
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

PCGRL: Procedural Content Generation via Reinforcement Learning

Ahmed Khalifa, Philip Bontrager, Sam Earle, Julian Togelius
New York University

ahmed@akhalifa.com, philipjb@nyu.edu, smearle93@gmail.com, julian@togelius.com

Abstract

We investigate how reinforcement learning can be used to
train level-designing agents. This represents a new approach
to procedural content generation in games, where level de-
sign is framed as a game, and the content generator itself is
learned. By seeing the design problem as a sequential task, we
can use reinforcement learning to learn how to take the next
action so that the expected final level quality is maximized.
This approach can be used when few or no examples exist to
train from, and the trained generator is very fast. We inves-
tigate three different ways of transforming two-dimensional
level design problems into Markov decision processes, and
apply these to three game environments.

Introduction

Reinforcement learning is commonly used to learn to play
games, which makes sense as the problem of playing a game
can easily be cast as a reinforcement learning problem; the
action space is simply the actions available to the agent, and
most games have a score or similar which can be used to
provide a reward signal (Justesen et al. 2019). In contrast,
problems of designing games or game content are most of-
ten cast as optimization processes, where a measure of qual-
ity is used as an objective function (Togelius et al. 2011),
or sometimes as supervised learning problems (Summerville
et al. 2018). In the game industry, where many games rely
on content generation, this process is typically performed
by hand-crafted heuristic algorithms (Shaker, Togelius, and
Nelson 2016).

In this paper, we investigate how to generate game lev-
els using reinforcement learning. To the best of our knowl-
edge, this is the first time reinforcement learning is brought
to bear on this problem. This is probably because it is not
immediately obvious how to cast a level generation problem
as a reinforcement learning problem. The core question that
this paper attempts to answer is how level generation can be
formulated as a tractable reinforcement learning problem.
We formulate observation spaces, action spaces and reward
schemes so as to make existing RL algorithms learn policies
that result in high-quality game levels.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Conceptually, the main difference to existing approaches
to Procedural Content Generation (PCG) is that we do not
search the space of game content, but rather the space of
policies that generate game content. At each step, the policy
is asked to take the action that leads to the highest expected
final level quality. This can be contrasted to search-based ap-
proaches where each “action” generates a complete level, or
to approaches based on supervised or unsupervised learning
where complete levels are sampled from a learned model.

Reinforcement learning approaches to PCG have several
potential advantages over existing methods. Compared to
search-based methods (Togelius et al. 2011), machine learn-
ing approaches can generate new levels, after training, much
faster as no search is needed on demand. This comes at a cost
of having a long training phase which search-based PCG
methods do not have, so we move the time consumption
from inference to training. Compared to supervised learn-
ing (Summerville et al. 2018), the big advantage is that no
training data is necessary. Another advantage is that the in-
cremental nature of the trained policies makes them poten-
tially more suitable to interactive and mixed-initiative ap-
proaches to PCG, where content is created together with hu-
man users (Yannakakis, Liapis, and Alexopoulos 2014).

In our experiments, we focus on two-dimensional levels
for three different game environments. Two of these are ac-
tual games – the classic puzzle game Sokoban (Thinking
Rabbit, 1982) and a simplified version of the Legend of
Zelda (Nintendo, 1986) – and the third is a simple maze en-
vironment where the objective is to generate mazes contain-
ing long paths. We formulate three different representations
of game levels as reinforcement learning problems: the nar-
row representation, the turtle representation, and the wide
representation (which we will discuss later in the paper). We
find that all three representations can be successful on all
three game scenarios, given that the right choices are made
regarding reward schemes and episode lengths, but that there
are interesting differences in the generated artefacts.

Background

Procedural level generation research has started to incorpo-
rate more machine learning techniques (Jain et al. 2016;
Volz et al. 2018) after the recent advances in machine

95



Figure 1: The system architecture for the PCGRL environ-
ment for content generation.

learning. Reinforcement Learning (RL), though, was rarely
applied to PCG, even after its success in playing video
games (Mnih et al. 2015), perhaps because it is unclear how
to form the level generation process as an RL problem.

One solution is to frame the content generation as an it-
erative process, where at each step the agent is trying to
modify a small part of the content, similar to the idea from
Guzdial, Liao, and Riedl’s (2018) work. Several researchers
have explored the idea of iterative generation to build a plat-
former level using supervised sequence learning methods,
such as Markov Chains (Snodgrass and Ontañón 2014) and
LSTMs (Summerville and Mateas 2016).

Looking at level generation from a sequential perspec-
tive makes it possible to formulate it as a Markov Deci-
sion Process (MDP) where the agent is making small, it-
erative changes to improve the current level. For example,
McDonald (2019) formulates the process of 3D building-
generation as a MDP. They define the state space as the
locations of several cuboids, while the action space corre-
sponds to movement of these cuboids along any of the Carte-
sian axes. They reward actions that minimize intersection
between the cuboids while making them touch. They don’t
do any learning; instead they use a greedy agent that picks
the next action to maximize the immediate reward.

Earle (2019) trains fractal neural networks using
A2C (Mnih et al. 2016) to play SimCity (Will Wright, 1989).
Although this work doesn’t tackle the idea of using RL for
PCG, we can look at it as a step toward PCGRL, as the
trained models design cities, which could constitute game
levels. The only work we found that used RL to directly gen-
erate game content was that of Chen et al. (2018) and Guz-
dial et al. (2019). In Chen et al.’s work, Q-Learning (Watkins
and Dayan 1992) is used to train a deck-building system that
outperforms search-based methods. In Guzdial et al.’s work,
they proposed a mixed initiative tool to design levels for Su-
per Mario Bros (Nintendo, 1985) that uses active learning to
update the trained models to adapt to the user choices. Al-
though the paper didn’t use RL to train a model from scratch,
the system was successfully adapting to the users choices.

PCGRL Framework

The PCGRL Framework casts the PCG process as an itera-
tive task instead of generating the whole content at once. We

thus see content generation as a MDP, where at each step the
agent gets an observation and reward then responds with an
action. In this work, we will only be looking at the task of
level generation, but everything we are going to discuss here
can be applied to other types of content generation.

To realize the idea of iterative content generation, we start
with a level populated by random tiles. At each step, the
agent is allowed to make a small change in the level (such
as one tile). This change will be judged by the system with
respect to a target goal for the level, and assigned a re-
ward. The reward should reflect how much closer that small
change has brought the agent to its goal state. For example:
if we are generating a PacMan (NAMCO, 1980) level, one
of the goals is to have only one player; so a change that adds
a player when there is none is a positive change, and nega-
tive otherwise. The system should also determine the halting
point of the generation process (limiting the number of iter-
ations so that it doesn’t take forever).

To make the framework easy to implement for any game,
we break it down into three parts, and isolate game-related
information from the generation process. These parts are:
the Problem module, the Representation module, and the
Change Percentage. The problem module stores information
about the generated level such as goal, reward function, etc.
The representation module is responsible for transforming
the current level into a viable observation state for the agent.
The change percentage limits the number of changes the
agent can affect in the content over the course of an episode,
preventing it from changing the content too much.

Figure 1 shows the PCGRL agent-environment loop. The
agent observes the current state (St), and based on it, sends
an action (at) to the representation module, which in turn
transforms the state (St) into the next state (St+1). These
two states (St and St+1) are both sent to the problem mod-
ule, which assesses the change’s effect on map quality and
returns the new reward (rt+1). This new reward and the new
state (St+1) back to the agent, and the loop continues. The
loop could terminate early by sending an end signal (et+1)
if it makes a lot of changes to the map.

After training, these agents are used as generators: they
iterate over a randomly-initialized map for a fixed number
of steps; improving it slightly or transforming it completely.

Problem

The problem module is responsible for providing all the in-
formation about the current generation task. For example: if
we were trying to generate a Super Mario Bros (Nintendo,
1985) level, the problem module would support us with the
level size, the types of objects that can appear in the level,
etc. This module provides two functions. The first function
assesses the change in quality of generated content after a
certain agent action. For example: if the agent removes an
object from a game level, the problem module will assess the
resultant change in level quality and return a reward value
that the agent can use to learn.

The second function determines when the goal is reached,
which terminates the generation process. For example: if we
are generating a house layout, we can terminate generation
after we have a certain number of rooms created. It is im-

96



1 1 1 1 1 1 1

1 4 0 0 0 0 1

1 0 3 1 3 0 1

1 1 0 1 0 1 1

1 0 2 0 3 0 1

1 4 0 0 0 4 1

1 1 1 1 1 1 1

Figure 2: Sokoban level as 2D integer array.

portant to define a goal for our problem that leads to many
possible levels, as we are trying to learn a generator and not
find a single level. For example: if the goal function for a
10x10 maze is to have a level with path length equal to 54
(which is the longest possible path between any two tiles on
such a map), then the model will learn to generate only these
maps. This is fine if the designer wants to find a single level,
but there are many optimization techniques for that and here
we focus on learning to generate multiple distinct levels.

Representation

To model content generation as a MDP, we need to define
the state space, action space, and transition function. The
representation module is responsible for this transformation.
Its role is to initialize the problem, maintain the current state,
and modify the state based on the agent’s action.

For the sake of simplicity, we represent a generated level
as a 2D array of integers where the location in the array cor-
responds to the location in the level, and the value defines
the type of object in that location. For example: Figure 2
shows a Sokoban (Thinking Rabbit, 1982) level as 2D ar-
ray, and the corresponding level. This constraint makes it
easy for us to adopt the same representations that were used
in the work by Bhaumik et al. (2019) on generating levels
using tree search algorithms. In that work, they defined the
following representations:

• Narrow: the simplest way of representing the problem. It
is inspired by cellular automata (Wolfram 1983) where at
each step, the agent is given the current state and a loca-
tion. It then is allowed to make a change at that location.
The observation space is defined as the current state (as
the 2D integer array) and the modification location (as an
x and y index in the 2D array). The action space is de-
fined as a no-action (which skips the current location) or
a change tile action (value between 0 to n− 1 where n is
the number of tile types provided by the problem module).

• Turtle: inspired from the turtle graphics languages such
as Logo (Bolt and Newman 1967) where at each step, the
agent can move around and modify certain tiles along the
way. The observation space is represented as the current
state (as the 2D integer array) and the current agent lo-
cation (as an x and y index in the 2D array). The action
space is defined as: a movement action (which moves the
agent either up, down, left, or right) or a change tile ac-
tion (value between 0 to n − 1 where n is the number of
different objects provided by the problem module).

• Wide: is similar to Earle’s work (2019) on playing Sim-
City. At each step, the agent has full control over the lo-

Figure 3: Location data is being transformed as an image
translation

cation and tile type. The observation space is the current
state (as the 2D integer array). The action space is defined
as the affected location (x and y position on the level) and
the change tile action (value from 0 to n−1 where n is the
number of tile types provided by the problem module).
Each representation corresponds to a distinct class of

agents. Those with Narrow representations are beholden
to a predetermined sequence of build-locations; those with
Turtle representations have local control over the current
location, but only relative to the last; and those with Wide
representations have full control. We could also develop hy-
brid representations (e.g. a mix of narrow and wide, where
the agent can modify a small area around a given location)
or modify their action schemes (e.g. changing multiple tiles
instead of a single tile).

Change Percentage

The change percentage is an important parameter that de-
fines how many tiles the agent is allowed to change as a
percentage of the full size of the level. It limits the length
of the episode during training so the agent cannot change all
the tiles. We can think about it as similar to a discount fac-
tor: it defines how greedy the agent should be. For example:
if the percentage is small, it means the agent is only allowed
to make a very small amount of changes to the map, so the
agent will end up learning more greedy actions to get higher
short-term rewards. On the other hand, if the percentage is
high, it means the agent is allowed to change as much of
the map as possible, so the agent will end up learning a less
greedy and more optimal solution to the problem.

One might wonder why a more greedy agent is preferred
over a more optimal agent. An agent that always makes the
most optimal level, does not care about the initial random
level layout. This means, that given complete information,
the agent will converge to a single optimal solution. This is
not the goal, as we desire an agent that acts as a designer that
can transform an input level into a new level that is inspired
by the input. There are multiple possible solutions to this; we
decided to use the approach of limiting the agents actions to
force it to make minimal changes to the environment as it is
the most straight forward approach.

Experiments

Our PCGRL framework1 is implemented as an OpenAI
Gym (Brockman et al. 2016) interface, making it compat-

1https://github.com/amidos2006/gym-pcgrl

97



(a) Binary (b) Zelda (c) Sokoban

Figure 4: The Success percentage of generating levels from random a initial state with respect to the change percentage.

ible with existing agents. We test the framework using three
unique representations (Narrow, Turtle, and Wide) and prob-
lems (Binary, Zelda, and Sokoban). For all the problems, the
reward function favors actions that help reach the goal of the
problem while punishing those that move away from it. The
problem terminates when the goal is reached.

• Binary: the easiest task, the goal is to modify a 2D map
of solid and empty spaces such that the longest shortest
path between any two points in the map increases by at
least X tiles (where X = 20 in our experiments) and all
the empty spaces are connected.

• Zelda: the goal is to modify a 2D level for Zelda, which
is a port of the dungeon system in The Legend of Zelda
(Nintendo, 1986) for the GVGAI framework (Perez et al.
2019). The game’s objective is to move the player to grab
a key and then reach a door while avoiding getting killed
by the moving enemies. The level must thus have exactly
1 player, 1 door, and 1 key (different game objects) and
the player must be able to reach the key and then the door
in at least X steps (we set X = 16). Enemies cannot
spawn too close to the player (more than 3 tiles away in
our experiments).

• Sokoban: the goal is to generate a 2D level for the
Japanese puzzle game Sokoban (Thinking Rabbit, 1982),
in which the player tries to push all crates toward cer-
tain target locations, while avoiding getting crates stuck
against walls. The level must thus have exactly 1 player
and the same number of crates and targets, all of them
reachable by the player. This being the case, a Sokoban
solver (a tree search algorithm (BFS and A*) with limited
depth (around 5000 nodes)) is used to make sure levels
can be solved in at least X steps (we set X = 18).

After some preliminary tests, we decided to fix the change
percentage to 20%, to encourage the agent to react, rather
than to overwrite, the starting state. The starting state is ran-
domly sampled from a random distribution which was tuned
to fit each problem. For example: the player tile in Zelda and
Sokoban have very low probability to appear in the starting
state. Figures 5a,6a, and 7a show examples of different start-
ing states for each of the three problems.

We randomize the starting position of the turtle and nar-
row representations to encourage generalization (Justesen et
al. 2018). In narrow, each turn, the location is chosen at ran-
dom so that the network will learn to react to any location.

Narrow Turtle Wide
Binary 15, 918 15, 918 246
Zelda 8, 451 8, 451 256
Sokoban 585 585 214

Table 1: The sizes of the trained models in terms of thou-
sands of parameters (103).

This ensures that all locations are visited with equal fre-
quency during level-design. It need not be true during in-
ference. We provide the agent with a one-hot encoding of
the level map to help training.

For training, we use Proximal Policy Optimization
(PPO) (Schulman et al. 2017) from Stable Baselines (an im-
proved implementation of OpenAI baselines (Dhariwal et al.
2017)) to train our agents. We use two different architectures
for the agent networks. The first is used for the binary and
turtle representation. Its body consists of 3 convolution lay-
ers followed by a fully connected layer, and an additional
fully connected layer for both the action and value heads
similar to Google’s ALE DeepQ architecture (Mnih et al.
2015). The wide representation needed a different architec-
ture due to its large action space (equal to the input space,
e.g. 14x14 in binary). To solve that problem, we decided
to use the similar architecture from Earle (2019) work in
playing SimCity. The body of the network consists of 8 con-
volutions, which is used directly for the action head, while
the value head has 3 additional convolutions for Binary and
Zelda and only 2 additional convolutions for Sokoban. Ta-
ble 1 shows the number of parameters for each represen-
tation and each game. For Narrow and Turtle, the network
parameters are extremely big compared to wide, this is due
to the presence of fully connected layer in the end which is
not the case in the wide network.

For each problem/representation experiment, we trained 3
different models to show the stability of the training. Each
model was trained for 100 million frames. Since both Nar-
row and Turtle have location information, we encode this
information as a translation of the map around that location
which means the new map is twice as big as the old map and
the center of that new map is the location needed. Figure 3
shows the location information as a black rectangle on the
left image. This information has been transformed as trans-
lation information in the right image where the position of
that tile is the center of the new map.

98



Narrow Turtle Wide
Binary 29.7%± 1.4% 19.7%± 0.8% 15.6%± 1%
Zelda 39.25%± 14.9% 21.6%± 2.6% 21.8%± 11.2%
Sokoban 26.9%± 1.6% 25.1%± 2.2% 26.5%± 2.3%

Table 2: Percentage of map changed by the agent during in-
ference when allowed unlimited changes.

Results

To analyze the trained models, we collect 40 generated lev-
els for each model. To generate the levels, 40 different ran-
dom level layouts are generated, the trained models are then
tasked with modifying these random layouts into good lev-
els. We analyze levels generated using different change per-
centages, ranging from 0% to 100%, where the percentage
represents the fraction of tiles the agent is allowed to change
during inference. At each percentage, we analyze 120 differ-
ent levels (40 generated levels per model).

Figure 4 shows the percentage of generated levels that sat-
isfy the goal criterion for each game. The horizontal axis
represents the change percentage during inference while the
vertical axis represents the percentage of successful levels.
The solid line is the average of the three trained models
while the shaded area is their standard deviation. We added
a random agent to the mix. The random agent results were
averaged between all three representation which turns out to
be a 0% success rate. We can see that some representations
perform better than the others in some tasks while in others
they perform the same. Predictably, when only allowed to
make very few changes, the agent isn’t able to design very
good levels but possibly surprising is that the agent needs
only to change at most 40% of the tiles to design a success-
ful level. This is especially interesting since the agent was
only allowed to change 20% of the tiles during training.

Figure 4b shows that the narrow representation fails to get
a high success rate compared to the other representations.
We found that the narrow representation could design mostly
good levels but fails to make their solution paths longer than
16 steps. We believe that narrow might be struggling to im-
prove the solution path due to the random nature of selecting
the next tile during training and the need for long waits to
make sure the system visits every single tile. We believe that
it could be solved if the model were trained for a longer time
(as it was still learning after 100 million frames).

Figure 4c shows the result of generating Sokoban levels.
We see that the success rate is relatively low, especially in
the wide representation. We looked into the generated lev-
els and found that most of them are easy levels that can be
solved in few steps (less than 18). Narrow models generate
86.7% solvable , Turtle models generate 88.3% solvable ,
while Wide models generate 67.5% solvable levels at 100%
change percentage. Based on this, we think that this prob-
lem could be solved if the model were trained longer and
rewarded based on a more powerful Sokoban solver. The
current solver only solves simple levels to be quick.

We suspect that the performance drop that appears when
using the wide representation on Sokoban (as compared to
Zelda and Binary) might be due to the relative shortage of

(a) Initial (b) Narrow (c) Turtle (d) Wide

Figure 5: Binary generated examples using different repre-
sentation for the same starting state.

parameters in the model’s critic head. Due to the small map-
size of our Sokoban levels (compared to Binary and Zelda),
and since the full network is convolutional with no fully
connected layers, our model needs fewer (strided convolu-
tional) layers in the critic head to arrive at a scalar value
estimate than it does in Binary and Zelda. We believe that
supplementing the model’s critic head with some additional
non-strided convolutional layers, or adding parameters via
increased number of channels, could make this model com-
petitive compared to the others.

We looked at how many changes the trained models are
making on average. Table 2 shows the percentage of changed
tiles in the map if the agent has no upper bound (change
percentage is equal to 100% during inference). We can see
that most of the agents still don’t make a lot of changes,
which proves that the models are reacting to the input map
instead of overwriting it with an optimal solution.

Figures 5,6, and 7 show the results from running a trained
model on the Binary, Zelda, and Sokoban problems respec-
tively. In these experiments, we fix the starting state and run
the trained model for each representation. We run the model
with 100% change percentage instead of the 20% change
percentage (used during training). The reason for the in-
crease in the change percentage is to allow the algorithm
to make more changes in case it started from very bad state.

As shown in figure 4, different representations do not
seem to have a large effect on success across every prob-
lem. The real difference can be seen in design styles. This
is especially clear in the Binary problem (figure 5). In the
Binary problem, all representations achieve similar success
percentages, but each results in a stylistically distinct set of
generated levels. In the narrow representation, the agent has
no control over when it is allowed to make a change in a
specific area. From this it seems to have learned to make
more frequent sub-optimal changes rather than waiting for
the ideal change. This makes the narrow representation the
least “controlled” by the initial conditions and to have the
most varied results. The turtle representation has control
over where it goes, but only loosely, as navigation is diffi-
cult and it’s possible for the game to end if it does not move
efficiently. It seems to favor updating the board in a spiral

99



(a) Initial (b) Narrow (c) Turtle (d) Wide

Figure 6: Zelda generated examples using different repre-
sentation for the same starting state.

manner. Lastly, the wide representation is the most efficient
with its changes, with its designs being closest to the original
pattern. This agent could always control a change exactly,
so it never needed to risk ending the game with too many
changes. The downside of using the wide representation is
that it must learn a much larger action space than the others.

Discussion

The two major conceptual differences between this work and
almost all published research on PCG is to search in content
generator space rather than content space, and to see content
generation as an iterative improvement problem. Searching
in content generator space was prefigured by the Procedu-
ral Procedural Level Generator Generator (PPLGG), which
evolves Super Mario Bros level generators (Kerssemakers et
al. 2012). However, the search in PPLGG proceeds through
interactive evolution rather than RL, and the generators are
simple multi-agent systems. The paradigm presented here is
more scalable, not least for its automatic learning.

We only discussed one type of content(game levels), as a
case study, to show that the technique works and to demon-
strate how one may go about transforming a specific (and
in this case, canonical) PCG problem into an RL problem.
If one has a PCG problem definition and reward function,
one can readily adopt our narrow, turtle, or wide agent-
environment interfaces, and run the PCGRL algorithm on
any content generation problem.

It is particularly exciting to see the multiple uses PCGRL
could have in mixed-initiative editing tools. As the inter-
face of a trained model is to make a single small change
intended to improve the level, this fits in very well with a
turn-taking paradigm. One could imagine multiple trained
PCGRL agents working as suggestion engines, pointing out
where to improve the current design or as “brushes,” applied
by the human user to e.g. increase difficulty in a region.

One of the main reasons that PCG approaches based on
search/optimization have not been applied widely in the
game industry is that they take too much time. And it is in-
deed true that if any kind of simulation is incorporated into
an evaluation function, the search for good game content
can be costly. Here, PCGRL offers the possibility of moving
most of the time consumption from inference to training, or,
in game development terms, from runtime to development.

(a) Initial (b) Narrow (c) Turtle (d) Wide

Figure 7: Sokoban generated examples using different rep-
resentation for the same starting state.

This might make PCGRL a viable choice for runtime content
generation in games. The problem of designing an appropri-
ate reward scheme remains, however, and is similar to that
of designing an evaluation function in search-based PCG.

Conclusion

We propose a framework for generating content using re-
inforcement learning. We test the idea on level generation
for three different problems (Binary, Zelda, and Sokoban).
To make the system work, we adapt three different rep-
resentations (Narrow, Turtle, and Wide) from Bhaumik et
al.’s (2019) work. These representations transform the gen-
eration process into a MDP which is easy to implement
as an OpenAI Gym interface (Brockman et al. 2016). We
train three models using the PPO algorithm for each prob-
lem/representation. For the Binary problem, all models per-
formed pretty well given enough changes, and the main dif-
ference was the style of the generated content. For Zelda and
Sokoban, the agent struggled to design hard levels but was
able to generate a high amount of playable levels. This prob-
lem could be tackled by using more powerful game solvers
and training the models for longer, as the models were still
learning after 100 million frames.

This work introduces the main concept and principle of
a new approach for generating content using reinforcement
learning. It opens the door to the application of many fruitful
ideas from RL to the world of PCG, such as self-play agents
(where the same agent plays against itself in a competitive
game to improve the content), collaborative agents (where
two or more agents work together to generate the level),
hierarchical agents (where the agent has separate modules
for different functionalities; for example one for movement
and another for modification), etc. In future work, we would
like to extend the framework to support mixed-initiative ap-
proaches by preventing the agent from overwriting human
content, and thus allowing for the same kind of human-AI
collaboration as in Guzdial, Liao, and Riedl’s (2018) work.

Acknowledgments

Ahmed Khalifa acknowledges the financial support from
NSF grant (Award number 1717324 - “RI: Small: General
Intelligence through Algorithm Invention and Selection.”).

100



References

Bhaumik, D.; Khalifa, A.; Green, M. C.; and Togelius, J.
2019. Tree search vs optimization approaches for map gen-
eration. arXiv preprint arXiv:1903.11678.
Bolt, B., and Newman, R. 1967. Logo (programming lan-
guage). https://en.wikipedia.org/wiki/Logo (programming
language).
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Chen, Z.; Amato, C.; Nguyen, T.-H. D.; Cooper, S.; Sun, Y.;
and El-Nasr, M. S. 2018. Q-deckrec: A fast deck recommen-
dation system for collectible card games. In Computational
Intelligence and Games. IEEE.
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert,
M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and
Zhokhov, P. 2017. Openai baselines. GitHub repository.
Earle, S. 2019. Using fractal neural networks to play simcity
1 and conway’s game of life at variable scales. In AIIDE
Workshop on Experimental AI in Games.
Guzdial, M.; Liao, N.; Chen, J.; Chen, S.-Y.; Shah, S.; Shah,
V.; Reno, J.; Smith, G.; and Riedl, M. O. 2019. Friend,
collaborator, student, manager: How design of an ai-driven
game level editor affects creators. In CHI Conference on
Human Factors in Computing Systems.
Guzdial, M.; Liao, N.; and Riedl, M. 2018. Co-creative
level design via machine learning. In AIIDE Workshop on
Experimental AI in Games.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair, and recogni-
tion. In ICCC Workshop on Computational Creativity and
Games.
Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Illuminating generalization in
deep reinforcement learning through procedural level gener-
ation. In NeurIPS Workshop on Deep Reinforcement Learn-
ing.
Justesen, N.; Bontrager, P.; Togelius, J.; and Risi, S. 2019.
Deep learning for video game playing. Transactions on
Games.
Kerssemakers, M.; Tuxen, J.; Togelius, J.; and Yannakakis,
G. N. 2012. A procedural procedural level generator gener-
ator. In Computational Intelligence and Games. IEEE.
McDonald, N. 2019. Markov chains for proce-
dural buildings. https://weigert.vsos.ethz.ch/2019/10/30/
markov-chains-for-procedural-buildings/.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature 518(7540).
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning.

Perez, D.; Liu, J.; Abdel Samea Khalifa, A.; Gaina, R. D.;
Togelius, J.; and Lucas, S. M. 2019. General video game ai:
a multi-track framework for evaluating agents, games and
content generation algorithms. Transactions on Games.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using markov chains. In Foundation of Digital
Games. ACM.
Summerville, A., and Mateas, M. 2016. Super mario as
a string: Platformer level generation via lstms. In Interna-
tional Joint Conference of DiGRA and FDG.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(pcgml). Transactions on Games 10(3).
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. Transactions on Computational In-
telligence and AI in Games 3(3).
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space
of a deep convolutional generative adversarial network. In
Genetic and Evolutionary Computation Conference. ACM.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8.
Wolfram, S. 1983. Cellular automata. Los Alamos Science
9:42.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Foundation of Digital
Games. ACM.

101




