
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Watershed Graphs for Faster Path Planning in Binary Occupancy Grids

Patrick Chisan Hew
Defence Science and Technology Group, Australia

Patrick.Hew@defence.gov.au

Abstract

We speed up path planning in binary occupancy grids by us-
ing the watershed transform to construct a ‘watershed graph’
of the terrain’s topology, thereby cueing the path planner via a
heuristic for the search, setting subgoals, or declaring cells to
be blocked. Experiments with A*, Theta*, and Phi* showed
that the time invested in constructing the watershed graph
can be recovered when repeatedly planning paths through
the same terrain, or planning paths over longer distances.
Speedup factors exceeding 5× were obtained with only mod-
est inflations in path length. This article will help developers
and users of path planners who are looking to reduce runtime
without disrupting their algorithm architecture.

1 Introduction

Path planning in binary occupancy grids is keenly relevant to
games, robotics, and other applications. Research has sought
to model the terrain’s global topology, to cue the planner
to chokepoints that must be traversed or away from dead
ends (Botea, Müller, and Schaeffer 2004), (Björnsson and
Halldórsson 2006), (Perkins 2010), (Pochter et al. 2010),
(Goldenberg et al. 2010), (Halldórsson and Björnsson 2015),
(Uriarte and Ontañón 2016). Previous investigations, how-
ever, appear to be unaware of the watershed transform from
image processing; indeed Björnsson and Halldórsson (2006,
2015) and Pochter et al. (2010) preprocess the binary oc-
cupancy grid in a manner that resembles a watershed trans-
form. Perkins (2010) reviewed a number of possibilities and
selected Voronoi diagrams for his Brood War Terrain An-
alyzer. But to compute a Voronoi diagram, the accessible
terrain has to be vectorized; that is, taking the terrain that is
represented as cells that are accessible vs blocked and infer-
ring the existence of polygonal regions that are accessible vs
blocked (see for example step 1 of Perkins 2010 and Uriarte
and Ontañón 2016). In contrast, a watershed transform oper-
ates directly on the cell-based representation of the terrain.

This article investigates how a watershed transform can be
used to infer a terrain’s global topology, and the net reduc-
tion in runtime for path planning that can be achieved. The
intent is to help developers and users of path planners with a
method that they could apply as a preprocessor, without dis-
rupting the rest of their software. To this end, the proposal

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is tested on A* for grid paths and Theta* (Nash, Koenig,
and Tovey 2010) and Phi* (Nash, Koenig, and Likhachev
2009) for short any-angled paths. While newer and faster
any-angled path finders exist (Harabor et al. 2016), (Cui,
Harabor, and Grastien 2017), the older algorithms remain
in use due to low conceptual cost of entry and high cost of
change. If the watershed graph helps A* then it should help
planners based on it.

2 Constructing a Watershed Graph

We recall some terminology from digital image processing:
A blob is a collection of cells that are connected (it is a
connected component in the grid graph. We use ‘blob’ for
brevity.) A 4-blob consists of cells that touch at edges (they
are 4-connected). Meanwhile an 8-blob consists of cells that
touch at edges or corners (they are 8-connected).

The following text will provide full details on construct-
ing a watershed graph. In overview (Figure 1):

1. Focus on the largest 8-blob of accessible cells.

2. Calculate the distance transform, then apply a watershed
transform to the complement.

3. Obtain the ridges.

4. Obtain transits across ridges.

5. Grow the basins into a segmentation of the cells.

6. Initialize graph from transits.

7. Add goal.

8. Add edges from nodes in the same segment.

9. Estimate distances from goal to all nodes.

The output is:

• A weighted undirected graph G, called the watershed
graph, that models the terrain’s global topology.

• A function D̂(y) that returns the distance to the goal via
G from any node y ∈ G.

• A segmentation S of the accessible cells that maps them
into the global topology, and an associated function S(x)
that returns a unique segment for a given cell corner x.

Steps 1–6 are performed whenever the terrain map changes.
Steps 7–9 are then performed whenever the goal changes.

74

(a) Distance transform (b) Basins and ridges (c) Transits across ridges (d) Segments and graph

Figure 1: Constructing a watershed graph. a) Focus on the largest 8-blob of accessible cells, distance transform (step 1–2). b)
Watershed transform of complement of distance transform to identify basins and ridges (step 3). c) Obtain transits across ridges
(steps 4). d) Grow the basins into a segmentation of the accessible cells, initialize graph from the transits, add goal, add edges
from nodes in the same segment, estimate distances (steps 6–9).

(a) (b)

Figure 2: Obtaining transits across ridges. The main picture shows the ridges, and two cases of enclosing a rectangle R′ around
a ridge R. The close-up pictures show A′ for each basin A that abuts R (A′ consists of the cells in A ∩ R′ that share a corner
with a cell in R); the colors correspond to different basins. Transits are shown as line segments with ‘×’ on each end: For each
pair of basins A, B the transit (a, b) from A to B is the tuple of the cell corners a ∈ A′, b ∈ B′ that minimize the round-trip
Euclidean distance from x to a to b back to x given x is the centroid of A′ ∪ B′. a) Usual case of a ridge that has two abutting
basins. b) An atypical case that can arise out of the watershed transform, but transits are still obtained.

(a) Euclidean Heuristic (b) Watershed Graph (c) Watershed Graph (d) Watershed Graph to
Heuristic for Subgoals Block Cells

Figure 3: Applying the watershed graph using Lazy Theta* (Nash, Koenig, and Tovey 2010) as the path planner. The start is
at bottom-left, the goal is at bottom-middle. The shaded region shows the nodes that were open or closed when path planning
ended. a) Path planning guided by the Euclidean heuristic. b) Path planning guided by the watershed graph heuristic (Sec-
tion 3.1). The planner inspects fewer nodes and hence arrives at a path more quickly, at the cost of a slight inflation in path
length. c) Path planning under subgoals set by the watershed graph (Section 3.2). The planner inspects even fewer nodes and
is thus even faster, but the resulting path has been forced to pass through the subgoals, increasing its length. d) Path planning
guided by the Euclidean heuristic where cells are declared blocked due to the watershed graph (Section 3.3). The planner
inspects fewer nodes than in the original grid, with a small inflation in path length.

75

2.1 Restrict to Largest 8-Blob of Accessible Cells

Given a binary occupancy grid, we restrict our attention to
the largest 8-blob of accessible cells. For two cell corners in
an 8-blob named start and goal, a path planner will return a
path from the start to the goal that stays within the blob.

Our use of 8-blobs makes tacit assumptions about the ve-
hicle for which a path is being planned, namely: the vehicle
moves at the same speed in any direction, and it is small and
nimble enough to ‘squeeze through the diagonal’ between
cells that touch at corners but not faces.

2.2 Calculate the Distance Transform, Apply a
Watershed Transform to the Complement

We obtain the Euclidean distance transform E of the acces-
sible cells: E(i, j) is the Euclidean distance of cell (i, j) to
its nearest blocked cell. Next, we get the complement Ẽ of
the distance transform, namely Ẽ(i, j) = maxE − E(i, j)
for each cell (i, j). We then apply Meyer’s (1994) water-
shed transform to Ẽ. This variant of the watershed transform
takes a grayscale image as its input and treats it as the height
map of some terrain. One imagines placing sources of water
at the terrain’s local minima. The water will pool as basins,
and as the basins expand they will meet at ridges. In prac-
tice, the basins are grown by repeated dilation of the local
minima by a disc.

The core idea is that ridges can arise at chokepoints in
the terrain: we are acting on the complement of the distance
transform so the basins start at maximum distance from the
blocked cells, hence the ridges form in accessible cells that
are near to blocked ones. Other processing (Meyer 1994),
(Eddins 2002) can prevent basins that are too small, although
the author found this refinement was unnecessary.

2.3 Obtain the Ridges

As noted, the ridges can be caused by chokepoints in the
terrain. We segment the ridges’ cells into 4-blobs. Each 4-
blob will henceforth be referred to as a ridge.

2.4 Obtain Transits Across Ridges

We know that the basins are 8-connected and that the only
way from one basin to another is via a ridge. We now build
transits between basins so that we can tell the planner how
to leave a basin and where it can go next. Let R be a ridge.
A basin abuts R if at least one of the basin’s cells is 8-
connected to a cell in R. To build the transits at R (Figure 2):
1. Let R′ be the rectangle that encloses R with a margin of

one cell on all sides.
2. Iterate over the cells of R to find the basins that abut R.
3. For each pair of basins A, B that abut R:
(a) Let A′ be the cells in A ∩ R′ that share a corner with

a cell in R. Likewise let B′ be the cells in B ∩ R′ that
share a corner with a cell in R.

(b) Let x be the centroid of A′ ∪B′.
(c) Obtain a ∈ A′, b ∈ B′ that minimize |xa|+ |ab|+ |bx|,

the round-trip Euclidean distance from x to a to b back
to x. The tuple of cell corners (a, b) is declared to be
the transit from A to B at R.

We collect the transits at all ridges. A ridge may have no
transits, and the process given above handles this situation.
(Consider a blocked region that has a crinkled boundary with
small pockets of accessible cells. The cells inside a pocket
can be assigned to a ridge that has no basins abutting it.)
The construction of R′ and hence A′, B′ saves time: if a cell
touches R then it must be in R′, and then the minimization
of round-trip distance only considers those cells.

2.5 Grow Basins into a Segmentation of the Cells

We now grow the basins into a segmentation of the accessi-
ble cells. Hence for any given cell corner, we can get a seg-
ment that contains the corner, the transits from that segment,
and thus (by step 4) guidance on where to go next.

Algorithm 1 performs the segmentation. It starts with cells
that have been assigned to segments as they are in basins,
and cells that are unassigned as they are in ridges. It then it-
eratively looks for cells that are unassigned but 8-connected
to segments, and reassigns them to segments. In effect, the
segments absorb the ridges in a manner akin to a flood fill.
As the accessible cells form a single 8-blob (step 1), every
accessible cell will eventually be assigned to a segment.

Algorithm 1: Grow the basins to absorb the ridges so
that every accessible cell is assigned to a segment.

1 S ← SegmentsFromBasins(B, M)
input : B labels the basins: B(i, j) is the basin

containing cell (i, j). If B(i, j) = 0 then
cell (i, j) is blocked or in a ridge.

input : M is the binary occupancy grid.
output: S labels the segments: S(i, j) is the

segment containing cell (i, j).

2 S ← B ˙Grow the segmentation from the basins.
3 R← (S = 0) and (not M)
4 while any R do

˙Get unassigned cells that touch segments.
5 N ← MaxLabelsTouching(R, S)

˙Reassign those cells to segments.
6 S(N > 0)← N(N > 0)
7 R← (S = 0) and (not M)

8 N ← MaxLabelsTouching(BW , L)
9 N ← Zero matrix the same size as BW

10 foreach (i, j) such that BW (i, j) is true do
11 N(i, j)← max{L(i′, j′) :

(i′, j′) is 8-connected to (i, j)}

2.6 Initialize Graph From Transits

At step 4, we obtained transits across the ridges. We now
construct the initial watershed graph as the undirected graph
that takes as its nodes the transits’ cell corners, from all of
the ridges. To emphasize, each transit generates two nodes in
the initial watershed graph. Moreover nodes a, b are declared
as adjacent in the initial watershed graph if the tuple of cell
corners (a, b) is a transit (in the sense defined at step 4).

76

2.7 Add Goal

The previous steps are performed whenever the map of the
terrain is changed. Indeed if the map never changes then the
initial watershed graph only needs to be constructed once.

We now perform the steps for building a watershed graph
given goal G (abbreviated to watershed graph). The first of
these steps is to declare that the goal is a node in G. In prac-
tice, one adds the goal to G unless it is already there. The
latter situation arises if the goal is also an element in a tran-
sit. (Note that the goal is a cell corner, as per step 1.)

2.8 Add Edges From Nodes In the Same Segment

We now complete the idea that we started at step 4. Suppose
that the path planner has entered a segment. If the segment
contains the goal then the planner should move to the goal.
Otherwise it should move to a transit that leaves the segment.

Formally, let x be a cell corner and S be a segmentation
of the accessible cells. We construct the following function
to map cell corners to segment labels

S(x)
Δ
= max{S(i, j) : x is a corner of cell (i, j)}

(In general, the maximum is taken over the four cells that
have x as a corner.) Now given the segmentation S obtained
at step 5, declare that nodes a, b are adjacent in the watershed
graph G if S(a) = S(b).

2.9 Estimate Distances from Goal to All Nodes

We now construct a function D̂(y) that estimates the dis-
tance to the goal from any node y ∈ G. Choose a function
d̂(x, y) that estimates the distance in the binary occupancy
grid from x to y. For each pair of adjacent nodes a, b in G,
set the weight on the edge from a to b as d̂(a, b). Then apply
Dijkstra’s algorithm to G to construct D̂(y) as the distance
via the graph G from the goal to all nodes y ∈ G.

As one choice, d̂(x, y) could be declared as the Euclidean
distance from x to y. More accurate estimates are possible –
for example, an A* grid search – but may take longer.

3 Applying a Watershed Graph

In the previous section, we constructed a graph G that mod-
els the terrain’s global topology from watershed analysis and
chose a function d̂(x, y) that estimates the distance from x
to y (for example, the Euclidean distance). The result was
a function D̂(y) that estimates the distance to the goal from
any node y ∈ G, a segmentation S of the accessible cells that
maps them into the global topology, and a function S(x) that
returns a unique segment for a given cell corner x. We now
apply those calculations to guide path planning (Figure 3).

For any given cell corner x, we get the segment S(x), get
the exits y from that segment, and use the path from y to
goal in the watershed graph G to guide a path in the binary
occupancy grid. The guidance is provided as a heuristic, by
setting subgoals, or marking cells as being blocked. None
of these ideas are new, and precedents in the literature are
noted in the text that follows, but we put them in the context
of the watershed graph for completeness.

3.1 Watershed Graph Heuristic

For any cell corner x the watershed graph heuristic h(x) is

h(x)
Δ
= min

z∈G
{d̂(x, z) + D̂(z) : S(x) = S(z)}

That is, retrieve the segment that contains x, get the exits z
from that segment, and choose the exit that has the shortest
estimated path to the goal. The resulting heuristic is then
used by the path planner, as usual. The watershed graph
heuristic is conceptually the same as the Gateway Heuris-
tic (Björnsson and Halldórsson 2006) noting that they used
A* grid searches to obtain their distance estimates d̂(x, y).
It likewise resembles the Portal Heuristic (Goldenberg et al.
2010) though they replaced d̂(x, y) with the true distance (in
the binary occupancy grid) from x to y.

3.2 Watershed Graph Subgoals

Given a start x, we set subgoals that will lead the planner to
the goal. Let P be a path planner: for cell corners x, y, P
will return a short path P(x, y) from x to y. Then:

1. Choose

y = argmin
z∈G

{d̂(x, z) + D̂(z) : S(x) = S(z)}

That is, retrieve the segment that contains x, look at the
exits z from that segment, and set y as the exit that has
the shortest estimated path to the goal.

2. Let y = y0, y1, . . . yn−1, yn = goal be nodes from y such
that D̂(y) =

∑n
k=1d̂(yk−1, yk). Such a sequence arises

when calculating D̂(y) via Dijkstra’s algorithm (step 9).

3. Declare {yk}k to be the watershed graph subgoals. Cor-
respondingly, we plan the path from x to goal as

Path from x to goal Δ
=

n⋃
k=1

P(yk−1, yk)

Step 3 is pleasingly parallel — a path from yk−1 to yk can
be obtained for each k without reference to the paths for any
other k. For this article, we perform step 3 sequentially. Sub-
goals have been studied extensively; see for example Uras
and Koenig (2013, 2015).

3.3 Watershed Graph Cell Blocking

Given a start x, we redeclare cells in the binary occupancy
grid as being blocked and use the resulting grid to plan a
path from x to the goal. Specifically:

1. Construct Y = {yk}k as the watershed graph subgoals
(see Section 3.2).

2. Let SY be the cells of the segments that contain Y . Let
R be the ridge cells. Construct the binary occupancy grid
that has SY ∪ R as its accessible cells and use it to plan
the path from x to the goal.

Cell blocking was applied to dead-ends by Björnsson and
Halldórsson’s (2006) and swamps by Pochter et al. (2010).

77

4 Experiments

4.1 Method

The hypothesis was that the watershed graph would yield a
net reduction in runtime, though possibly with an increase in
path length. The hypothesis was tested using the three pro-
posed applications of the watershed graph (Heuristic, Sub-
goals, Cell Blocking), on the Moving AI 2D path planning
benchmarks (Sturtevant 2012), under three path planners:

• A* Grid (A* applied to planning a grid path) as it is the
foundation for many other search algorithms.

• Lazy Theta* (Nash, Koenig, and Tovey 2010) as a repre-
sentative any-angled path planner.

• Phi* (Nash, Koenig, and Likhachev 2009) as it is a com-
ponent in dynamic path planning at any angle.

The open nodes were stored on a binary min heap with
tiebreaking on the calculated distances from the start (key on
f-scores, tiebreak on g-scores). Distance estimates d̂(x, y)
were made by using the Euclidean distance from x to y.

Steps were taken to ensure that reductions in runtime were
genuinely due to the watershed graph, and not merely due
to an unfair substitution of just-in-time compiled code with
precompiled code. The point arose from the author’s use of
the MATLAB Image Processing Toolbox, as the watershed
transform and blob processing routines used precompiled bi-
naries. While the path planners were implemented in MAT-
LAB, the line-of-sight testing, upheaping, and downheap-
ing were implemented in C and called as precompiled bi-
naries (mex-functions). Profiling indicated that the line-of-
sight testing, upheaping, and downheaping accounted for al-
most all of the runtime in path planning (over 80 percent and
often in excess of 90 percent). Hence we are validly trading
precompiled code for precompiled code.

The experiments were conducted on an Intel i7-7700 CPU
running at up to 3.60 GHz (Dell OptiPlex 7050 desktop com-
puter), with 4 cores supplying 8 logical processors. The tri-
als were managed using the MATLAB Parallel Processing
Toolbox with 6 workers, so the CPU was working at about
90 percent capacity. Runtimes were measured using wall-
clock time following best practices (McKeeman 2016).

The measures for testing the hypothesis were:

• Speedup factor calculated as

Speedup Factor =
Runtime using Euclidean Heuristic
Runtime using Watershed Graph

Speedup factors greater than one correspond to the wa-
tershed graph reducing runtime. Creating and exploiting
the watershed graph takes time, but the hypothesis was
that the investment would be recouped when planning the
path. Moreover the speedup factor should increase as the
distance from start to goal increases, as a longer path takes
longer to plan. The watershed graph methods were further
anticipated to be faster on the ‘game’, ‘street’, and ‘room’
maps but slower on the ‘maze’ and ‘random’ maps. The
‘game’, ‘street’ and ‘room’ maps have a global topology
that can be exploited: the terrain has rooms that can trap
the planner and force it to backtrack, and chokepoints that

the planner should be cued to. The ‘maze’ maps only have
these properties when the corridors are wide, and ‘ran-
dom’ maps lack them entirely.
• Path length inflation is a percentage calculated as

Path Length Inflation =(
Path Length using Watershed Graph

Path Length using Euclidean Heuristic
− 1

)
× 100%

Desirably, the path length inflation would be as small as
possible. In emphasizing the global topology over the lo-
cal topology, it was anticipated that the watershed graph
would distort the paths that would otherwise be found. In-
deed the greatest distortion was anticipated from setting
subgoals as it forces the paths to traverse the transits. Dis-
tortion was likewise anticipated when the watershed graph
was used as a heuristic as it weights the paths to traverse
the transits. Cell blocking was anticipated to cause distor-
tion only in those rare cases where the actual shortest path
was homotopically different from the one estimated from
the watershed graph (that is, the actual shortest path went
through a different set of rooms or chokepoints than the
one predicted by the watershed graph).

We test the worst-case situation for constructing and ap-
plying a watershed graph in performing all processes (Sec-
tion 2, steps 1–9) from an uninitialized state, every time. If
multiple queries were being made about the same map, there
would of course be considerable savings in time by storing
the output of processes that need only be performed once per
map (steps 1–6) or once per goal (steps 7–9).

4.2 Results

Figures 4.a and 4.b show the results for speedup factor. Fig-
ure 4.a establishes whether the time invested in the water-
shed graph is actually recovered by charting the break even
path length, the path length in the benchmark set when the
speedup factor first exceeded one. The results were largely
as anticipated. Under all three applications of the watershed
graph and across all three of the path planners, the speedup
factor eventually exceeded one on the ‘game’, ‘street’, and
‘room’ maps. The path length when this occurred (break
even) was on the order of 50-150 cells, noting that the maps
were 512×512 cells. The speedup factor did not reach one
on ‘maze’ maps when corridors were thin, nor on ‘random’
maps when the fractions of blocked cells were low.

Speedup factors generally increased as path length in-
creased. Figure 4.b shows the largest speedup factors that
were observed. Factors on the order of 5-15×were observed
in favourable cases, namely ‘sc1’, ‘street’, and ‘room’ maps.
An unanticipated behaviour was that the speedup factor
could decrease as path lengths increased; the behaviour
showed up in the ‘game’ map sets ‘bg512’, ‘dao’, ‘da2’, and
in ‘room’ and ‘maze’ maps. The likely cause is that very
long paths achieve their length by traversing large portions
of the map, so path planning explores the entire map. Indeed
the ‘bg512’, ‘dao’, and ‘da2’ maps consist of ‘1D’ chains of
rooms, versus ‘2D’ terrain such as the ‘sc1’ maps.

Figure 4.c shows the results for path length inflation. The
results were again as anticipated. Across all three of the

78

Map Class: Game & Street (G), Maze (M), Room (O), Random (A)

Br
ea

ke
ve

n
Pa

th
 L

en
gt

h

Heuristic

G M O A
0

50

100

150

200

250

A
* G

rid

Subgoals

G M O A
0

50

100

150

200

250
Block Cells

G M O A
0

50

100

150

200

250

G M O A
0

50

100

150

200

250

La
zy

 T
he

ta
*

G M O A
0

50

100

150

200

250

G M O A
0

50

100

150

200

250

G M O A
0

50

100

150

200

250

Ph
i*

G M O A
0

50

100

150

200

250

G M O A
0

50

100

150

200

250

Map Class: Game & Street (G), Maze (M), Room (O), Random (A)

La
rg

es
t o

bs
er

ve
d

sp
ee

du
p

fa
ct

or

Heuristic

G M O A
0

5

10

15

20

25

A
* G

rid

Subgoals

G M O A
0

5

10

15

20

25
Block Cells

G M O A
0

5

10

15

20

25

G M O A
0

5

10

15

20

25

La
zy

 T
he

ta
*

G M O A
0

5

10

15

20

25

G M O A
0

5

10

15

20

25

G M O A
0

5

10

15

20

25

Ph
i*

G M O A
0

5

10

15

20

25

G M O A
0

5

10

15

20

25

(a) Break even path length (b) Largest observed speedup factors

Figure 4: Results for each algorithm (A* Grid, Lazy Theta*, Phi*), across the applications of the watershed graph (Heuristic,
Subgoals, Block Cells), and map classes (Game & Street, Maze, Room, Random). (a) Break even path length (path length when
speedup factor first exceeded one). Smaller values are better. (b) Largest observed speedup factors. The dashed line marks a
factor of one – larger speedup factors are better.

Map Class: Game & Street (G), Maze (M), Room (O), Random (A)

La
rg

es
t o

bs
er

ve
d

pa
th

 le
ng

th
 in

cr
ea

se
 (p

er
ce

nt
)

Heuristic

G M O A
0

10

20

30

40

A
* G

rid

Subgoals

G M O A
0

10

20

30

40
Block Cells

G M O A
0

10

20

30

40

G M O A
0

10

20

30

40

La
zy

 T
he

ta
*

G M O A
0

10

20

30

40

G M O A
0

10

20

30

40

G M O A
0

10

20

30

40

Ph
i*

G M O A
0

10

20

30

40

G M O A
0

10

20

30

40

(c) Largest observed path length inflations

Figure 4: Results continued. (c) Largest observed path
length inflations. Smaller inflation is better.

path planners, setting subgoals caused the greatest inflation,
on the order of 20 percent. The heuristic suffered the next-
largest inflation, on the order of 5 percent. Cell blocking suf-
fered no inflation except in rare cases. Path length inflation
was especially acute on ‘maze’ maps and increased with cor-
ridor width. We can account for this behaviour as follows:
when obtaining the transit across a ridge (step 4 in building
the watershed graph), the transit’s location is weighted to-
wards the centroid of the ridge. Hence in mazes, the transits
tend towards the middle of corridors. But in a shortest path,
changes in direction are tight around corners.

5 Conclusion

Obtaining the watershed graph can speed up path planning
if the terrain contains rooms and chokepoints, and the paths
being obtained are long but do not fill the map. Hence wa-
tershed graphs could be helpful in interior, underground, or
urban terrain but less helpful in forests. On favourable ter-
rains, speedup factors on the order of 5-15× were achieved
with A*, Theta*, and Phi*. Inflations in path lengths were
modest, and were largely due to a biasing of paths towards
the middle of corridors. While the research was performed
using MATLAB, the requisite digital image processing al-
gorithms may be found elsewhere; for example in OpenCV.

References

Björnsson, Y., and Halldórsson, K. 2006. Improved Heuris-
tics for Optimal Pathfinding on Game Maps. In Proceedings

79

of the Second AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE-06), 9–14.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near op-
timal hierarchical path-finding. Journal of Game Develop-
ment 1:7–28.
Cui, M.; Harabor, D.; and Grastien, A. 2017. Compromise-
free pathfinding on a navigation mesh. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI 2017), 496–502.
Eddins, S. 2002. The watershed transform: Strategies for
image segmentation. The MathWorks: Technical Articles
and Newsletters. https://au.mathworks.com/company/
newsletters/articles/the-watershed-transform-strategies-for-
image-segmentation.html, Accessed 2018-08-16.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer,
J. 2010. Portal-Based True-Distance Heuristics for Path
Finding. In Proceedings of the Third Annual Symposium on
Combinatorial Search (SOCS-10), 39–45.
Halldórsson, K., and Björnsson, Y. 2015. Automated De-
composition of Game Maps. In Proceedings of the Eleventh
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-15), 122–127.
Harabor, D.; Grastien, A.; Öz, D.; and Aksakalli, V. 2016.
Optimal any-angle pathfinding in practice. Journal of Artifi-
cial Intelligence Research 56:89–118.
McKeeman, B. 2016. MATLAB Performance Mea-
surement. http://au.mathworks.com/matlabcentral/
fileexchange/18510-matlab-performance-measurement.
(Accessed 2017-02-21).
Meyer, F. 1994. Topographic distance and watershed lines.
Signal Processing 38(1):113 – 125. Mathematical Morphol-
ogy and its Applications to Signal Processing.
Nash, A.; Koenig, S.; and Likhachev, M. 2009. Incremen-
tal Phi*: Incremental Any-Angle Path Planning on Grids. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 1824–1830.
Nash, A.; Koenig, S.; and Tovey, C. 2010. Lazy Theta*:
Any-Angle Path Planning and Path Length Analysis in 3D.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence AAAI.
Perkins, L. 2010. Terrain Analysis in Real-Time Strategy
Games: An Integrated Approach to Choke Point Detection
and Region Decomposition. In Proceedings of the Sixth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-10), 168–173.
Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search Space Reduction Using Swamp Hierarchies.
In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI-10), 155–160.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Uras, T., and Koenig, S. 2015. Speeding-up Any-Angle
Path-Planning on Grids. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).

Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal
Graphs for Optimal Pathfinding in Eight-Neighbor Grids. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS).
Uriarte, A., and Ontañón, S. 2016. Improving Terrain Anal-
ysis and Applications to RTS Game AI. In Artificial Intelli-
gence in Adversarial Games: Papers from the AIIDE Work-
shop, AAAI Technical Report WS-16-21, 15–20.

80

