusters are different because they have “protru-
sions” (bars of high-density tiles) at different angles.

To see how a human designer might use radial bar charts
to better understand the components of a GMVAE, we con-
sider the example of SMB. In the radial bar charts for SMB
(Figure 3), we can see that component 4 has a very large
value of “X” relative to other components, which corre-
sponds to ground tiles in the VGLC. Note that this observa-
tion requires no comparison between component 4 and other
components because the density values are normalized by
tile. Indeed, in Figure 2, for SMB, we see that component
4 clusters the staircase design pattern, which uses a large
number of ground tiles. Component 5 and 6 also cluster this
design pattern, but they are less consistent. This can be seen
from both Figure 2 and the fact that their radial bar charts
also protrude at other tiles (Figure 3).

Advantages of GMVAE over VAE and Gaussian
Mixture Model (GMM)

One may be interested in comparing a) fitting a GMVAE
and b) first fitting a VAE and then fitting a GMM to its latent
space. We refer to the latter hybrid approach as VAE-GMM.

First, consider the advantage of fitting a GMVAE. During
the training of a GMVAE, latent vectors are encouraged to
gradually be distributed closer to their assigned GM compo-
nents. However, doing so alone does not guarantee that com-
ponents are assigned based on similarity between chunks
and can result in clusters that are not meaningful. This is
addressed by the fact that the learned component labels are
also passed into the encoder as additional information help-
ful for reconstruction. Intuitively, the labels for dissimilar
chunks need to be different in order to inform later parts of
the network to reconstruct certain aspects differently; con-
versely, the labels for similar chunks should be identical.

On the other hand, the arrangement of latent vectors in
the latent space of a VAE is completely determined by the
KL-divergence with a Gaussian prior and the reconstruction
loss. These two terms do not explicitly account for cluster-
ing. In fact, in being unimodal, the Gaussian prior may be
detrimental to clustering. Thus, we hypothesize that mean-
ingful clusters might be hard to extract from a VAE’s latent
space using conventional clustering techniques like GMM.
If this is true, then GMVAE would have a significant ad-
vantage over this naive post-fitting approach. We verify this
hypothesis through two experiments.

First Experiment In the first experiment, we trained a 3-
component GMVAE and a 3-component VAE-GMM on the
SMB data. In SMB, there are 3 non-overlapping level types:
overworld, underworld and jumpy levels with each chunk
belonging to exactly one of these types. Overworld levels
are levels above ground; underworld levels are levels below
ground and are characterized by having rows of ground tiles
at the top of each chunk; jumpy levels consist of floating
platforms without ground tiles at the bottom. The goal is
to see which model better cluster these three level types in
its latent space. A weighted random sampler was used dur-
ing training to mitigate the imbalance among the three level
types and was also used in the final forward pass of all SMB
input vectors to obtain the latent vectors.

The 3-component VAE-GMM was obtained by 1) train-
ing a standard VAE, 2) obtaining the latent vectors by feed-
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Figure 2: Chunks generated by the 10-component GMVAE (one GMVAE trained on each game), with component indices shown
at the bottom.
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Figure 3: Radial bar charts of mean tile densities of the 10-component GMVAE trained on SMB, with component indices shown
at bottom. The mapping from characters to tiles: S (breakable), X (ground), o (coin), ] (lower right pipe), [ (lower left pipe), >
(upper right pipe), < (upper left pipe), E (enemy), Q (empty question), ? (full question). - (background) has been excluded.

(a) GMVAE latent space
color-coded using level-type

labels

(b) GMVAE latent space
color-coded using learned

clusters

(c) VAE-GMM latent space
color-coded using level-type

labels

(d) VAE-GMM latent space
color-coded using learned

clusters

Figure 4: The arrangement of level-type latent vectors (pro-
jected using t-SNE) of GMVAE and VAE-GMM.

ing the input vectors into the encoder, 3) applying Prin-
ciple Component dimensionality reduction (keeping 95%
variance) to the latent vectors and 4) fitting a 3-component
GMM on the projected latent vectors. Dimensionality reduc-
tion was applied because GMMs are known to have diffi-
culty converging in high-dimensional spaces.

The GMVAE and VAE-GMM achieved 88.5% and 63.3%
clustering accuracy respectively after balancing level types.
To better understand these results, we used t-SNE to visual-
ize the arrangement of latent vectors of GMVAE and VAE
(Figure 4) as t-SNE is a cluster-preserving algorithm. The
GMVAE arranges the latent vectors in 3 well-separated clus-
ters (Figure 4b), with each cluster corresponding to a unique
level type (Figure 4a). For the VAE, while the latent vectors
from the same level type distribute closer, the cluster bound-

aries are not well-separated (Figure 4c), making them dif-
ficult to be extracted by the GMM as hypothesized (Figure
4d).

Second Experiment This is a more comprehensive ver-
sion of the first experiment. Here, we trained GMVAEs and
VAE-GMMs with 2, 4, 6, 8, 10, 15, 20, 30, 40 and 50 compo-
nents on the SMB data, the KI data and the MM data. Again,
we want to compare the clustering performance of these 2
models, but in more settings. However, unlike the first ex-
periment, since we did not know what clusters to expect, we
did not have true labels using which we could compute clus-
tering accuracy. Instead, we proposed a different metric.

For each model, we generated 500 chunks (300 for train-
ing; 200 for validation) from each component. Using these
chunks and their component labels, we trained a multi-layer
perceptron (MLP) classifier. We defined a component as p%-
disentangled from other components if the MLP achieves
p% accuracy on the validation set of that component.

We refer to components that are ≥70%, ≥80% and ≥90%
disentangled as mediocre, good and excellent respectively.
Figure 5 shows the proportion of such components against
the total number of components. These proportions drop
drastically as the number of components increases for the
VAE-GMM but are relatively high and stable for the GM-
VAE. More detailed statistics are available in Table 1. We
postulate that this is because GMVAE can automatically
adjust the granularity of design patterns clustered by each
component. Nevertheless, the GMVAE performs poorly at 2
components for both SMB and MM. This is likely because
having only 2 components causes multiple design patterns to
be clustered by each component, making the component la-
bels less discriminating and less informative for reconstruc-
tion, and are therefore poorly learned during training.

Playability of GMVAE Generations

Although playability is not the focus of this paper, it is an
important quality measure for level generation. To evaluate
the playability of a k-component GMVAE, we first sam-
ple floor( 10000k ) chunks from each component and aggre-
gate them. Then we apply the A* search code available
from the VGLC which we have adapted to game chunks.
In experiment 2, all GMVAEs trained on SMB achieved at
least 99.4% playability and those trained on KI achieved
at least 79.2%. Although these scores might be satisfactory
for chunks, the playability of whole levels made up of such
chunks could drop as more chunks are generated. We did not
evaluate playability for MM chunks because, unlike SMB
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Figure 5: Proportion of components being ≥70% (mediocre), ≥80% (good) and ≥90% (excellent) disentangled against the
number of components.
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GMVAE VAE-GMM
Mean Proportion # Components Mean Proportion # Components Mean Proportion # Components

70% (mediocre) 80.1% 4 92.6% 4 78.0% 6
80% (good) 61.0% 4 74.4% 2 60.6% 4

90% (excellent) 13.1% 2 16.2% 2 17.9% 6

Table 1: Comparison of VAE-GMM and GMVAE using disentanglement statistics. For each game, we summarize the mean
proportion of mediocre, good and excellent components for the GMVAE. We also state the number of components at which
each proportion of the VAE-GMM drops below and never rises above the corresponding mean proportion of the GMVAE.

and KI which contain only horizontal and only vertical levels
respectively, MM levels use a mixture of these two traversal
directions, making it ambiguous to set the starting and fin-
ishing criteria when adapting the A* search code to chunks.

Conclusion and Future Work

We demonstrated that GMVAEs are able to cluster game
chunks with specific design patterns in an unsupervised
manner and subsequently generate new chunks from each
cluster. In addition, we showed that GMVAEs are better at
clustering than a naive VAE-GMM approach, by contrasting
their latent spaces and disentanglement proportions.

The GMVAE can be a good exploratory tool that helps
understand the variety of designs present in a game. How-
ever, its unsupervised nature leads to some practical limi-
tations. First, it takes careful inspection of generations and
summary statistics to fully comprehend the design pattern(s)
clustered by each component. Second, while the components
are shown to be highly disentangled, each component may
cluster multiple design patterns in which case we cannot ex-
clusively generate one specific pattern from a component.
Third, it is unclear whether GMVAE clusters in a way simi-
lar to how humans would. Thus, in the future, we could con-
duct user studies to determine how these clusters could be
used by designers and how such a model could help design-
ers find new structures and patterns.

Future work could also look into whether the GMVAE in-
herits desirable properties of the VAE, such as smooth inter-
polation between two chunks when interpolating their latent
vectors. Given Figure 4b, one may hypothesize that interpo-
lation between chunks in separate clusters is no longer use-
ful since the interpolated vectors might fall in the space be-
tween clusters. However this space may also have potential
for novelty. For e.g., could we find new structures, patterns
and level types in the space between learned clusters?

Our approach generates level chunks rather than whole
levels, similar to past works using latent models, due to the
low number of full training levels and because such mod-
els work with fixed-size inputs and outputs. A naive way
of generating whole levels is iteratively generating, filtering
and concatenating successive chunks but this does not guar-
antee playability since chunks are generated independently.
To this end, Sarkar and Cooper (2020) presented a sequential
latent model of level generation that produces whole levels
consisting of segments following a logical progression. Fur-
ther, autoregressive models like LSTMs have been shown
to generate playable levels of arbitrary length (Summerville
and Mateas 2016). Thus in the future we could explore ap-
proaches that combine GMVAEs with such models.
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