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Abstract

Narrative generation systems can be classified on a spectrum
from strong autonomy to strong story. Systems on the strong
autonomy side treat characters as fully independent agents
but may struggle to meet the author’s requirements, while
those on the strong story side direct character behaviors cen-
trally but may struggle to create the illusion of character be-
lievability. In this paper, we use benchmark story generation
problems as a framework to compare the spaces of stories that
could be generated by prototypical strong story and strong au-
tonomy systems. Comparing the relative solution densities of
these spaces helps us quantify how common certain desirable
narrative properties are. This can be informative for system
designers when deciding, for instance, whether to strictly en-
force all desired properties or to generate and filter from a
broader class of solutions.

1 Introduction

Intelligent narrative systems must balance computational
efficiency, character believability, and author intent. To
achieve this balance, they may use some mixture of locally-
generated character behaviors and an experience manager
agent for global coordination. In Riedl and Bulitko’s taxon-
omy of narrative systems (2013), these approaches fall along
a spectrum from strong autonomy, where each character is
implemented as a fully autonomous agent, to strong story,
where a central agent guides all character behavior.

From a designer’s perspective, the ideal level of autonomy
vs. centrality depends on the system’s objectives. However,
to our knowledge, there has not yet been a focused investi-
gation of the tradeoffs between the two. If we want to gener-
ate a story where characters appear to act independently, yet
the plot meets the author’s constraints, how easily can we
get such a story by running repeated simulations of fully-
autonomous characters and filtering out those that violate
the author’s requirements? Alternatively, how easily can we
get it by generating many plots that achieve the author’s goal
and filtering out those with unrealistic character behaviors?

Quantitatively comparing a strong autonomy approach
with a strong story approach in a meaningful way is difficult,
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because their outputs depend on many system-specific prop-
erties like the story domain and search strategies. So rather
than implementing example systems and comparing them,
we instead enumerate solution sets, counting all possible ac-
tion sequences that meet different definitions of quality. This
allows us to compare approaches in a more system-agnostic
way by measuring how common desirable narrative proper-
ties are (and thus how likely a system would be to find a story
with those properties). For various definitions of narrative
quality, we measure how densely—or rather, how sparsely—
solutions are distributed throughout the search space.

We consider story generation problems that have an au-
thor goal—something which should be true by the end—and
one or more character goals for each character. Character
goals may synergize or conflict with those of other charac-
ters and the author. At a high level, we consider two basic
kinds of stories: structured stories that achieve the author
goal, and stories with intentionality where every character
action can be explained by character goals.

We use the set of solutions generated by a classical plan-
ner to represent the extreme version of a strong story system,
one that reasons only about structure and ignores character
intentionality. On the other end of the spectrum, we use the
set of solutions that could be generated by a multi-agent sys-
tem to represent the extreme version of a strong autonomy
approach, one that only simulates intentional character be-
havior and ignores the author goal.

Most story generation systems lie somewhere in the mid-
dle. We consider two kinds. The first is a narrative planner,
which builds a plan to achieve the author goal out of ac-
tions that can be explained by character goals. It is a struc-
tured storyteller constrained by character intentionality. The
second, inspired by a drama manager architecture, generates
intentional character behavior but prevents characters from
acting when they would make the author goal impossible.
It is an intentionality-based simulation constrained by struc-
ture.

In this paper, we compare the solution sets resulting from
different definitions of story quality. In Section 2, we dis-
cuss how existing story-generation systems position them-
selves on the spectrum from strong autonomy to strong story.
In Section 3, we use a common planning framework to for-



mally define a group of solution sets, representing the possi-
ble outputs of prototypical systems that lie on different parts
of this spectrum. In Section 4, we present the results of enu-
merating these solution sets for several benchmark story-
generation domains. In Section 5, we discuss the implica-
tions of these results for system design.

2 Related Work

Since almost all narrative systems exist on the strong-story-
to-strong-autonomy spectrum, we cannot cover all related
work; see the surveys of Riedl and Bulitko (2013) and Ky-
bartas and Bidarra (2016) for a more comprehensive ac-
count. Instead, we provide an overview of the spectrum with
an emphasis on the models that most directly influence our
experiments.

TALE-SPIN (Meehan 1977) is an early example of a
strong autonomy system. The experience manager queries
the author about world objects and character beliefs, re-
lationships, and motivations (in terms of basic drives like
hunger and thirst), as they become relevant; beyond this, the
story plays out freely based on how these elements interact
with the system’s physical and social dynamics (Wardrip-
Fruin 2009). In contrast, Dehn’s response in the form of AU-
THOR (1981) provides one of the original examples of the
strong story mentality. Rather than simulating the events of
the story world, Dehn proposes trying to simulate the mind
of an author inventing the story through top-down ‘“‘con-
ceptual reformulation” from initial high-level goals about
story structure. Many middle-of-the-spectrum approaches
have used a drama manager agent to direct the story; for in-
stance, Mateas and Stern (2002) discuss a paradigm where
the drama manager occasionally imposes new goals and be-
haviors on otherwise-autonomous characters.

Some systems balance story structure and character be-
lievability by generating stories on one end of the spectrum
and then filtering for those that meet criteria on the other
end. For example, Scéalextric Simulator (Riegl and Veale
2018) is a strong autonomy system that generates many
simulations. It selects stories from among the simulation
traces by identifying the ones that score highest on certain
story-coherence metrics. Felt (Kreminski, Dickinson, and
Wardrip-Fruin 2019) also extracts stories from simulations,
but with an emphasis on finding subsets of one large simula-
tion. It maintains a database of events from a story world and
provides a query language for “sifting” the world history to
find event patterns that match a desired story structure.

Typical narrative planners like IPOCL (Riedl and Young
2010) and Glaive (Ware and Young 2014) are based on clas-
sical planners that are then further constrained by models
of character believability. For example, Glaive performs a
forward search through the space of all classical plans, al-
lowing character actions to be unexplained when they first
occur. Ideally, they will become explained by future actions,
but when this does not happen, that search effort is wasted.
IPOCL has a similar mechanism where the need to explain
an action can be ignored in the hopes that it will be explained
differently later; when it isn’t, work is wasted. These sys-
tems are generating strong story plans and ignoring ones that
do not also meet a strong autonomy definition of quality.
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L: Legal action sequences

Figure 1: How different solutions sets relate to one another

Teutenberg and Porteous’s IMPRACTical (2013) addresses
this limitation by using heuristics at every moment to deter-
mine what actions make sense for characters and then build-
ing a plan from those actions. This makes IMPRACTical less
likely to waste effort, but because it relies on heuristics to
decide what characters would do, it does not provide guaran-
tees as strong as Glaive’s about the explainability of actions
by character goals.

Some systems use classical planners with no modifica-
tions, but rather compile story structure into the planning
problem. Porteous, Cavazza, and Charles’s interactive Mer-
chant of Venice (2010) defines milestone events that must
always occur in any solution. This approach can leverage
the extensive research on fast classical planning and avoids
the need for an explicit model of narrative structure or char-
acter believability to be built into the planner; however, it
transfers much of the burden for creating structure and be-
lievability from the algorithm to the human author.

3 Defining Solution Sets

For several definitions of a solution to the narrative gener-
ation problem, our goal is count the number of stories that
meet those definitions, and to compare those counts to one
another and to the size of the space as whole. We do this us-
ing a common planning framework that can be constrained
to generate every solution meeting various definitions. We
are interested in five of the solution sets illustrated in Figure
1 and defined formally in the remainder of this section:

e [: The set of all legal action sequences. This represents
the entire search space.

e S: The set of structured stories, which achieve the author
goal by the end. These are the stories that could be gener-
ated by a classical planner.

e [: The set of stories with intentionality, where every char-
acter action can be explained by character goals. These
are the solutions that could be generated by a multi-agent
simulation.

e SN I: The set of stories that achieve the author’s goal and
are composed of explainable character actions. These are
the stories that could be generated by a narrative planner.



e ANI: The set of stories composed of explainable charac-
ter actions where the author’s goal remains possible (even
if it is never actually achieved). These are stories that
could be generated by a prototypical architecture where
a drama-manager agent has a limited ability to constrain
the actions of otherwise autonomous character agents.

The Narrative Generation Problem

Formal definitions of these spaces follow. They are based
on the PDDL planning formalism (McDermott et al. 1998),
with the extension proposed by Riedl and Young (2010) to
distinguish between the author goal and character goals, and
the extension proposed by Ware and Young (2011) to repre-
sent conflict and failed plans.

A narrative generation problem is a tuple
(s0,C, A, ga,G(c)). so is the initial state of the story
world. C' is a set of objects in the world representing the
story’s characters. A is a set of actions. Each action has a
precondition and an effect, which are logical propositions.
Every action also defines a (possibly empty) set of con-
senting characters from C'. g, is the author’s goal, a logical
proposition. For every character ¢ € C, G(c) is a set of
logical propositions that are character goals for c.

Consider an example from one of the benchmark domains
used in this study (Ware et al. 2019), where a bandit steals
a coin from another character called the player (the protag-
onist of the interactive story). The precondition is that the
bandit and player are both alive, both at the town crossroads,
and that the player has the coin. The effect is that the ban-
dit has the coin. Though this action involves two characters,
only the bandit is a consenting character, because only the
bandit needs a reason to act, while the player is a victim. The
author’s goal for the problem is that the player has medicine,
which can be bought with the coin. The bandit’s goal is to
have the coin, an example of character goals conflicting with
author goals.

Our implementation uses a simple logical language of
binary fluents (e.g. the player is either alive or not alive).
It also includes special modal propositions of the form
intends(c, g), where c is a character and ¢ is a character
goal. When intends(c, g) is true, ¢ may act to achieve g.

Legal Stories

A story p is a sequence of n actions {ay,as,...,a,} that
implies a sequence of n + 1 states {so, s1, $2, ..., $p } such
that action a; occurs between states sy and sp, action ao
occurs between states s; and s», and so on.

A story p is legal (i.e. p € L) iff s¢ is the initial state of
the narrative generation problem, and for ¢ from 1 to n, the
precondition of a; is true in state s;_; and state s; is identi-
cal to s;_1 except that the effect of a; is now true. In other
words, a legal sequence of actions starts from the problem’s
initial state, the precondition of every action is true immedi-
ately before it occurs, and the effect of each action has been
imposed on the state immediately after it. The set L of legal
action sequences represents all logically consistent stories
that any system could tell—that is, stories that do not violate
the system’s internal logic of what is possible.
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Structured Stories

A story p is structured (i.e. p € S) iff it is legal and the
author’s goal g, is true in the story’s final state s,,. This
is the definition of a valid classical plan, and it represents
the stories that could be told by a strong story system that
ignores character motivation. In our running example, the
bandit could steal the medicine from the market and deliver
it to the player, which achieves the author’s goal but makes
no sense given the bandit’s goals.

Intentional Stories

An action a; is explained for character c by character goal g
in state s;_1 iff:

1. Starting from state s;_1, there exists a legal sequence of
m actions (called an explanation) that begins with action
a; and ends in a state s,,, where g is true.

2. cis a consenting character for every action in the expla-
nation.

3. Fori < m, intends(c, g) is true in state s;.

4. The explanation does not contain a strict subsequence

that also meets these criteria.

In other words, we can explain why a character took an ac-
tion in terms of one of that character’s goals if the charac-
ter currently has the goal, can form a plan starting with that
action to achieve the goal, and the plan does not contain un-
necessary or redundant actions.

Note that an explanation only needs to exist; it does not
actually need to occur in the story. Say the player walks
to the crossroads. This action can be explained because the
player could then walk to the town and buy the medicine.
The bandit’s robbery prevents that plan from actually occur-
ring, but the player’s action of walking to the crossroads is
still explained.

An action a; is explained in state s;_; iff, for each of
its consenting characters, there exists a goal for that char-
acter that explains that action in that state. In other words,
an action is explained when it is explained for every char-
acter who needs a reason to do it. The player can buy the
medicine from the merchant because the player wants the
medicine and the merchant wants the coin.

A story p is intentional (i.e. p € I) iff every action is
explained. [ is the set of stories that could be generated by
a strong autonomy simulation that reasons about character
motivation but ignores the author’s goal.

Hybrid Stories

We also consider two solution sets that represent common
approaches for addressing both structure and intentionality.

The set SN is all stories that achieve the author’s goal us-
ing only actions that are explained by character goals. This is
the set of stories that would be generated by many narrative
planners.

The set A N I is similar, but approaches the middle of
the spectrum from the strong autonomy side. Rather than
using a centralized planner to control all agents, it adds a
coordinating agent to “herd cats,” ensuring the cast of self-
directed characters does not violate the author’s goal. For



this study, we treat the coordinator as an oracle that prevents
character agents from taking an action that would make
the author’s goal impossible. This resembles the technique
of intervention-based mediation (Riedl, Saretto, and Young
2003) used in some drama managent frameworks, where the
drama manager prevents story-derailing actions from suc-
ceeding.

A story p is said to be potentially structured (i.e. p € A)
iff there exists a legal sequence of actions that begins with
the actions in p and the author’s goal g, is true in that se-
quence’s final state. In other words, set A represents all sto-
ries in which the author’s goal has not yet been made im-
possible. For example, if the bandit kills the player, it would
be impossible for the player to obtain the medicine. By ex-
tension, A N I is all stories composed of intentional charac-
ter actions that do not prevent the author’s goal from being
achieved.

Implementation

To bound the size of a solution set, we set a limit m on the
length of a sequence. That is, we allow a story to contain
at most m executed actions—events that actually occur. An
explanation for a given action ¢ may also contain up to m
actions (including a itself). These explanations represent in-
tended but not necessarily executed actions, so they may not
appear in the story itself. Stories are considered the same
if their executed actions are the same; i.e. the same set of
executed actions with different explanations would be con-
sidered the same story.

Finally, to make a fairer comparison between more-
constrained spaces like S N I and less-constrained spaces
like 7, we make two assumptions to increase the likelihood
of achieving the author goal. First, a story ends immediately
when the author goal is achieved (to prevent it from being
undone later). Second, a story will be extended as far as
possible rather than terminating while there are still viable
actions (assuming the author goal has not been achieved).
For example, assuming m > 1, the 1-action story where
the player walks to the crossroads is not in I (even though
all its actions are explained) because there are still more ex-
plainable actions that can be taken, and the story has not yet
reached its maximum length.

We used Answer Set Programming (ASP) (Brewka, Eiter,
and Truszczyfiski 2011) in Clingo (Gebser et al. 2018) to
generate stories, an approach recently explored more gener-
ally by Dabral and Martens (2020). Specifically, we wrote
ASP rules to define and generate legal sequences of actions
(modeled after the classical-planning ASP encoding of Di-
mopoulos et al. (2017)), plus additional constraints to check
for membership in a given solution set. For instance, to prove
a story’s membership in I, we verified the existence of ex-
planations for actions with consenting characters; to prove
a story’s membership in A, we generated a sequence of m
steps starting from the final executed step to verify that the
author goal was still reachable by the end of the story. As
a result, each ASP solution mapped to a story, so we could
count the stories in a solution set by having the solver enu-
merate all solutions. We used the Clingo extension Asprin
(Brewka et al. 2015) to exclude redundant solutions (e.g.,
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identical stories with different explanations) and stories that
terminated early when they could have been extended. !

4 Experiments
Domains

We compared the solution sets resulting from the above def-
initions on the following benchmark planning domains and
their accompanying “canonical” problem instances:

e aladdin from Riedl and Young (2010).
e raiders from Ware and Young (2014).

e storygraphs, the Best-Laid-Plans-inspired (Ware and
Young 2015) domain used by Ware et al. (2019); we omit
the belief semantics and character goal prioritizations, so
that the world is fully observable and characters can pur-
sue any of their goals at any time.

e villains, a domain used in PLOTSHOT (Cardona-
Rivera and Li 2016); we omit the “discourse” actions used
by PLOTSHOT to control story presentation and use only
the “fabula” actions used to determine story contents.

e western from Ware (2014).

We varied the parameter for maximum number of executed
steps. For each combination of domain, maximum length,
and solution set, we computed the number of unique solu-
tions in terms of executed steps (i.e., it was possible to gen-
erate multiple different explanations for a character action,
but these were not counted as separate solutions as long as
the executed steps were the same).

Results

Figure 2 shows the set sizes for the raiders benchmark.
The solution sets without intentionality, L and .S, show con-
tinued exponential growth (note the logarithmic scale) as we
increase the maximum length, due to having a variety of
action sequences that can be repeated indefinitely with no
net effect (e.g., a character travelling to a location and then
back). However, among the solution sets that have intention-
ality, the difference between the strong-autonomy space of 1
and the intermediate space of A N [ is small, and the dif-
ference between these spaces and the strong-story space of
SN I becomes smaller as the maximum sequence length in-
creases. A similar principle applies for villains (Figure
3). In aladdin (Figure 4) and western (Figure 5), the
large branching factor prevented us from enumerating solu-
tions up to a maximum sequence length where S N I solu-
tions existed, but as before, we saw only a small difference
between AN [ and I.

These results make sense for the context in which the
domains were originally authored. The design process for
most existing planning-based story generation domains has
involved starting with a baseline plot in mind, and defining
the actions and initial world state so the baseline plot will be
generated (Porteous et al. 2015); this can lead to an empha-
sis on character goals that naturally align with author goals
and fewer character goals that conflict with author goals.

'Our code is available at: http://cs.uky.edu/~sgware/projects/
aspnp/
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Figure 2: Results for the raiders domain.
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Figure 3: Results for the villains domain.

In contrast to what we saw in other domains, in the sizes
of storygraphs (Figure 6) we enumerated, the stronger-
autonomy spaces of A N [ and I grew faster than .S (though
this property was shared with western), and there was a
close size correspondence between S N I and S. In other
words, most of the stories that achieved the author goal
also showed intentionality, but most of the stories with in-
tentionality did not achieve the author goal; characters had
a wide variety of ways to pursue their goals without nec-
essarily furthering the author goal. Like before, the dif-
ference in space sizes reflects the design mentality of the
domain; storygraphs was originally used to plan non-
player character behavior in an interactive environment that
emphasized giving the player character a diverse set of ways
to achieve their goal or die trying.

Across the domains explored here, and across story
lengths for which solutions existed, we consistently saw
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Figure 4: Results for the aladdin domain. L is omitted
because it was too large to enumerate. S N I markers are
not visible on the logarithmic plot because the set had size 0
over the maximum sequence lengths tested.

western
1.00E+06 *

1.00E+05
1.00E+04

1.00E+03 *

solutions

1.00E+02
1.00E+01

1.00E+00
o 1 2 3 4 5

maximum sequence length

*L +85 oSNNI mANT 4l

Figure 5: Results for the western domain. (S N I mark-
ers are not visible because there were no solutions of these
sizes.)

orders-of-magnitude differences between the space of all le-
gal stories (L), the space of stories that achieved the author
goal (5), and the space of stories where all character ac-
tions were explainable (/), though the larger space out of
S and [ differed by domain. When narrative plans existed
(S N 1), they tended to consitute the majority of either S
or I, whichever was smaller. Finally, our drama-manager-
inspired solution space A N I constrained the set of sto-
ries only slightly compared to I, likely a consequence of
the benchmark domains having few actions that could per-
manently jeopardize author goal achievement and few char-
acter goals that would motivate those actions; this does not
cast doubt on the efficacy of drama management in general,
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Figure 6: Results for the storygraphs domain.

only highlights the challenge in designing effective domain-
independent criteria for drama management.

5 Conclusions

In this study, we compared the spaces of stories in a plan-
based story generation context that can come about when we
change various assumptions about how the characters can
behave and how strongly an author goal is enforced. Clas-
sical planning can be used to generate stories where only
the author goal is considered. Narrative planning combines
strict enforcement of author goal achievement with charac-
ter behavior constraints that promote believability. Keeping
the character behavior constraints and relaxing or removing
the author goal requirement gives us solution sets that model
what stronger-autonomy systems might produce.

Many existing benchmarks from narrative planning were
constructed to yield a specific story or a small set of simi-
lar stories, and in some of these cases, enforcing character
intentionality can incidentally lead to author goal achieve-
ment much of the time. This has implications for how narra-
tive planners are designed and tested. For instance, consider
a state-space planner based on firstly determining which ac-
tions are explainable and searching an author-goal-achieving
state using only those (Teutenberg and Porteous 2013), com-
pared to an author-goal-first planner that finds the action
explanations after the overall executed sequence (Ware and
Young 2014). We would expect the explanation-first plan-
ner to perform exceptionally well on problems like the
raiders benchmark, because chaining together a series of
explainable character actions will often lead to the author
goal. Conversely, consider storygraphs, where the trend
was reversed — stories made of explainable character ac-
tions were much more common than stories that achieved
the author goal, but most stories that achieved the author
goal were also made of explainable character actions. We
would expect an author-goal-first planner to have an advan-
tage in this domain because once an author-goal-achieving
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plan is found, it will often be possible to explain all of the
character actions afterward.

For designers of domain-specific narrative systems, inves-
tigating the density of different solution types in the domain
can thus provide insight into story-generation strategies that
could be effective — e.g., whether it is necessary to en-
force all desired constraints, or whether it is feasible to relax
some of the constraints and still get the desired properties.
In the examples we saw, enforcing certain constraints ex-
plicitly (e.g., going from L to S or I) could vastly narrow
down the solution space, while other constraints (e.g., go-
ing from [ to I N A) often had diminishing returns that, in
a real-time application, could translate to unnecessary com-
putational costs.

Meanwhile, for designers of narrative planners where
general efficiency is desired, in order to ensure robust test-
ing, a benchmark suite should include both domains where
it is hard to find author-goal-achieving stories among the
stories with explainable character behavior, and the reverse;
currently, there is a particular lack of benchmarks where nei-
ther feature is strongly correlated with the other, which is
likely to be the case in many realistic interactive-narrative
applications where we would like to deploy the technology.
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