
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Using Deep Convolutional Neural
Networks to Detect Rendered Glitches in Video Games

Carlos Garcı́a Ling
carlosgl@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Konrad Tollmar, Linus Gisslén
{ktollmar, lgisslen}@ea.com
SEED - Electronic Arts (EA)

Stockholm, Sweden

Abstract

In this paper, we present a method using Deep Convolu-
tional Neural Networks (DCNNs) to detect common glitches
in video games. The problem setting consists of an image
(800x800 RGB) as input to be classified into one of five de-
fined classes, normal image, or one of four different kinds of
glitches (stretched, low resolution, missing and placeholder
textures). Using a supervised approach, we train a Shuf-
fleNetV2 using generated data. This work focuses on detect-
ing texture graphical anomalies achieving arguably good per-
formance with an accuracy of 86.8%, detecting 88% of the
glitches with a false positive rate of 8.7%, and with the mod-
els being able to generalize and detect glitches even in unseen
objects. We apply a confidence measure as well to tackle the
issue with false positives as well as an effective way of aggre-
gating images to achieve better detection in production. The
main use of this work is the partial automatization of graphi-
cal testing in the final stages of video game development.

Introduction and Background

Developing video games involves many steps, starting from
the concept, to the final release. Often there are hundreds
of developers and artists involved when creating a modern
game. In this complex process plenty of bugs can be intro-
duced, and many of them having an negative effect on the
rendered images. We refer these graphical bugs as glitches in
this paper. There are several stages where graphical glitches
can occur: when updating the asset database (e.g. result-
ing in missing textures), updating the code base (e.g. re-
sulting in textures being corrupted), updating (graphical)
drivers, cross-platform development, etc. The main method
to find these visual bug is by testing the game and its in-
put/output. Since graphics are one of the main components
of a video game, it is of high importance to assure the ab-
sence of glitches or malfunctions that otherwise may reduce
the player’s experience.

Graphical errors are hard to programmatically detect and
occur in relative small proportion. Often, they are identified
by testing the game manually by a human and when de-
tected, they are diagnosed and addressed. As they occur rel-
ative seldom it is a time consuming and mundane task. One
example of graphics testing is the so called smoke test. Here

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a video is produced within the game by a camera travers-
ing the environment recording different assets in the game.
A human tester can then view the video and check that ev-
erything looks like expected. Although valuable, this pro-
cess can be extremely time consuming and costly due to the
scarcity of the glitches, and, because the lack of a systematic
procedure, many of them might be overlooked. Automated
testing on rendered images is crucial for an effective devel-
opment process but at the same time also difficult to achieve
with traditional methods.

Anomaly detection methods have proven useful when
detecting rare instances (Chandola, Banerjee, and Kumar
2009) in fields like finance (Ahmed, Mahmood, and Islam
2016), fault detection, surveillance (Sultani, Chen, and Shah
2018), or medical research (Schlegl et al. 2017). With the in-
creasing amounts of data, and computational resources more
complex methods allow to detect anomalous instances even
in complex data (Chalapathy and Chawla 2019) like image
(Schlegl et al. 2017) and video (Sultani, Chen, and Shah
2018), using unsupervised and semi-supervised approaches
(An and Cho 2015; Zenati et al. 2018). When looking into
the problem formulated in video games, we have identified
two crucial characteristics:

• Availability of data: Video game images are generated by
a rendering engine, in contrast with natural images they
do not have to be sampled and potentially a big data set
can be generated.

• Generation of negative samples: When an element mal-
functions in the video game and a glitch is generated,
there is often a reasonable way of tracing the source. This
allows the generation and reproduction of similar artifacts
synthetically.

These characteristics mean that in practice both positive
and negative glitch examples can be generated at a large
scale for training our model. Thus, allowing for a super-
vised approach, meaning that we will train our model using
labeled samples which usually translates on a higher perfor-
mance compared to an unsupervised approach using unla-
beled data. However, with this approach we will primarily be
able to detect the same type of glitches as the ones used for
training, meaning that other graphical glitches will remain
undetected by the model. We argue that this is not necessar-
ily a big problem as we can solve this by having an iterative

66

process when new kinds of glitches appear they can readily
be added to the training data by generating more negative
examples.

Our method uses one image as an input that then will
be classified as correct or faulty with 4 different kinds of
glitches all related to texture malfunctions. To classify the
image a DCNN was used. In recent years, since the widely
used AlexNet was presented (Krizhevsky, Sutskever, and
Hinton 2012), advances like residual networks (He et al.
2016) or dense connections (Huang et al. 2017) have in-
creased the performance of these methods substantially. Al-
though these methods can be highly costly computationally,
which was addressed by presenting more lightweight net-
works like ShuffleNet (Zhang et al. 2018).

In this work, we generate synthetic data and use it to train
different DCNNs into detecting graphical malfunctions. The
main contribution of this paper is showing that DCNNs can
be used to detect glitches effectively, providing one step fur-
ther on automating video game testing. For a more in-depth
discussion, image samples, and analysis see (Garcı́a Ling
2020). In comparison with previous work, (Nantes, Brown,
and Maire 2008) and (Nantes, Brown, and Maire 2013),
where other methods such as multi-layer perceptions, self
organizing maps, or corner detection are used, we propose
a versatile approach that does not need any pre-processing
nor extra information from the game state, but simply a game
capture, and that can be configured for detecting new classes
of glitches by providing adequate samples.

Data

The data used for training the models was generated using
the video game engine Unity3D. Accounting for which are
the most common glitches when developing video games,
the data was centered on rendered texture glitches. A texture
is the digital representation of the surface of an object in
3D graphics thus a fundamental part when rendering a video
game scene. They define how the assets in a video game
look like and when missing or incorrectly processed, they
can impact the player’s video game experience negatively.
Four different kinds of glitches were synthesized, that can be
grouped in corrupted textures, and missing textures. Below,
a description of the glitches and how they are generated:

Corrupted textures: textures are still rendered in the ob-
ject, but due to some error, they are corrupted. We divide
them into two sub-categories:

• Stretched: Due to errors like a wrong texture mapping to
the object surface or a deformation in the object, the tex-
ture is deformed, and characteristic line patterns show in
the rendered image. In Unity, the glitches were generated
by scaling the texture in one random direction (see Figure
1b). Note that in practice this is not exactly what happens
in every case since the shape of the object is not deformed.

• Low Resolution: The texture appears as blurry in con-
trast with other elements of the scene at the same distance
from the observer. This can occur when lower resolution
texture is loaded with a different LoD (Level of Detail)
e.g. In practice we recreate this glitch by scaling the tex-
ture uniformly in every direction (see Figure 1c).

(a) Normal (b) Stretched

(c) Low Resolution (d) Missing

(e) White Placeholder (f) Pattern Placeholder

Figure 1: Glitch samples

Missing Texture: One or more of the textures from the
object are not rendered at all, which can be noticed in two
ways.

• Missing: When the texture is not rendered due to a mal-
function in the object the graphical engine renders no de-
tails like texture or shadows. This results that the space
where the object is located appears as a solid color. This
is an easy glitch to reproduce as removing the texture will
trigger a standard function in respectively game engine.
E.g. in Unity3D the replacing color is a pink monochro-
matic placeholder (see Figure 1d).

• Placeholder: Often the texture may not be available due
to many different reasons. E.g. the texture was not cor-
rectly loaded, not found in the asset database, not trans-
ferred, etc. In these cases, while developing the game a
default placeholder texture is used. These are not sup-

67

Figure 2: Additional normal samples from Book of the Dead
Environment

posed to be used in the final version of the game but some-
times they are not updated to the correct ones resulting in
faulty images (Compare Figure 1e and 1f). To generate
these data samples, we substitute the textures in the ob-
ject for a placeholder. In order to assess how the choice
of texture affects the performance of the algorithm two
placeholder versions were generated one plain white (cor-
responding to the default texture in the used game engine,
Figure 1e) and another with a checked pattern and letters
that indicate that is a default texture (Figure 1f). The latter
solution is often used in order to be more visible to human
testers.

The dataset generated was balanced with a size of 12700
samples, 20% of the data were normal samples (Figure 2)
and 80% different kinds of glitches. To capture all the im-
ages 127 objects were used meaning that 100 images were
taken per object in various angles and distances. The data
was generated using assets from the Book of the Dead avail-
able in the Unity3D store. Also, two extra data sets were ob-
tained in the same fashion with elements from Unity3D FPS
Sample (Figure 3) and Viking Village (Figure 4) also avail-
able in the Unity Asset Store, creating two more data sets
with respectively 10000 and 11500 samples. In total 34200
samples were created. These extra data sets were generated
to assess the generalizing ability of the method described.

Methodology

The method proposed uses a DCNN classifier to determine
whether an image contains a glitch or not. As an input an
800x800 color image is provided to the network, this resolu-
tion was chosen balancing efficiency, and the use case. The
image is forward passed through a CNN and a vector with
5 components is obtained as an output, these represent the
probability of the image being normal or a glitch, dividing
the glitch class in 4 attending on the glitch type

DCNN Architectures

The network structure for the classifier is one of the most im-
portant aspects to consider. To base our decision, we looked
at the state-of-the-art networks in classification, paying at-
tention to the performance in ImageNet. We argue that this
data set is relevant to our problem since images in video

Figure 3: Normal samples from FPS Sample Environment

games mimic to a large extent the real world. It is this prop-
erty that motivates why these methodologies also perform
well in the formulated problem.

While ImageNet accuracy was an important factor, we
also considered the computational requirements of the net-
work. Avoiding networks with excessive computation time
will allow running the model in parallel with other tasks,
like the rendering of the video game images. We trained
state-of-the-art architectures such as VGG, Alexnet, ResNet
etc. Based on this we focused on two representative architec-
tures ResNet (He et al. 2016) and ShuffleNetV2 (Ma et al.
2018) which showed most promising considering accuracy
and computational resources required. For ResNet different
degrees of complexity were explored by training ResNet18,
34 and 50 with the number indicating the number of convo-
lutional layers. Similarly, for ShuffleNetV2 we explored the
versions x0.5, x1.0, x1.5, x2.0, in increasing order for the
number of filters in the layers.

Training

The implementation of the models was done in Pytorch,
based on the implemented models in the Torchvision library.
The models were modified to adjust to the number of classes
in our problem. In order to fit the model to our data the Adam
optimizer (Kingma and Ba 2014) was used, minimizing the
cross-entropy loss function, commonly used in the classifi-
cation problem. The hyper-parameters of the optimizer such
as the batch size and the learning rate were explored in or-
der to determine which was the best configuration for this
problem. The models were trained for 100 epochs, reaching
stable performance after 50 epochs or less.

Due to the similarity with real images and the known
power of pre-trained models (Huh, Agrawal, and Efros

68

Figure 4: Normal samples from Viking Village Environment

2016) the initialization of the networks was done in two dif-
ferent ways: random initialization, using the standard ini-
tialization, and pre-trained weights on ImageNet as starting
point.

The core data used was provided by the environment from
the Book of the Dead assets, however, in order to asses the
capacity of the model additional data from the other envi-
ronments (mentioned in the previous section) was also used.
Also, the model was applied to other data sets to asses how
the approach would work in different environments.

To validate the model the separation between training and
validation data set was done attending to the objects. This
means that all the images correspondent to one object are
present in either the training or validation set but not in both
at the same time, which gives more validity to the perfor-
mance observed in the validation set. For all the training runs
20 % of the objects are placed in the validation set while the
remaining 80% is used for training. Although different splits
were used obtaining similar results, in the results section,
the same partition is used allowing for direct comparison
between the different training configurations.

Metrics

To assess the performance of the model, different metrics
were deployed. These metrics should be intuitive and easy
to interpret giving allowing for a correct understanding of
the model is performing (Powers 2011). The cross-entropy
loss was used to fit the networks, but its interpretation is not
straightforward since it takes arbitrarily high values, and it
does not only depend on whether the prediction obtained
matches the original label but also on the probability as-
signed to this prediction. Instead, we will take accuracy as
the main metric to compare different models. Since the data

we are using is balanced by construction (all the classes ex-
ist in the same proportion) both in the training and validation
set, accuracy is not misleading regarding the performance of
the model. The accuracy is simply computed as the fraction
of samples that whose classes were correctly predicted.

Since we can consider this a binary problem (i.e. normal
image/glitch image), we can define metrics like: precision
(fraction of the elements predicted as glitches that are actu-
ally glitches), recall (fraction of the actual glitches that are
predicted as glitches), and false positive rate (fraction of the
negative samples that are predicted to be positive). These
metrics will be provided for the best performing model.

Confusion matrices provide detailed information about
the behavior of the network. They group the elements into
a matrix attending to the original class (rows) and the pre-
dicted class (columns). This matrix will be normalized with
respect to the original class, meaning that the elements in
a row will always add to one. The ideal classifier would
have a confusion matrix with ones at the diagonal elements.
The confusion matrix provides visibility into which are the
classes that are mistaken, giving an insight into why the net-
work may be failing.

Results
We present the results from training the DCNNs with the
setting stated in the previous section. Note that the results
presented in the tables present two numbers. The first corre-
spond to the average of the metric during the last 20 epochs
and second is standard deviation (in parenthesis). Similarly,
the confusion matrices present the average of the 20 last
epochs, providing a more stable result.

First, we compared different DCNN architectures and de-
cided to focus in two networks that provided the best results
while being most performant: ResNet and ShuffleNet v2. Ta-
ble 1 presents a comparison between these selected models;
here, we focus on the accuracy and we highlight the differ-
ences between using the weights of a network pre-trained in
ImageNet as a starting point and a random initialization. We
also show the differences for this metric between the training
set and the validation set. Another feature which is relevant
is the execution time.

The results show some significant findings. First, we see
an improvement when using pretrained models for all the
networks, which can be linked to the similarity of our sam-
ples to natural images. Another characteristic noted is the
difference between the performance in training and valida-
tion, we can clearly see that the model overfits the data. This
indicates that the models may be too big in relation to the
amount of data, which leads to overfitting. Note that the
data set used in this paper was relatively small with 12700
samples. Lastly, we found that the model which works best
for this task is ShuffleNetV2 due to both, its better per-
formance and execution time. As a note, we would like to
state that complexity regarding the ShuffleNetV2 structure
was assessed and as with ResNet no significant differences
in performance were discovered. Other architectures were
also evaluated: VGG (Simonyan and Zisserman 2014) and
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) provided
worse results, while MobileNet v2 (Sandler et al. 2018)

69

Table 1: Comparison of the performance and computation time for the different networks considered. All networks were trained
using batch size (8) and learning rate (10−3)

Network ResNet18 ResNet34 ResNet50 ShuffleNetV2
Accuracy (Random Init. Validation) 0.674 (0.012) 0.642 (0.006) 0.671 (0.018) 0.617 (0.007)
Accuracy (Pretrained Validation) 0.721 (0.014) 0.719 (0.017) 0.724 (0.031) 0.767 (0.014)
Accuracy (Pretrained Training) 0.958 (0.006) 0.951 (0.007) 0.886 (0.015) 0.970 (0.004)
Execution Rate 60 fps 60 fps 45 fps 60 fps

Table 2: Exploration of the learning rate parameter: ShuffleNet v2 with constant batch size 8

Learning Rate 10-2 10-3 10-4 10-5
Accuracy (Validation) 0.715 (0.015) 0.767 (0.014) 0.801 (0.012) 0.791 (0.007)

Figure 5: Confusion Matrix: White Placeholder

achieved similar performance as ShuffleNet v2, although
with slower training times. We would like to remark that
this is an open problem in computer vision and incoming
research may provide more accurate and fast architectures.

We also explored the hyperparameter space when fitting
the models with a focus on the network that we found to
perform best, i.e. ShuffleNetV2. To explore the learning rate,
we tried 4 different values equally spaced in a logarithmic
scale. The results are compiled in Table 2 focusing in the
accuracy of the validation set. There we see that the optimal
value for this task was 10−4.

The batch size used in the Adam optimizer was also ex-
plored, again with equally spaced values in a logarithmic
scale. The results are presented in Table 3. The maximum
batch size used was restricted by the graphics card used but
we can see the pattern of an increasing accuracy with the
batch size.

Another aspect that improved notably the performance of
the networks was using better data, the clearer improvement

Figure 6: Confusion Matrix: Pattern Placeholder

was regarding the placeholder texture. When using a white
placeholder texture, the network learns to recognize white
elements as glitches, misclassifying images with white el-
ements (Figure 5). A bit surprisingly, using a recognizable
pattern for the placeholder reduced misclassification in other
classes as well, this can be seen in Figure 6. We reason this is
due to the fact that low-res and stretched textures can some-
times resemble a plain texture allowing the network to clas-
sify low-res and stretched texture better when it does not
resemble the placeholder one. In general the confusion ma-
trices allow us to see which classes the network struggles to
classify. The glitches with the best performance correspond
to those that are easily perceived the missing texture group,
while the corrupted textures present more confusion.

The best performance achieved was when using a recog-
nizable pattern as a placeholder texture (Figure 6). Here we
achieve an average (for the last 20 epochs) of 86.8% accu-
racy with a 6.7% false positive rate and a recall of 88.1%.
Note that for the recall we consider the binary problem, there

70

Table 3: Exploration of the batch size parameter: ShuffleNet v2 with constant learning rate 10−4

Batch Size 4 8 16 32
Accuracy (Validation) 0.791 (0.012) 0.804 (0.012) 0.805 (0.011) 0.819 (0.006)

Table 4: Performance on different data sets: ShuffleNet v2, batch size 32 and learning rate 10−4

Dataset Book of the Dead FPS Sample Viking Village All (Val on BotD)
Accuracy (Validation) 0.819 (0.006) 0.852 (0.010) 0.807 (0.005) 0.802 (0.008)

is no difference if a glitch is predicted in the wrong glitch
class if it is predicted as a glitch.

Next we present the results for the other environments. In
the Data section we describe how we generated other data
sets, in Table 4 we can see the performance of the proposed
framework with different data sets, seeing how this is simi-
lar for all the data sets, this indicated that this method may
be successfully applied to different video game styles. With
Book of the Dead and Viking Village presenting more real-
istic looking assets, while the dataset based on FPS Sam-
ple represent a stylized looking game. Although, the styles
of video games represented in this study are not extensive
and further research may be needed to assess if this can be
generalized to other types of environments. We also provide
the performance on Book of the Dead when the data set is
trained in all the data sets here we see that the performance
is lower, which indicates that is advisable to train the model
in the environment that it will be applied rather than having
one general model.

Refined model

In this subsection we present modifications applied in our
work and briefly discuss their potential contribution in the
problem formulated.

Grouping The glitches generated can be divided into two
groups: corrupted and missing textures. The problem is then
defined as a 3 class classification problem. Also, considering
only correct and faulty types, a binary classification prob-
lem can be defined. These other setting were tried with no
improvement in performance. As the differences in compu-
tation and memory costs are negligible between these for-
mulations, the 5 class setting was deemed optimal, since it
provided more information.

Semantic Segmentation The classification approach pro-
vides limited information on the glitches detected, since no
localization is provided. In contrast, Semantic Segmentation
can provide pixel-wise classification and has been object
of successful research in recent years (Garcia-Garcia et al.
2017). Thus, we have also considering relevant state of the
art Segmentation structures to approach this problem: U-Net
(Ronneberger, Fischer, and Brox 2015), Fully Convolutional
Networks (FCN) (Long, Shelhamer, and Darrell 2015) and
Deep Lab V3 (Chen et al. 2017).

Although highly informative, this approach is compu-
tationally and memory expensive, and gave substantially
worse results in this problem domain. Obtaining values for
the Detection Rate of 0.266, 0.441, and 0.559 respectively

Table 5: Performance aggregating images from the same ob-
ject for classification.

Images 1 2 10 20
Accuracy 0.832 0.851 0.861 0.864

for the U-Net, FCN and Deep Lab V3 structures, defined as
the fraction of the glitches with a Intersection over Union
score higher than 0.5, much lower when comparing with
classification and taking Recall as an equivalent metric.

Although the low performance could be partially ex-
plained due to difficulties found in defining an adequate la-
bel, this setting was deemed not the most adequate in com-
parison with the classification approach.

Aggregate images One of the biggest advantages when
working with video game images and anomaly detection is
the total control over the camera. This provides our models
with more information for each object, like capturing several
images from different angles, lighting conditions, distances,
etc. In Table 5 we present the results obtained when using
several images for classifying an object. The probabilities
for each class are computed averaging the probabilities ob-
tained from the network. We do notice an improvement even
when just using 2 images instead of 1, note that this slows
down as the number of images increases.

Confidence Measures In a real use case when testing a
video game, particularly in later phases of the development,
glitches may be scarce, which makes preventing false pos-
itives important. One of the problems of Neural Networks
in classification is that the probability for each class has to
add to one, providing high probabilities even when doing big
extrapolation.

In this work we have investigated the confidence measure
presented in (Hess, Duivesteijn, and Mocanu 2020) (Gauss-
Confidence) for its ability to reduce false positives. When
applied to this problem we obtain higher confidences for
for missing and placeholder glitches having mean values
of 0.643 and 0.633 respectively, and lower values of 0.259
and 0.202 for stretched and lower resolution textures respec-
tively. From this we propose using the confidence measure
as a potentially effective method to filter out false positives.

Furthermore, when using this the confidence measure
could be used as a signal to acquire more images (using the
same technique in previous section) from the object in order
to increase the confidence.

71

Future Work

As mentioned, one of the shortcomings of this approach is
the lack of localization information. Although semantic seg-
mentation was tested further research may be conveyed to
further assess the viability of this approach. Object detection
could be a good alternative to provide certain localization
information, together with fast computation time, as an area
with broad successful research in recent years (Zou et al.
2019) and structures like YOLO V4 (Bochkovskiy, Wang,
and Liao 2020) that allow for real time object detection.

The presented approach mainly recognizes the type of
glitches which the network was trained on, thus it will tend
to miss issues which was not in the training data. Here unsu-
pervised and semi-supervised anomaly detection approaches
could offer a way of detecting unseen graphical anomalies.
Nevertheless, applying these methods is not a trivial task es-
pecially when dealing with high dimensional data as it is in
the case of images but it is certainly an interesting venue of
research.

Furthermore, combining this graphical ML approach with
logical testing using reinforcement learning (Bergdahl et al.
2020) could offer interesting synergy effects. For example,
connecting the reward signal of an automated testing agent
to the number of graphical glitches it finds, can potentially
make it more effective in seeking out graphical bugs in the
game at the same time providing more training data to the
supervised model.

Conclusion

This study presents an approach for detecting graphical
anomalies in video game images. Making use of a super-
vised approach with a DCNN we were able to detect 88.1 %
of the glitches with a false positive rate of 6.3 %. These re-
sults give confidence that we can use such models in a test-
ing environment to detect graphical malfunctions. On top
of that several considerations regarding data, architecture,
hyper-parameters, and network initialization are discussed
providing general guidelines for future methods addressing
the problem. We have seen that this method is highly data-
dependent with better generalization with a growing amount
of data. On the other hand in a modern game with thousands
of assets and environments, generating a diverse training set
is relatively easy which makes this a valid approach in mod-
ern game production.

Therefore, the conclusion of this paper is that DCNNs can
be used in a production environment to improve the testing
process in video games, partially automating a now manual
process. The architecture used was able to evaluate images
at a rate of 60 fps, being computationally light enough to run
in parallel with the rendering allowing for real-time assess-
ment on the video quality. Another interesting find is that
default fall-back placeholder textures with a recognisable
pattern to a human, is also improving the classification rate
significantly. Unlike blob detection techniques that detects
certain colors, the same reasoning applies as for humans: in
order to more easily detect errors, it is better to use a recog-
nizable pattern than a plain color. Also, we found that low
resolution textures scored the lowest accuracy is something

that human testers also tend to get wrong. Similarly, from
experience, human testers tend to classify low resolution as
false-positive more than the other classes.

Furthermore, since the methods presented are trained di-
rectly in the images from the game, glitch detection is pre-
sented as an independent tool, providing high versatility
when used in the actual testing pipeline. This will allow
for diverse uses like processing all the images during a
game play, scripting a camera focusing only on specific in-
stances, or running completely separated from the game us-
ing recorded images.

One of the main limitations of the method presented is
being supervised which means that specific data exemplify-
ing both normal and anomalous images must be provided.
Although some level of extrapolation was displayed by the
model, this approach would be less useful during the first
stages of game development since no data is available. These
methods become more effective in the later stages of the
development when operations like migrating to a new ver-
sion (other console platforms / graphical engine updates) or
adding new objects to the game, both cases in which sample
data is available to train the model.

On the other hand, in this work, we have only explored
one of many possible approaches to the problem, by restrict-
ing ourselves to a very particular subset of glitches. Further
research is needed to asses whether other problems in testing
could also be addressed, focusing on other kinds of glitches,
and not only limited to static images but also including video
sequences.

Acknowledgements

The authors would like to thank Cristian Deri, Jan Schmid,
Jesper Klittmark (EA DICE) for the valuable feedback and
providing us with data.

References

Ahmed, M.; Mahmood, A. N.; and Islam, M. R. 2016. A
survey of anomaly detection techniques in financial domain.
Future Generation Computer Systems 55:278–288.
An, J., and Cho, S. 2015. Variational autoencoder based
anomaly detection using reconstruction probability. Special
Lecture on IE 2(1).
Bergdahl, J.; Gordillo, C.; Tollmar, K.; and Gisslén, L. 2020.
Augmenting automated game testing with deep reinforce-
ment learning. In 2020 IEEE Conference on Games (CoG),
1–8. IEEE.
Bochkovskiy, A.; Wang, C.-Y.; and Liao, H.-Y. M. 2020.
Yolov4: Optimal speed and accuracy of object detection.
arXiv preprint arXiv:2004.10934.
Chalapathy, R., and Chawla, S. 2019. Deep learn-
ing for anomaly detection: A survey. arXiv preprint
arXiv:1901.03407.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR)
41(3):15.

72

Chen, L.-C.; Papandreou, G.; Schroff, F.; and Adam, H.
2017. Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587.
Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-
Martinez, V.; and Garcia-Rodriguez, J. 2017. A review on
deep learning techniques applied to semantic segmentation.
arXiv preprint arXiv:1704.06857.
Garcı́a Ling, C. 2020. Graphical glitch detection in video
games using cnns.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hess, S.; Duivesteijn, W.; and Mocanu, D. 2020.
Softmax-based classification is k-means clustering: For-
mal proof, consequences for adversarial attacks, and im-
provement through centroid based tailoring. arXiv preprint
arXiv:2001.01987.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 4700–4708.
Huh, M.; Agrawal, P.; and Efros, A. A. 2016. What
makes imagenet good for transfer learning? arXiv preprint
arXiv:1608.08614.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431–3440.
Ma, N.; Zhang, X.; Zheng, H.-T.; and Sun, J. 2018. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture
design. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 116–131.
Nantes, A.; Brown, R.; and Maire, F. 2008. A framework
for the semi-automatic testing of video games. In AIIDE.
Nantes, A.; Brown, R.; and Maire, F. 2013. Neural network-
based detection of virtual environment anomalies. Neural
Computing and Applications 23(6):1711–1728.
Powers, D. M. W. 2011. Evaluation: From Precision, Re-
call and F-Measure to ROC, Informedness, Markedness &
Correlation. Journal of Machine Learning Technologies
2(1):37–63.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing
and computer-assisted intervention, 234–241. Springer.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.

Schlegl, T.; Seeböck, P.; Waldstein, S. M.; Schmidt-Erfurth,
U.; and Langs, G. 2017. Unsupervised anomaly detection
with generative adversarial networks to guide marker dis-
covery. In International conference on information process-
ing in medical imaging, 146–157. Springer.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Sultani, W.; Chen, C.; and Shah, M. 2018. Real-world
anomaly detection in surveillance videos. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 6479–6488.
Zenati, H.; Foo, C. S.; Lecouat, B.; Manek, G.; and Chan-
drasekhar, V. R. 2018. Efficient gan-based anomaly detec-
tion. arXiv preprint arXiv:1802.06222.
Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. Shuf-
flenet: An extremely efficient convolutional neural network
for mobile devices. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 6848–6856.
Zou, Z.; Shi, Z.; Guo, Y.; and Ye, J. 2019. Object detection
in 20 years: A survey. arXiv preprint arXiv:1905.05055.

73

