
Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20)

Tree Search versus Optimization Approaches for Map Generation

Debosmita Bhaumik,1∗ Ahmed Khalifa,1∗ Michael Cerny Green,1,2 Julian Togelius1,2,3

1New York Univeristy, 2OriGen.AI, 3Modl.AI
debosmita.bhaumik01@gmail.com, ahmed@akhalifa.com, mike.green@nyu.edu, julian@togelius.com

Abstract

Search-based procedural content generation uses stochastic
global optimization algorithms to search for game content.
However, standard tree search algorithms can be competitive
with evolution on some optimization problems. We investi-
gate the applicability of several tree search methods to level
generation and compare them systematically with several op-
timization algorithms, including evolutionary algorithms. We
compare them on three different game level generation prob-
lems: Binary, Zelda, and Sokoban. We introduce two new rep-
resentations that can help tree search algorithms deal with the
large branching factor of the generation problem. We find that
in general, optimization algorithms clearly outperform tree
search algorithms, but given the right problem representation
certain tree search algorithms performs similarly to optimiza-
tion algorithms, and in one particular problem, we see sur-
prisingly strong results from MCTS.

Introduction

Generating levels for games is a research problem with
broad relevance across most game genres and many do-
mains outside of games. Video games, from shooters to
role-playing games to puzzle games, need level generation
in order to create larger and more replayable games, adapt
games to players, simplify game development, and enable
certain kinds of aesthetics. Domains such as architecture,
urban planning, military simulation and logistics need sce-
nario and environment generation for similar reasons, and
these problems are often very similar to game level gen-
eration. In reinforcement learning, level generation allows
for creating variable environments which helps with gener-
alization (Justesen et al. 2018). For these reasons, the past
decade has seen considerable interest in research on level
generation and other forms of procedural content generation
(PCG) (Shaker, Togelius, and Nelson 2016).

One approach to the generation of levels as well as other
types of game content is to use evolutionary algorithms or
similar global stochastic optimization algorithms to search
for good levels. This approach, called search-based PCG,

∗Both authors contributed equally to this research.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

requires that the levels are represented in such a way that
the level space can be efficiently searched, and that there
is a fitness function which can reliably approximate content
quality (Togelius et al. 2011).

As an alternative to using evolutionary methods,
tree search methods such as Monte Carlo Tree Search
(MCTS) (Browne et al. 2012) have been suggested for PCG.
While it seems that both stochastic optimization and tree
search can be used for level generation (and many related
generative tasks), we have only been able to find a hand-
ful of papers doing PCG by tree search (see next section).
Given the very different ways in which these algorithm types
search, it stands to reason that they should differ sharply
in performance depending on the objective and represen-
tation. Maybe there are domains where tree search signifi-
cantly outperform optimization methods?

This paper systematically compares several tree search al-
gorithms with optimization algorithms on three different 2D
level generation problems, across three different representa-
tions. We attempt to answer the question which tree search
algorithms can have similar or better performance with op-
timization for level generation, and when.

Background

Procedural content generation (PCG) is the automatic gener-
ation of game content, be it game levels, characters, quests,
storylines, game elements like trees and rocks, or even en-
tire games themselves (Shaker, Togelius, and Nelson 2016).
Search-based PCG is a subset of PCG methods that relies
on search or optimization methods (Togelius et al. 2011). In
practice, evolutionary algorithms are most commonly used.
This section describes previous research in the areas of tree
search and evolution as well as procedural content which can
be generated using these methods.

Tree Search

Tree search algorithms try to find solutions by starting
at a root node and expanding child nodes in a system-
atic way. Popular techniques include Breadth-First Search
(BFS), Depth-First Search (DFS), Greedy Best First Search
(GBFS), and Monte Carlo Tree Search (MCTS) (Russell
and Norvig 2016; Browne et al. 2012). Tree search agents

24



are commonly used in game-playing agents, like for the
Mario AI Benchmark (Togelius, Karakovskiy, and Baum-
garten 2010), Chess (Campbell, Hoane Jr, and Hsu 2002),
Go (Gelly et al. 2006; Silver et al. 2016), and general video
games (Perez-Liebana et al. 2016) among many others.

In the area of PCG, few examples exist of using tree
search to generate game content. Browne (2013) first ex-
plored this concept by using a variant of the Upper Confi-
dence Bound for Trees equation (UCT) called Upper Confi-
dence Bounds for Graphs (UCG) to develop biominoes, sim-
ple polyomino1 shapes and the Pentominoes puzzle domain.
Summerville, Philip, and Mateas (2015) generated levels for
Super Mario Bros (Nintendo 1985) using Markov Chains
where the exploration was guided using Monte Carlo Tree
Search. Kartal, Koenig, and Guy (2013) used MCTS to gen-
erate stories, taking advantage of MCTS’ ability to success-
fully navigate the large search spaces associated with possi-
ble character actions and reactions within narratives. Kartal,
Sohre, and Guy (2016) also used MCTS to generate Sokoban
(Imabayashi 1981) levels. At each node in the MCTS tree,
the level generator is given choices to take to modify the
level, such as deleting/adding objects and moving an agent
around within the level to simulate gameplay. Graves and
others (2016) experimented with using MCTS to generate
Angry Birds (Rovio Entertainment 2009) levels. At each
node in the tree, the level generator can place/remove struc-
tures/pigs or do nothing at all. Finally, exhaustive search can
also be used to create all possible content artifacts in some
space (Sturtevant and Ota 2018).

Optimization

Global optimization algorithms are algorithms which focus
only on finding a good solution, which maximizes or mini-
mizes some objective, not on the path leading from an ori-
gin state to that solution. Evolutionary algorithms, a family
of stochastic population-based algorithms, are a good repre-
sentative of this class. Such algorithms are popular choices
for PCG because it is easy to frame the PCG as a single-
point or population-based optimization problem, where the
fitness functions/objectives can be cleanly mapped to game
elements like difficulty, time, physical space, level variety,
etc (Togelius et al. 2011). Ashlock did this several ways,
such as optimized puzzle generation for different difficul-
ties (Ashlock 2010), or stylized cellular automata evolu-
tion for cave generation (Ashlock 2015). McGuinness and
Ashlock (2011) created a micro-macro level generation pro-
cess, using a wide variety of fitness functions based on level
elements. Shaker, Shaker, and Togelius (2013) evolved lev-
els for Cut the Rope (ZeptoLab 2010) using constrained evo-
lutionary search where the fitness measures the playabil-
ity using playable agents. In addition to evolving level el-
ements in GVGAI (Khalifa et al. 2016), PuzzleScript (Khal-
ifa and Fayek 2015a), and Super Mario Bros (Khalifa et al.
2019), Khalifa and Fayek (2015b) offers a literature review
of search based level generation within puzzle games.

1Orthogonally connected sets of squares (Golomb 1996).

Methods

In this paper, we compare tree search algorithms to opti-
mization algorithms. We decided to compare them over three
different problems (Binary, Zelda and Sokoban) which were
introduced as part of the PCGRL framework (Khalifa et al.
2020). We settled on these problems as they cover differ-
ent types of games and heuristic/fitness functions already
exist. Also, variants of these generation problems had been
tackled before using optimization algorithms (Ashlock, Lee,
and McGuinness 2011; Ashlock 2018; Khalifa et al. 2016;
Charity et al. 2020; Khalifa and Fayek 2015a), meaning that
we already know of effective problem representations for
optimization. For all the used algorithms, the tree search al-
gorithm stops either when it finds a solution to the problem
or time runs out. In this section, we will talk about the differ-
ent algorithms, representations, problems used in this work.

Tree Search Algorithms

We compare four simple and commonly used tree search al-
gorithms, two of which are uninformed search (Breadth First
Search and Depth First Search) and two are informed search
(greedy best first search and Monte Carlo Tree Search). For
the first three algorithms we use the canonical versions as
defined in (Russell and Norvig 2016).

Breadth First Search(BFS) is a simple uninformed
search algorithm that expands a full tree level before explor-
ing deeper nodes using a queuing system.

Depth First Search (DFS) is another uninformed search
algorithm that always expands one of the nodes at the deep-
est level of the tree using a stack system. When the search
hits a dead end, it goes back and expands nodes at shallower
levels.

Greedy Best First Search (GBFS) is an informed search
algorithm which uses the cost to reach the goal as heuristic
function and a priority queue to select the most promising
nodes in the search tree first.

Monte Carlo Tree Search (MCTS) is a stochastic tree-
search algorithm (Browne et al. 2012) that creates asym-
metric trees by expanding the most promising branches of
the search space using random sampling (rollout). There
are many variants of MCTS (Browne et al. 2012); we use
UCT (Kocsis, Szepesvári, and Willemson 2006); arguably
the most widely used version. UCT uses the UCB1 equation
to balance between exploration and exploitation:

UCB1i =
Vi

ni
+ c

√
lnN

ni

where Vi is the total accumulated rewards for that node, ni is
the total number of visits for that node, N is the total number
of visits of the parent node, and c is a constant balancing
between the exploitation term (first term) and exploration
term (second term).

Optimization Algorithms

For the optimization algorithms, we explore two single-point
optimization algorithms (hill climbing and simulated an-
nealing) and two population-based optimization algorithms
(evolution strategy and genetic algorithm).

25



Hill Climbing (HC) is a single-point optimization algo-
rithm (Russell and Norvig 2016) that initializes a random
solution and keeps improving the solution (by comparing it
to all the possible neighbors) until a local optimal solution is
found.

Simulated Annealing (SA) is a single-point global opti-
mization algorithm (Russell and Norvig 2016) that tries to
find a global optimum in the presence of several local op-
tima. Instead of always accepting a better neighbor, it can ac-
cept less optimal neighbors with probability less than 1. The
probability is calculated by P = exp(−d/T ), where d is the
absolute difference between the current solution’s score and
the new solution’s score and T is temperature. Temperature
is initially given a high value which slowly decreases every
iteration using a cooling rate c (T = T ∗ c).

Evolution Strategy (ES) is a nature inspired population-
based optimization algorithm (Brownlee 2011). It applies
selection and mutation operators to a population, that con-
tains solutions, to evolve better and better solutions. The
process begins with a random population of μ + λ individ-
uals and calculates the fitness of the entire population using
a fitness function. λ worst individuals are removed from the
population and replaced with mutated version of the top μ
individuals.

Genetic Algorithm (GA) is a population-based optimiza-
tion technique inspired by the Darwinian principle of evolu-
tion (Brownlee 2011). Like ES, it uses nature inspired op-
erators like mutation and selection as well as a crossover
operation to generate high quality solutions. Starting with a
random population, it selects individuals based on their fit-
ness for reproduction. These individuals produce a new so-
lution using crossover and mutation operators (with differ-
ent probabilities) which is inserted into the next population.
Additionally, the most fit individuals are immediately in-
serted into the next generation in a process known as elitism.
The reproductive process goes on until the new population
is fully created.

Representations

Problem representation is critical in search-based
PCG (Ashlock 2018) as it impacts the speed of gener-
ation and the style of the generated content. For example,
one way of representing a level generation problem is with a
1 dimensional integer array. This representation lends itself
directly to the optimization algorithms where the algorithm
is able to modify the level by directly changing a single in-
dex in that array. Tree search algorithms need to model this
representation within a graph of nodes and connections. We
can imagine every map as a node in the space of all possible
maps in an entire game, and the connection between these
nodes are based on the changes needed to reach that map
from the other map. We can then limit these connections to
mimic the behavior of optimization algorithms: only one
tile is modified to move from node to node. Thus, we can
replicate problem representation regardless of the search
method used.

In this section, we introduce three different representa-
tions (Narrow, Turtle, and Wide) that can transform the gen-
eration process into a graph which can be easily traversed

using Tree Search Algorithm. Before applying a tree search
algorithm, the root node has to be selected. In this work,
we select that node randomly, similar to the random starting
maps of the optimization algorithms.

Narrow Representation is defined as changing one spec-
ified tile at a time. In this approach, the tiles that the algo-
rithm can modify are randomly ordered, and the algorithm
can only modify the map in that particular order. This means
that each tree node represents the current map and the cur-
rent modified tile, while the branches represents the mod-
ifications that can be done to that tile. This modification
decreases the branching factor to be n actions (where n is
the number of different game tiles) but it increased the state
space by adding the current modified tile as part of the state
representation.

Turtle Representation draws parallels to the Turtle
Graphics module in the Logo programming language. In this
representation, algorithms are given a random initial posi-
tion within the map. They are allowed to either change its
position by moving to any of the neighboring tiles in the
four cardinal directions (unless a direction would take them
“out-of-bounds”) or modify this tile to another tile value, and
the process repeats. This means that a node in the tree rep-
resents the map and the turtle’s current position, while the
branches are the directional movement and the map modi-
fication decisions. Similar to the narrow representation, the
action space decreased to be 4+n actions (4 cardinal move-
ments and n tile modification actions) but it increased the
state space by adding the current modified tile as part of the
state representation.

Wide Representation is inspired from the optimization
algorithms’ representation. In this representation, the algo-
rithm itself can decide exactly which tiles to modify in any
order. For tree search, this means that a node only repre-
sents the current map while the branches are equal to the
map size multiply by number of possible tiles where it iden-
tifies which tile location can be changed and what is the new
tile type.

Problems

The problems that we are using for the comparison are taken
from the PCGRL framework2. The framework supports six
different problems. In this work, we will focus only on three
problems, the same ones used in (Khalifa et al. 2020). Each
problem is represented as 2D array of tiles. The heuris-
tic/fitness function is provided through the PCGRL frame-
work for each problem. To evaluate any problem state, the
PCGRL framework compares the current state with a refer-
ence state (the root state in case of tree search algorithms
and a random initial chromosome in case of optimization al-
gorithms). For example, if the goal is to create 2D maze with
a long path. If the initial state has a path length of 5 and the
current state has a path length of 10, then the fitness/heuristic
will be 5. On the other hand, if the current state has a path
length of 2, the fitness/heuristic will be -3. If there are mul-
tiple goals for the problem, the heuristic/fitness from each

2https://github.com/amidos2006/gym-pcgrl

26



(a) Binary (b) Zelda (c) Sokoban

Figure 1: The playability percentage for all the algorithms over Binary, Zelda, and Sokoban problems.

(a) Binary (b) Zelda (c) Sokoban

Figure 2: The average maximum depth for all the tree search algorithms over 2500 runs. The actual bars are the average value
while the black vertical lines show the standard deviation.

goal is combined as a weighted sum3.
Binary is the simplest problem: the goal is to create a

binary map layout where all the empty tiles are connected
and the longest shortest path between any two points in the
map increases by at least X (X = 20 in this work).

Zelda is inspired by the GVGAI (Perez-Liebana et al.
2016) version of the dungeon system in The Legend of Zelda
(Nintendo, 1986). The player has to collect a key and the
reach the door without dying from the moving enemies. The
generator must take into consideration the goal of the game
and must try to generate a playable level. A playable level
must have 1 player, 1 key, 1 door, all tiles fully connected,
enemy should be Y step away from player and the path be-
tween the player and the key as well as the key and the door
must be at least X steps (Y = 5,X = 20 in this work).

Sokoban is a port of the famous Japanese game by the
same name (Thinking Rabbit, 1982). The goal of the game
is to push every crate to a goal location. To achieve that goal,
the generated levels has to have 1 player, number of crates
equal to number of targets, and can be solved using A* al-
gorithm with at least X steps (X = 20 in this work).

Experiments
Our generators are configured to create maps of size 14x14
for Binary, 11x7 for Zelda and 5x5 for Sokoban excluding
boundaries. We run all the eight algorithms on all the three
problems using different representations. Optimization al-
gorithm are only run using wide representation as it is the
direct representation used for optimization algorithms in all
the previous work. We introduce the narrow and turtle repre-
sentations to assist Tree Search algorithm manage the large

3check the repository for detailed implementation of the fit-
ness/heuristic functions: https://github.com/amidos2006/tsxoa

branching factor in the graph (392 for binary, 616 for Zelda,
and 125 for Sokoban) which optimization algorithm does
not have problem with.

We run each experiment for 2500 runs, where each run
was capped at 60 seconds. If the algorithm finds the solution
before hand, it terminates and returns the solution, otherwise
it continues till time out. For MCTS, the C value is set to 5 to
balance with the big values of exploitation term. We also as-
sign the rollout length as 40% of the size of the problem (78
for Binary, 40 for Zelda, and 10 for Sokoban). This variable
length is just to allow the MCTS rollout to have an effect on
the map, as the bigger the maps gets the deeper they need to
be explored randomly to have an effect on the level output.
For SA, we start with temperature equal to 10 and cooling
rate equal to 0.99. For ES, we use μ equal to 10 and λ equal
to 20. Finally, GA uses population of size 30 with elitism
of size 1; new individuals are generated either by crossover
(80% chance) followed by mutation (5%), or only mutation.
Rank selection is used to select parents. For mutation (for
all optimization algorithms), we are using single point mu-
tation where a single tile is picked and changed randomly.
For crossover (only GA), we are using two point crossover
where two points on the map (as a 1D string) are picked and
the values between these points are swapped. These values
are chosen by earlier experiments that lead to the best result.

Results

Figure 1 shows the performance of all the different algo-
rithms on our 3 different problems using the possible rep-
resentations. For the tree search algorithms, Greedy algo-
rithms such as GBFS outperformed most of the other algo-
rithms, its performance was the same between the differ-
ent representations on all the problems. This is likely due

27



(a) Binary (b) Zelda (c) Sokoban

Figure 3: The average time in seconds that each algorithm takes to run over all 2500 runs. The actual bars are the average value
while the black vertical lines show the standard deviation.

WideNarrow Turtle

(a) BFS

WideNarrow Turtle

(b) DFS

WideNarrow Turtle

(c) GBFS

WideNarrow Turtle

(d) MCTS

Wide

(e) HC

Wide

(f) SA

Wide

(g) ES

Wide

(h) GA

Figure 4: Binary Examples

to the sensitive heuristic function that we are using for our
problems. Any change in the map usually corresponds to a
change in the heuristic.

On the other hand, BFS and DFS performed extremely
low (almost zero on all the problems and representations)
which was expected. BFS is unable to search very deep
within the tree where most solutions reside (see Figure 2).
BFS depth is very low compared to most of the other algo-
rithms. On the other hand, DFS can search very deep within
the tree but still performs badly. This is due to DFS’ ten-
dency to trap itself in bad initial branch paths, leading to
wasted computational time before exploring other branches
that could lead to the solution. Figure 2 shows the depth of
the deepest found node by the algorithm during search re-
gardless it found a solution or not. If the algorithm found a
solution, it will terminate the search at that node (which will
make it the deepest node found); if it did not find a solution,
it will continue exploring until 60 seconds expire.

MCTS was a different case: it did not search very deep in
the tree compared to GBFS due to the exploration factor and
the random rollouts. MCTS performed badly on the Binary

problem, especially when using wide representation (due to
the low depth). On Zelda, MCTS performed worse as well:
its performance was almost as bad as DFS and BFS. Look-
ing at the depth, we can see that MCTS built a very shallow
tree. We believe this occured due to the big map space (11x7)
and the large amount of possible tiles (8 different tiles).
The large branching factor lead MCTS to waste most of its
computation time on low level nodes as MCTS cannot con-
tinue exploring until it expands/simulates/back-propagates
all the previous children (which is not the case in GBFS). In
Sokoban, MCTS using Narrow representation outperformed
all the other algorithms, and at the same time it did not ex-
plore deeply in the tree. This is likely due to the deceptive
the reward heuristic/fitness landscape of Sokoban (Ander-
son et al. 2018). Deceptive landscapes were not a issue in
the first two problems (Binary and Zelda) as the heuristic
was usually provided accurate guidance toward success. In
Sokoban, the heuristic sometimes does not always lead the
generator toward playable levels. For example: the number
of crates equalling the number of targets and that each of
these are reachable from the player’s location are a good in-
dicators for playability. However, neither guarantee that the
level is beatable. Crates could be reachable but be stuck be-
side a wall or another crate. GBFS might waste more time
on searching a branch that leads to a non playable level com-
pared to MCTS (which estimates how good or bad a branch
is before committing to it). On the other hand, the MCTS
turtle representation did not perform well. The random roll-
outs are likely a leading factor here: they are less effective
as 4 of the selected actions are agent movements, leading to
less effective sampling and changes in the heuristic estima-
tion of that branch.

The optimization algorithms generally perform similarly
on all the problems. We were surprised to see that SA, in
spite of being a single point optimization algorithm, per-
forms slightly better than the other optimization algorithms.
We think the temperature is helping it to explore the space
faster and reach a good result, while HC, ES, and GA con-
verge pretty fast to a local optimal solution and cannot es-
cape it. We think this can be easily solved by increasing the
population size for ES and GA.

An advantage GBFS has over greedy HC algorithm is that
GBFS does not get stuck since it can always roll back to any
other path to explore if it reaches a local maxima, while HC
will always get stuck as it does not keep track of previous

28



WideNarrow Turtle

(a) BFS
WideNarrow Turtle

(b) DFS

WideNarrow Turtle

(c) GBFS
WideNarrow Turtle

(d) MCTS

Wide

(e) HC
Wide

(f) SA

Wide

(g) ES
Wide

(h) GA

Figure 5: Zelda Examples

explored solutions. This is a classic trade off between mem-
ory and performance where GBFS uses more memory which
leads better performance than HC algorithm.

Figure 3 shows the average time in seconds that each al-
gorithm needs to find solution. The optimization algorithms
take less time on average to find the results, which was not
surprising looking at their performance. GBFS is the only
algorithm that can be compared in time due to its greedy na-
ture of visiting the nodes that leads it to the solution quickly
(except for Sokoban where it easily gets deceived and does
not find the solution). BFS, DFS and wide MCTS are always
near the cut off time (60 seconds): they are never able to find
a solution before timeout.

Figure 4, 5, and 6 shows examples of the best found levels
for every different algorithm on all the three problems. BFS
and DFS did not find any solution in most of the problems
but it is interesting to look at their best found level. Since the
DFS algorithm sticks with a certain action until the end of
the tree it forces it to repeat a certain element a lot.

In Figure 4, The BFS maps looks like almost finished very
few tiles are not connected, while the DFS algorithm best so-
lutions cover the map with solid tiles such that it ends with
having a single connected region which is interesting. Sim-
ilar behavior can be seen in Zelda (figure 5) and Sokoban
(figure 6) regarding the unfinished DFS levels. Another no-
table change is SA solutions, they are usually have a differ-
ent structural aesthetics compared to the rest. It can be easily
seen in Zelda, the levels looks more horizontally connected
than other levels. We theorize that temperature variable al-
lows SA to reach areas that is not easily reached by being
greedy or take longer time during hierarchical exploration.

Conclusion

In this paper, we compared four tree search algorithms to
four optimization algorithms in level generation for three
different problems (Binary, Zelda, and Sokoban). We intro-
duced two new representations (Narrow and Turtle) to battle
the problem of the high branching factor that can affect tree
search performance badly. We found that GBFS performed

WideNarrow Turtle

(a) BFS

WideNarrow Turtle

(b) DFS

WideNarrow Turtle

(c) GBFS

WideNarrow Turtle

(d) MCTS

Wide

(e) HC

Wide

(f) SA

Wide

(g) ES

Wide

(h) GA

Figure 6: Sokoban Examples

very similar to optimization algorithms. While MCTS did
not perform well on Binary and Zelda problem, it exceeded
our expectations on the Sokoban problem. We think that the
random sampling capabilities allows MCTS to avoid getting
stuck in a local optima.

In most cases, it is hard to notice the difference between
the generated levels. However, there are subtle differences,
suggesting that each algorithm has its own “style” as an ef-
fect of the way the algorithm searches for a solution. While
the optimization algorithms typically reach quantitatively
better results, the right tree search algorithms paired with
the right representation can solve the same content genera-
tion problem in a different way.

We would like to take this work further and investigate
population-based tree search algorithms, treating the domain
as a graph with multiple starting points similar to the work
by Browne (2013). We would also like to extend this work
by using bigger maps and more complex problems (such
as Super Mario Bros level generation) and compare new
state of the art algorithms in both tree search and optimiza-
tion algorithms. Another direction is to test these techniques
on different domains and generative problems and see how
well they translate (narrative generation, character genera-
tion, sprite generation, rule generation, etc).

Acknowledgements

Ahmed Khalifa acknowledges the financial support from
NSF grant (Award number 1717324 - “RI: Small: General
Intelligence through Algorithm Invention and Selection.”).
Michael Cerny Green acknowledges the financial support of
the SOE Fellowship from NYU Tandon School of Engineer-
ing.

29



References

Anderson, D.; Stephenson, M.; Togelius, J.; Salge, C.;
Levine, J.; and Renz, J. 2018. Deceptive games. In In-
ternational Conference on the Applications of Evolutionary
Computation, 376–391. Springer.
Ashlock, D.; Lee, C.; and McGuinness, C. 2011. Search-
based procedural generation of maze-like levels. In IEEE
Transactions on Computational Intelligence and AI in
Games, 260–273. IEEE.
Ashlock, D. 2010. Automatic generation of game elements
via evolution. In Computational Intelligence and Games
(CIG), 2010 IEEE Symposium on, 289–296. IEEE.
Ashlock, D. 2015. Evolvable fashion-based cellular au-
tomata for generating cavern systems. In Computational
Intelligence and Games (CIG), 2015 IEEE Conference on,
306–313. IEEE.
Ashlock, D. 2018. Exploring representation in evolutionary
level design. Synthesis Lectures on Games and Computa-
tional Intelligence 2(1).
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Browne, C. 2013. Uct for pcg. In 2013 IEEE Conference on
Computational Inteligence in Games (CIG), 1–8. IEEE.
Brownlee, J. 2011. Clever Algorithms: Nature-Inspired Pro-
gramming Recipes. Lulu.
Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
blue. Artificial intelligence 134(1-2):57–83.
Charity, M.; Green, M. C.; Khalifa, A.; and Togelius, J.
2020. Mech-elites: Illuminating the mechanic space of gv-
gai. arXiv preprint arXiv:2002.04733.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Mod-
ification of {UCT} with patterns in {M} onte-{C} arlo {G}
o. INRIA.
Golomb, S. W. 1996. Polyominoes: puzzles, patterns, prob-
lems, and packings, volume 16. Princeton University Press.
Graves, M., et al. 2016. Procedural content generation of
Angry Birds levels using monte carlo tree search. Ph.D. Dis-
sertation, University of Texas at Austin.
Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Illuminating generalization in
deep reinforcement learning through procedural level gener-
ation. In NeurIPS Workshop on Deep Reinforcement Learn-
ing.
Kartal, B.; Koenig, J.; and Guy, S. J. 2013. Generating
believable stories in large domains. In Ninth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.
Kartal, B.; Sohre, N.; and Guy, S. 2016. Generating sokoban
puzzle game levels with monte carlo tree search. In The
IJCAI-16 Workshop on General Game Playing, 47.
Khalifa, A., and Fayek, M. 2015a. Automatic puzzle
level generation: A general approach using a description lan-
guage. In Computational Creativity and Games Workshop.

Khalifa, A., and Fayek, M. 2015b. Literature review of
procedural content generation in puzzle games. http://www.
akhalifa.com/documents/LiteratureReviewPCG.pdf.
Khalifa, A.; Perez-Liebana, D.; Lucas, S. M.; and Togelius,
J. 2016. General video game level generation. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence 2016, 253–259. ACM.
Khalifa, A.; Green, M.; Barros, G. A.; and Togelius, J.
2019. Intentional computational level design. In Proceed-
ings of The Genetic and Evolutionary Computation Confer-
ence. ACM.
Khalifa, A.; Bontrager, P.; Earle, S.; and Togelius, J.
2020. Pcgrl: Procedural content generation via reinforce-
ment learning. arXiv preprint arXiv:2001.09212.
Kocsis, L.; Szepesvári, C.; and Willemson, J. 2006. Im-
proved monte-carlo search. Univ. Tartu, Estonia, Tech. Rep
1.
McGuinness, C., and Ashlock, D. 2011. Decomposing the
level generation problem with tiles. In Evolutionary Com-
putation (CEC), 2011 IEEE Congress on, 849–856. IEEE.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
and Lucas, S. M. 2016. General video game ai: Competition,
challenges and opportunities. In Thirtieth AAAI Conference
on Artificial Intelligence.
Russell, S. J., and Norvig, P. 2016. Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,.
Shaker, N.; Shaker, M.; and Togelius, J. 2013. Evolving
playable content for cut the rope through a simulation-based
approach. In AIIDE.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484.
Sturtevant, N. R., and Ota, M. J. 2018. Exhaustive and
semi-exhaustive procedural content generation. In AIIDE,
109–115.
Summerville, A. J.; Philip, S.; and Mateas, M. 2015. Mcm-
cts pcg 4 smb: Monte carlo tree search to guide platformer
level generation. In Eleventh Artificial Intelligence and In-
teractive Digital Entertainment Conference.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario ai competition. In IEEE Congress on Evolution-
ary Computation, 1–8. IEEE.

30


