
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Germinate: A Mixed-Initiative Casual Creator for Rhetorical Games

Max Kreminski,1 Melanie Dickinson,1 Joseph C. Osborn,2

Adam Summerville,3 Michael Mateas,1 Noah Wardrip-Fruin1

1University of California, Santa Cruz, 2Pomona College, 3California State Polytechnic University, Pomona
{mkremins, mldickin, mmateas, nwardrip}@ucsc.edu, joseph.osborn@pomona.edu, asummerville@cpp.edu

Abstract

Digital games are hindered as an artform by significant tech-
nical barriers to entry, which exclude many would-be game
developers from participating in this medium of expression.
Casual creators for game design attempt to mitigate these
barriers, but—like conventional game development tools—
often require users to “work their way up” from low-level
mechanics to high-level rhetorical or expressive goals, rather
than allowing them to start with high-level rhetorical goals
and “work their way down.” The constraint-based game gen-
erator Gemini is well-suited to the generation of games that
meet high-level expressive goals, but is difficult for casual
users to work with. We present Germinate, a mixed-initiative
casual creator for rhetorical games that extends Gemini with
a more approachable graphical user interface. A preliminary
expert evaluation revealed that Germinate affords a playful
approach to rhetorical game design by generating games that
successfully meet user intent in surprising and novel ways.

Introduction
Making videogames requires significant technical knowl-
edge, and the technical barriers to entry associated with
game creation exclude many would-be game creators from
participating in digital game design as a medium of ex-
pression. Both the gulf of execution (the difficulty of trans-
lating one’s creative intent into executable code) and the
gulf of evaluation (the difficulty of evaluating a work-in-
progress game design and determining how it could be im-
proved) (Hutchins, Hollan, and Norman 1985) contribute to
the overall difficulty of making games.

Furthermore, the goal of game design is usually to pro-
duce some sort of experiential, rhetorical, or aesthetic ef-
fect in the player, but it is not possible to modify a game’s
aesthetic effects directly. Instead, game designers may only
directly modify mechanics, which interact with one another
to produce emergent dynamics, which in turn interact with
players to produce aesthetics (Hunicke, LeBlanc, and Zubek
2004). This has led to the development of the theory of pro-
cedural rhetoric (Bogost 2007), which attempts to show how
changes in mechanics lead to changes in a game’s perceived
meaning.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Casual creators (Compton and Mateas 2015; Compton
2019) for game design—approachable digital game creation
tools that emphasize the process of exploring a game design
space over the production of fully realized games—attempt
to mitigate the difficulty of making digital games. These
tools typically target users who are experts in a particular
domain but inexpert as game designers, such as journalist
creators of newsgames (Treanor and Mateas 2009), or users
who are interested in creating and sharing games primarily
as a form of casual self-expression, such as game-literate
but non-designer players of games. These users can benefit
substantially from the creativity support that casual creators
provide, and they may not know how to craft low-level game
mechanics that facilitate the communication of their expres-
sive or rhetorical intent through game design.

However, most casual creators for game design still re-
quire users to build games up from low-level specifications
of mechanics and individual pieces of content, rather than
allowing users to directly express their rhetorical intent to a
system capable of generating games that fulfill this intent. If
the game designer’s end goal is to achieve a rhetorical ef-
fect on the player, as is often the case with newsgames and
other personal (Anthropy 2012) or persuasive (Bogost 2007)
games, then a rhetoric-forward approach to design may be
preferable over an approach that starts with mechanics—
especially for initial exploration of how an argument might
be expressed through procedural rhetoric, before the game
designer has decided what mechanics they want to pursue.

In this paper, we present Germinate, a mixed-initiative
co-creative (Liapis et al. 2016) casual creator for rhetorical
game design. Germinate is open-source1 and can be used in
a web browser. Germinate is built on Gemini (Summerville
et al. 2018), an abstract game generator that operationalizes
the theory of proceduralist readings (Treanor et al. 2011) for
game generation, and provides additional scaffolding for the
basic interaction loop of working with Gemini in order to
make it more approachable to casual users. In the remain-
der of this paper, we first discuss related work in the areas
of rhetoric-driven game generation and casual creators for
game design. We then describe how Germinate works as a
system. We discuss how Germinate makes use of casual cre-

1https://github.com/ExpressiveIntelligence/Germinate

102



ator design patterns, and present the results of a preliminary
expert evaluation showing how Germinate functions as a ca-
sual creator. Finally, we discuss takeaways that might be ap-
plicable to the development of future mixed-initiative casual
creators for game design.

Related Work
The Game-O-Matic system (Treanor et al. 2012) represents
an early landmark example of both a casual creator for game
design and a rhetoric-forward approach to game genera-
tion. Game-O-Matic is unusual among game generators in
its presentation of an interactive interface for human-in-the-
loop game generation, which allows users to specify their
rhetorical intent for a game as a diagram containing both
nouns (i.e., named entities that must appear in the gener-
ated game) and verbs (i.e., a fixed set of abstract mechanical
relationships, such as “chases”, “makes”, and “helps”, that
one entity may have with another). Verbs are represented by
directed arrows from one noun to another; any given pair
of nouns can be related to one another by zero or more
verbs. Users may also choose the sprites by which each noun
should be represented in the generated games. When the user
is satisfied with their intent, they instruct the generator to
produce a game for them. They can then play the generated
game directly within the Game-O-Matic user interface to de-
termine what they like about it, what they dislike, and how
they want to modify their intent (if at all) in response to the
generated game.

The abstract game generator Gemini is based on an oper-
ationalization of the theory of proceduralist readings, and—
like Game-O-Matic—takes a rhetoric-forward approach to
generation. Gemini simultaneously generates game rule-
sets and proceduralist interpretations of those rulesets via
answer set programming (ASP), a constraint satisfaction
framework based on first-order logic. Gemini users pro-
vide the generator with a design intent, a short AnsProlog
program that provides additional constraints on the overall
generative space of Gemini games. The constraint solver
proves that all of the interpretations demanded by the de-
sign intent are satisfied in every generated game. Therefore,
only games with internally consistent proceduralist readings
can be generated. Gemini generates games in the Cygnus
game description language—a strict superset of the pop-
ular Video Game Description Language (VGDL) (Ebner
et al. 2013; Schaul 2013)—and has a more sophisticated
model of games than Game-O-Matic, so it can generate
games that Game-O-Matic can’t. For instance, while Game-
O-Matic only supports relationships between entities, Gem-
ini also supports named resources; relationships between en-
tities and resources; and precise low-level specifications of
mechanics. Gemini also supports much more complex and
expressive constraints on the generative space than Game-O-
Matic allows, because Gemini design intents can make full
use of AnsProlog language constructs to further constrain
the generative space in arbitrary ways.

Many past approaches to game generation (Liapis et al.
2018; Khalifa et al. 2017) make use of evolutionary algo-
rithms, attempting to generate progressively better games
through incremental optimization of a utility function. This

approach has been broadly successful for open-ended game
generation, but in the context of rhetorical game genera-
tion, it is difficult to specify a utility function represent-
ing the extent to which a game instantiates a particular ar-
gument through its procedural rhetoric. In contrast, Gem-
ini captures the specification of desired rhetorical qualities
in a game by inferring whether those qualities follow from
a set of mechanics using ASP. The inferential chains can
be quite complex, and are not easily captured by evalu-
ation functions that measure properties of rollouts of the
game given an artificial player, or through static, numeric
evaluation of the mechanics present in a game. The AN-
GELINA 3 and 4 systems (Cook, Colton, and Gow 2016a;
2016b) take an evolutionary approach, but also attempt to
theme their games in meaningful or rhetorical ways through
the judicious selection of appropriate assets. These themes
are, however, limited in the extent to which they engage with
the procedural rhetoric of the game’s rules and mechanics to
create meaning.

Other casual creators for game design that don’t make
use of game generation directly include Wevva (Powley et
al. 2017) and the other work under the label of “fluidic
games” (Nelson et al. 2017). These systems work by defin-
ing a large game design space characterized by hundreds
of numerical parameters and presenting users with an ap-
proachable interface for exploring this space. This approach
has been successful in enabling game creation across broad
audiences. From a rhetorical game design perspective, how-
ever, these systems—like many other game creation tools—
leave it up to the user to craft or discover low-level mechan-
ics that create the desired meaning.

System Description

Germinate is a mixed-initiative casual creator for rhetorical
games, similar to those produced by Game-O-Matic (Tre-
anor et al. 2012). Germinate extends the underlying Gemini
game generator with a browser-based graphical user inter-
face that allows users to specify the properties they would
like the generated games to have. Once the user has spec-
ified their desired game properties, they request a batch of
games. Germinate translates these properties into a Gemini
intent (an AnsProlog program that specifies additional con-
straints on the overall Gemini possibility space) and passes
this intent to the underlying generator, which begins incre-
mentally generating a batch of games. As games are gen-
erated, they are sent back to the Germinate frontend (figure
1), which allows the user to navigate through the pool of
generated games; play the games in their web browser; and
view the rules of these generated games, displayed as cards
similar to those the user may use to specify their intent.

The overall interaction loop of working with Germinate is
as follows:

1. Specify some initial constraints on the generative space.

2. Request a batch of games.

3. If the intent contains contradictions, go back and change
it to eliminate the contradictions, then repeat Step 2; else
go on to Step 4.

103



Figure 1: The Germinate user interface. The left side of
the screen contains user-specified properties for generated
games. The right side of the screen shows a single generated
game at a time, with controls for navigating the pool of gen-
erated games; a playable version of the currently selected
game; and a representation of the generated game’s actual
properties, which can be imported into the intent or used as
inspiration when manually revising the intent.

4. Inspect the generated games, by playing them and read-
ing the rules.

5. Modify the constraints on the generative space to reflect
your improved understanding of your own intent.

6. Repeat from Step 2.

This mirrors the interaction loop we found to be most ef-
fective when working with Gemini in general, but provides
additional scaffolding around intent editing and evaluation
of generated games. On the intent editing side, we miti-
gate the gulf of execution by providing users with a more
structured interface for modifying the intent. This makes it
harder for the user to accidentally produce a malformed in-
tent, whether due to AnsProlog syntax errors or incorrect
specification of Cygnus predicates—both of which are com-
mon when editing Gemini intent files directly. On the eval-
uation side, we mitigate the gulf of evaluation by provid-
ing users with live, playable versions of generated games
directly in line with the intent that produced them. A similar
interaction loop is also common when authoring answer set
programs in general (Brain, Cliffe, and De Vos 2009).

The Germinate Intent Language

Germinate breaks down design intents into four types of
cards: entity cards, resource cards, relationship cards, and
trigger cards.

Entity cards describe Gemini entities: graphical objects
with names and sprites that move around within the two-
dimensional physical space of the game’s playing field, po-
tentially responding to user input and interactions (such as
collisions) with other entities.

Resource cards describe Gemini resources: named quan-
titative values that are displayed to the player in resource

bars, and in terms of which all the game’s goals are ulti-
mately framed.

Both entity and resource cards in Germinate may be an-
notated with a variety of appropriate tags, which constrain
certain properties of the entities and resources to which they
are attached. For instance, an entity may be given the “Quan-
tity several” tag to specify that it must be possible for multi-
ple instances of this entity to exist at any given time, or the
“Controlled by player” tag to specify that this entity must
respond directly to player controls; a resource may be given
the “Initially low” tag to specify that its value must start out
nearly empty; and both entities and resources can be given
the “Player thinks it’s good” tag to specify that Gemini must
read this entity or resource as good for the player overall.

Relationship cards do not map directly to a single under-
lying concept in Gemini. All relationships consist of a rela-
tionship type, a left-hand side, and a right-hand side. De-
pending on the relationship’s type, the left-hand and right-
hand sides of the relationship may be entities, resources, or
both. They may also be left blank, which signals to the gen-
erator that this side of the relationship should be filled in
during generation. (For instance, a Ghost produces
relationship would indicate to the generator that the Ghost
entity must be read as producing some sort of resource,
but which resource this actually is is left up to the genera-
tor.) Most relationship types correspond to Gemini readings
(such as the produces, consumes, and helps read-
ings), but some (such as the collides with relationship
type) correspond to outcomes instead.

Trigger cards map closely to Gemini “outcomes”, which
tie together one or more preconditions (situations that might
emerge during gameplay) with one or more results (effects
that happen when these preconditions are met).

The space of Gemini design intents that Germinate is ca-
pable of producing is a strict subset of the full Gemini in-
tent space. As a result, Gemini is capable of producing many
games that Germinate cannot. However, the restrictions that
Germinate places on the intent space support casual use in
several different ways. First, these restrictions focus users on
exploring the most well-tested subset of Gemini’s readings,
reducing unpleasant surprises arising from poorly-tested in-
teractions of Gemini game features. Second, restrictions mit-
igate fear of the blank canvas (Kreminski and Wardrip-Fruin
2019) by ensuring that even an empty or trivial initial intent
can be used to produce mostly-random games that provide
concrete inspiration for further intent refinement. And third,
restrictions mitigate the temptation to precisely specify all
game rules and interactions by hand as part of the intent,
promoting the beneficial forms of surprise that we identified
during preliminary expert evaluation of Germinate.

Germinate/Gemini Translation

The differences between the Germinate and Gemini intent
languages require translation to be performed at two key
places in the interaction loop. When the user submits their
design intent to the generator for consideration, it must first
be translated from a Germinate intent (a set of cards specify-
ing desirable game properties) to a Gemini intent (an answer
set program constraining the Gemini generative space in ap-

104



propriate ways). Then, when a generated game is sent back
to the user in the form of a particular solution to the pro-
posed answer set program, it must be parsed and translated
back into Germinate cards, so that these cards can be easily
read by the user and imported directly into the design intent
during intent revision if the user so chooses. Both of these
translation steps are required for the user to be able to “have
a conversation” with the generator: without the former trans-
lation step, the user would be unable to specify their intent
to the generator in a way the generator could understand,
and without the latter step, the user would have difficulty
interpreting the generator’s intent in adding the additional
unspecified mechanics that it did.

Some intents translate straightforwardly from the Germi-
nate to the Gemini intent language. For example, one eval-
uator of the tool created an intent stating that the generated
games should contain two entities (books and students); two
resources (knowledge and tiredness); and that books, stu-
dents, and knowledge should be perceived by players as
good, while tiredness should be perceived as bad. Each of
these concepts can be expressed directly as a single Gemini
intent predicate, so the intent translates directly into the fol-
lowing AnsProlog code (simplified slightly for readability):

entity(book).
:- not reading(book,good).
entity(student).
:- not reading(student,good).
resource(knowledge).
:- not reading(knowledge,good).
resource(tiredness).
:- not reading(tiredness,bad).

Some intents, however, are slightly more difficult to trans-
late. Intents involving negation often require more work
to transform into AnsProlog code, as do intents involving
higher-order concepts that Germinate exposes to users di-
rectly but that map to a more complicated set of Gemini in-
tent predicates under the surface. Suppose a user wants to
add some new restrictions to the previous intent: books must
be perceived by the player as either good, bad, or neutral, but
not “complicated” (i.e. both good and bad); students must
have the “collides with” relation to one another; the tired-
ness resource must not start off empty; and the mechanics
must not involve clicking on students to increase knowledge.
This adds several more complicated integrity constraints to
the AnsProlog program:

:- not 0 { reading(book,good;bad) } 1.
:- not result(_,apply_restitution(

student,student)).
:- initialize(set_value(

tiredness,scalar(0))).
click_on_student_for_knowledge :-

precondition(
control_event(click(student)),O),

result(O,modify(increase,knowledge)).
:- click_on_student_for_knowledge.

In addition to translating design intents into a form that
the generator can understand, Germinate must also trans-

late generated games back into the Germinate interface lan-
guage. Games generated by Gemini (i.e. game rulesets ex-
pressible in the Cygnus game description language) con-
tain a range of assertions, including some that Germinate
does not yet know how to interpret or present to the user.
To give one example, the first game generated by Gemini
for the simple evaluator-created intent described earlier in
this section consists of 76 total statements, many of which
pertain to inferences that Gemini has made about how this
game’s procedural rhetoric can be “read” by the player. Ger-
minate recognizes and displays to the user in some form 39
of these statements: 8 pertaining to entity and resource tags,
including the reading of entities and resources as “good” or
“bad”, the quantities of entities, and the initial values of re-
sources; 6 pertaining to readings of relationships between
entities and resources, including “produces”, “consumes”,
“helps”, and “shares” relationships; and 25 pertaining to pre-
conditions and postconditions on generated game mechan-
ics, or “triggers”. All of these Germinate-recognized facts
about the generated game can then be imported back into
the intent in some form, if the user decides to further explore
this part of the design space.

Evaluation
To evaluate Germinate, we employed two kinds of eval-
uation. First, we performed a principles-based evaluation,
treating the casual creator design patterns identified by
(Compton and Mateas 2015) as a set of design principles.
Second, we performed a preliminary expert evaluation with
four researchers in the field, all of whom have experience
working with game generators other than Gemini.

Casual Creator Design Patterns

(Compton and Mateas 2015) define eleven design patterns
for casual creators, five of which are present in Germinate.

No blank canvas. Germinate is capable of generating
games regardless of whether the user has specified any prop-
erties in the intent, meaning that users can always rely on the
system to provide inspiration. Additionally, Germinate often
generates games that contain additional, inspiring random
elements beyond those specified by the users.

Limiting actions to encourage exploration. Users of
Germinate are restricted to a relatively narrow subset of the
full Gemini intent language, which was chosen to steer users
toward a known-good subset of the overall generative space.

Mutant shopping. Germinate produces a few distinct
variations on each base game that Gemini creates in re-
sponse to the user-supplied intent, allowing users to scan
through these variants for inspiration and import the desir-
able features of multiple generated games into a single com-
bined intent.

Modifying the meaningful. Germinate foregrounds
specification of high-level rhetorical intent over granular
specification of low-level mechanics, although both modes
of interaction are available.

Simulation and approximating feedback. To assist
users in understanding the generated games, Germinate
parses mechanics and Gemini-emitted “readings” from gen-
erated games and displays them in card format. This allows

105



the user to read these cards to understand what arguments
the generator is “trying to make” and how the rules are struc-
tured, providing additional approximating feedback beyond
what a user could learn from playing the generated games.

Of the remaining six casual creator design patterns, we
found that two (Instant feedback and the Chorus Line, the
latter of which is a “sub-pattern” of the former) are techni-
cally infeasible to realize in the current version of Germi-
nate, due to how long Gemini takes to produce games once
given an intent. Two more (Entertaining evaluations and
Saving and sharing) are technically feasible but not yet im-
plemented in Germinate. And two others (Hosted commu-
nities and Modding, hacking, teaching) are community-
oriented design patterns that are unsupported by the current
version of Germinate, which focuses on “single-player” fea-
tures alone.

Preliminary Expert Evaluation

Germinate is meant to be used by people with a variety of
backgrounds. There are several ways we could evaluate the
tool—for example, whether it makes Gemini experts more
efficient at producing games achieving their design goals,
whether Germinate is usable from a traditional task-oriented
HCI standpoint, or whether non-experts find the tool pleas-
ant and diverting to use. In order to rapidly gather feedback
and validate our approach before taking on a larger user
study, we chose to focus our preliminary evaluation on over-
all impressions of the tool and the sense of agency experi-
enced by users familiar with game generation but not deeply
familiar with Gemini while using the tool.

Emma’s Journey (Garbe et al. 2019) is an experimental
narrative game that juxtaposes choice-based narrative scenes
with abstract minigames generated by Gemini. The creators
of Emma’s Journey used scene-specific Gemini design in-
tents to generate games whose procedural rhetoric matches
and contributes to the intended procedural rhetoric of each
scene. As an initial assessment of Germinate’s capabilities,
two co-authors familiar with Gemini attempted to reproduce
games from specific Emma’s Journey scenes using Germi-
nate, working from the same prompts originally used to
hand-author Gemini design intents as obtained from the cre-
ators of Emma’s Journey. We found that while we were able
to get close to the goal intent within a few minutes (compa-
rable to the time experts might spend hand-authoring), we
could not exactly phrase the intent goals due to the subset of
Gemini exposed by Germinate. On the other hand, the result-
ing games were surprising and interesting, branching off in
ways that were both unexpected and sometimes preferable.
Moreover, Germinate’s constraints led us to explore a broad
variety of ways to translate the given intents to Germinate’s
intents language.

It is important to note that this is not the primary mode of
use intended for Germinate, which as a casual creator tool
is meant to be more exploratory. However, we do feel that
this preliminary assessment is informative, suggesting that
Germinate is competitive with hand-authored design intent
files even in the hands of Gemini experts.

For our main evaluation, we enlisted three Ph.D. re-
searchers in game generation (not deeply familiar with Gem-

ini) and one post-bac researcher. After a 5 minute walk-
through of Germinate’s user interface and ontology, we in-
structed each subject to play around with the tool for 10
minutes and talk through their thinking and reasoning. If the
user did not say anything for a period of time, we would
prompt them. Afterwards, we administered the following
brief user experience questionnaire (Laugwitz, Held, and
Schrepp 2008), of which the first question was free response
and the remaining questions were on a three-point scale:

1. What is your overall impression of the tool?

2. How easy was it to use the tool?

3. Were you able to use the tool without unnecessary effort?

4. Did you feel you had enough control over the generated
games?

5. Was it fun to use?

Results

Our first respondent (the post-bac researcher) felt that over-
all, Germinate was intended for game creators who wanted
to drive game design by story or environment elements
rather than specific rules or mechanics. They especially liked
to play with the randomization features. They described the
tool as “easy to use” (2) (although waiting for games to
be generated was frustrating), stated that “some unneces-
sary effort” (3) was involved (especially when the gener-
ated intent was not satisfiable for one reason or another),
and they felt “some control” (4) over the generated games.
This user especially appreciated that the system pushed them
away from traditional game rules and mechanics and to-
wards more surprising areas of the generative space. Fi-
nally, they felt that the tool was “fun to use” (5), comment-
ing specifically on the evocative use of emoji and the loose,
not overly goal-oriented interaction style. They also believed
that given more time with the tool, they could learn how to
exert more influence over, for example, the control schemes
used for the game entities.

A researcher in playable AI systems found Germinate “an
interesting casual creator for game generation,” and engaged
with the tool “without any specific goals.” They mainly
worked by defining entity and resource tags and relation-
ships, but felt uncertain about the concrete meaning of terms
used in the interface. Their main frustrations concerned the
unclear rules of generated games; still, they drew out seman-
tic arguments unprompted (“my Friend is chasing Success”).

They found the tool neither easy nor hard to use (2), since
the tool can’t be meaningfully separated from the games and
affordances of the generator. They did not experience a sen-
sation of unnecessary effort (3), and since they had no spe-
cific goals they felt “full control—as much control as [they]
were looking for,” but perhaps not enough if they intended to
create a specific game (4). Finally, they felt the tool was fun
to use (5) and experiment with as a casual user (as opposed,
say, to a creator of newsgames).

A game generation researcher felt that the tool is a “good
step,” but felt that the games were too similar to each other.
They found the tool “hard to use” (2) most likely because
they felt that they had “some/no control” over the generated

106



Figure 2: A generated game that surprised one of the ex-
pert participants. The intent states that books, students, and
knowledge are good, while tiredness is bad. The participant
expected a game in which a student chased books, but the
resultant game featured a student warily circling the books
while the player tried to corral the books towards the student.

games (4). However, they did feel that the there was “no un-
necessary effort” in using the tool (3) and ultimately found
that the tool as “somewhat fun to use” (5) (although they
noted that they wished they had more time to play around
with the relationships and potential expressible space of the
system).

On the other hand, one of the game generation researchers
felt that generally, “[t]here’s a pleasant flow to using the tool,
and it was able to generate some games I wasn’t expecting
but really liked.” The intent and resultant game can be seen
in figure 2. They especially liked how Germinate generated
games that fulfilled the rhetorical intent without using the
mechanics they were expecting. They described the tool as
“easy to use” (2) (although they noted that there was a fric-
tion in how the rules are presented and how they wanted to
be able to tell the generator to change a specific rule), said
that there was “no unnecessary effort” (3) in using the tool,
felt that they had “full control” over the generated games (4),
and felt that the tool was “fun” (5) to use.

Discussion

All expert users surveyed in our evaluation found Germinate
to be at least “somewhat fun to use”, and three of four said
it was “fun” unreservedly. Three found that there was “no
unnecessary effort” involved in using the tool, while one felt
that there was “some unnecessary effort.” Two of the expert
evaluators felt that they had “full control” over the generated
games, while the other two felt that they had “some control”.
Two found it “easy to use”, one “hard to use”, and one some-
where in between. Altogether, we conclude that—despite
some rough edges—Germinate succeeds among these expert
users in its overall goal of facilitating a casual approach to
rhetorical game design, oriented more toward playful explo-
ration of a sometimes-surprising generative space than to-
ward precise specification and realization of a single, clearly
envisioned game. Further evaluation will be needed to show
that the same holds for casual users with no prior game gen-
eration experience as well.

Although Germinate’s intent space is substantially more
restricted than that of Gemini, we nevertheless preserve the

desirable Gemini property of being able to generate games
that the earlier interpretation-driven game generator Game-
O-Matic could not. In particular, the Gemini intent language
allows users to specify named resources with their own prop-
erties, as distinct from entities; relationships between enti-
ties and resources; fine-grained specifications of an individ-
ual entity’s gameplay properties; and fine-grained specifica-
tions of diverse mechanics—none of which are supported by
Game-O-Matic, and all of which are made available to users
of Germinate.

Moreover, the finer-grained control that we sacrifice in
giving up direct editing of AnsProlog design intents is re-
warded here by greater approachability for casual users,
who could feasibly use Germinate to perform interpretation-
driven game generation without any knowledge of AnsPro-
log. This trading off of control for power is a common fea-
ture of casual creators, and can arguably be considered ben-
eficial insofar as it facilitates user reflection on intent.

The most common user frustrations we encountered in
our expert evaluation involved opaque interactions between
user-specified constraints. These interactions sometimes re-
sulted in the generation of unsatisfiable intents without any
feedback given to the users as to why the intent was unsat-
isfiable. User-friendly explication of how constraints inter-
act and why an unsatisfiable intent cannot be fulfilled—in
other words, improved error reporting—is therefore a top
priority for future work. It would be fairly straightforward to
modify Germinate to report some warnings to the user when
they submit an intent that is likely to be unsatisfiable due
to mutually incompatible constraints, especially since we’re
already logging some of these warnings to the console—
but this wouldn’t be sufficient to capture the full range of
mutually incompatible constraints you can specify with any
nontrivial fragment of the intent language. Moreover, it is in-
herently difficult to get the underlying Clingo solver (around
which Gemini is built) to report the reason an intent is unsat-
isfiable: there are often several distinct integrity constraints
that are all violated by a bad intent, making it difficult to
isolate the precise reason for the failure (Syrjänen 2006).
During debugging, we made use of a script that performs
a binary search over the core Gemini AnsProlog integrity
constraints (low-level constraints that capture Gemini’s def-
inition of what a game is) and repeatedly re-runs the solver
with some constraints relaxed to identify the constraints that
are most likely invalidating the current intent; this approach
could possibly be used to improve error reporting going for-
ward, but to do so would be nontrivial from both an engi-
neering and a user experience perspective.

Another possibility for future work involves exposing the
derivation trees of Gemini arguments to users directly and
allowing users to phrase their intents partly in terms of these
derivations. Gemini internally contains hundreds of individ-
ual rules that specify particular arguments as to why a game
with certain characteristics can be interpreted as possessing
a certain rhetorical property, and it seems (based on the ex-
pert evaluation we conducted here) that users often want to
be able to both understand why the generator is interpret-
ing this game in a particular way and inform the generator
that some of its internal interpretive strategies should not be

107



considered here. Exposing these derivation trees to the user,
and letting the user specify in their design intent that some
derivation steps should not be used, would perhaps restore
some of the finer-grained control that users found the current
version of Germinate to be lacking, without overwhelming
users with the full complexity of the AnsProlog language.

Conclusion

We present Germinate, a casual creator for rhetorical games
based on the Gemini game generator. Principles-based and
preliminary expert evaluation shows that Germinate success-
fully affords an approachable and playful form of rhetori-
cal game design, satisfying the user’s expressive intent in
surprising but inspiring ways, and scaffolding both the exe-
cution and evaluation sides of the interaction loop. Larger-
scale evaluation in the future will be necessary to show that
these desirable properties hold for casual users as well.

Acknowledgements

This research was supported by a Seed Fund Award CITRIS-
2017-0187 from CITRIS and the Banatao Institute at the
University of California.

References

Anthropy, A. 2012. Rise of the Videogame Zinesters: How
Freaks, Normals, Amateurs, Artists, Dreamers, Drop-Outs,
Queers, Housewives, and People Like You Are Taking Back
an Art Form. Seven Stories Press.
Bogost, I. 2007. Persuasive Games: The Expressive Power
of Videogames. MIT Press.
Brain, M.; Cliffe, O.; and De Vos, M. 2009. A pragmatic
programmer’s guide to answer set programming. Answer Set
Programming 49–63.
Compton, K., and Mateas, M. 2015. Casual creators. In In-
ternational Conference on Computational Creativity, 228–
235.
Compton, K. 2019. Casual Creators: Defining a Genre
of Autotelic Creativity Support Systems. Ph.D. Dissertation,
UC Santa Cruz.
Cook, M.; Colton, S.; and Gow, J. 2016a. The ANGELINA
videogame design system—part i. IEEE Transactions on
Computational Intelligence and AI in Games 9(2):192–203.
Cook, M.; Colton, S.; and Gow, J. 2016b. The ANGELINA
videogame design system—part ii. IEEE Transactions on
Computational Intelligence and AI in Games 9(3):254–266.
Ebner, M.; Levine, J.; Lucas, S. M.; Schaul, T.; Thompson,
T.; and Togelius, J. 2013. Towards a video game descrip-
tion language. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik.
Garbe, J.; Kreminski, M.; Samuel, B.; Wardrip-Fruin, N.;
and Mateas, M. 2019. StoryAssembler: an engine for gen-
erating dynamic choice-driven narratives. In Proceedings
of the 14th International Conference on the Foundations of
Digital Games.
Hunicke, R.; LeBlanc, M.; and Zubek, R. 2004. MDA:
A formal approach to game design and game research. In

Proceedings of the AAAI Workshop on Challenges in Game
AI.
Hutchins, E. L.; Hollan, J. D.; and Norman, D. A. 1985. Di-
rect manipulation interfaces. Human–Computer Interaction
1(4):311–338.
Khalifa, A.; Green, M. C.; Perez-Liebana, D.; and Togelius,
J. 2017. General video game rule generation. In 2017
IEEE Conference on Computational Intelligence and Games
(CIG), 170–177. IEEE.
Kreminski, M., and Wardrip-Fruin, N. 2019. Genera-
tive games as storytelling partners. In Proceedings of the
14th International Conference on the Foundations of Digi-
tal Games.
Laugwitz, B.; Held, T.; and Schrepp, M. 2008. Construc-
tion and evaluation of a user experience questionnaire. In
Symposium of the Austrian HCI and Usability Engineering
Group, 63–76. Springer.
Liapis, A.; Yannakakis, G. N.; Alexopoulos, C.; and Lopes,
P. 2016. Can computers foster human users’ creativity?
Theory and praxis of mixed-initiative co-creativity. Digital
Culture & Education 8(2):136–153.
Liapis, A.; Yannakakis, G. N.; Nelson, M. J.; Preuss, M.;
and Bidarra, R. 2018. Orchestrating game generation. IEEE
Transactions on Games 11(1):48–68.
Nelson, M.; Gaudl, S.; Colton, S.; Powley, E.; Perez Fer-
rer, B.; Saunders, R.; Ivey, P.; and Cook, M. 2017. Fluidic
games in cultural contexts. In International Conference on
Computational Creativity.
Powley, E. J.; Nelson, M. J.; Gaudl, S. E.; Colton, S.; Ferrer,
B. P.; Saunders, R.; Ivey, P.; and Cook, M. 2017. Wevva:
Democratising game design. In Thirteenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In 2013 IEEE Confer-
ence on Computational Inteligence in Games (CIG). IEEE.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: bidirec-
tional generation and analysis of games via ASP. In Four-
teenth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.
Syrjänen, T. 2006. Debugging inconsistent answer set pro-
grams. In Proceedings of the 11th International Workshop
on Nonmonotonic Reasoning (NMR’06), volume 6, 77–83.
Treanor, M., and Mateas, M. 2009. Newsgames: Procedural
rhetoric meets political cartoons. In DiGRA Conference.
Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.
2011. Proceduralist readings: how to find meaning in games
with graphical logics. In Proceedings of the 6th Interna-
tional Conference on Foundations of Digital Games, FDG
’11, 115–122. New York, NY, USA: ACM.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012. Game-O-Matic: Generating videogames that repre-
sent ideas. In Proceedings of the Third Workshop on Proce-
dural Content Generation in Games.

108




