
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Towards Usable Level PCG

Eric Lang
University of Utah
201 Presidents’ Cir

Salt Lake City, Utah 84112
ewlang@cs.utah.edu

Abstract

My proposed dissertation work attempts to make procedural
content generation (PCG) for game levels easier to use and
more expressive for designers. This can be split into three
rough layers: improving the expressive range of a dungeon
PCG genetic algorithm by using multiobjective optimization,
providing a more intuitive way for designers to create fitness
variables, and letting them train the PCG system to give them
the output they expect. While this work will focus on PCG
algorithms for generating game levels, ideally much of the
evaluation concept in this paper will be applicable to other
forms of PCG. I will hopefully also be able to show that hav-
ing the designer interact with an expressive PCG system as
their ”apprentice” is effective.

I choose search-based PCG for this work because these algo-
rithms take an unknown solution space and move generated
solutions toward optimal solutions as they run. Integral to
this is the idea that variables have an optimization direction;
all else being equal, a solution with value 1 in variable A
is defined to be better or worse than another solution with
value 2 in variable A depending on whether the variable is
minimized or maximized. Not only is this approach useful
for keeping variables easy to understand without requiring
strict constraints, but in a multiobjective approach, it also al-
lows the algorithm to explore the tradeoff between variables
and find solutions that would be hard to discover without
optimization.

Search-based PCG methods are a relatively well re-
searched area (Togelius et al. 2011). Other research has been
done investigating the effectiveness of using genetic algo-
rithms to search for optimal solutions in generating dun-
geon levels (Valtchanov and Brown 2012). Many operate
in mixed-initiative modes with the designer in the loop to
improve the designer’s control (Liapis, Yannakakis, and To-
gelius 2013) (Alvarez et al. 2018) (Baldwin et al. 2017).
Researchers acknowledge that genetic algorithms are diffi-
cult for designers to work with directly because designing
a fitness function is not trivial (van der Linden, Lopes, and
Bidarra 2014). As such, one group has already attempted to
incorporate multiobjective evolutionary algorithms in level
PCG, though they evaluated their output primarily by in-
specting the relationships between the objectives or, in other

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

words, the shape of the Pareto front (Togelius et al. 2010)
(Togelius, Preuss, and Yannakakis 2010). Another group has
explored using a multiobjective evolutionary algorithm for
game balance (Volz, Rudolph, and Naujoks 2016).

In this summary, I describe my proposed doctoral work
to give designers control over PCG algorithms by using
multiobjective optimization to avoid some of the burden of
knowledge required to invent a fitness function and to im-
prove the expressive range of the algorithm when compared
to a single-objective approach. I also suggest a method by
which designers can create fitness variables more intuitively
by building them from layers of simpler terms. Finally, I plan
to determine whether having the designer teach the genetic
algorithm how best to optimize the levels is an effective ap-
proach.

Plan of Work

The problem can be split into three stages: the creation of
an expressive level PCG genetic algorithm, giving designers
generalized tools to create fitness variables from the output
data, and creating the ”apprentice” system whereby the de-
signer trains the system to produce their desired level.

PCG System

In order to address this problem initially, I believe an end-
to-end approach is necessary. I must have a PCG system as
flexible as possible to provide the designers control over the
system.

A multiobjective evolutionary algorithm should be capa-
ble of having a greater expressive range than an approach
using a simple fitness function. While an approach with a
single fitness function may produce a single result that has
higher fitness in fewer runs than in a multiobjective ap-
proach, the multiobjective approach will investigate a wider
range of solutions as it targets the entire Pareto front for
optimization. The output of a multiobjective algorithm can
present many options that optimize the given variables rather
than only a single solution of the highest fitness.

One other candidate approach would be a quality-
diversity (QD) algorithm (Gravina et al. 2019) (Preuss, Li-
apis, and Togelius 2014). While QD algorithms are very
similar to multiobjective genetic algorithms in many ways,
they require some form of diversity measurement and break

213



up the solution space based on this diversity to generate mul-
tiple solutions that are each guaranteed to satisfy some min-
imum distance from other solutions. My primary rationale
for using a multiobjective genetic algorithm rather than a
QD algorithm is to try to explore the entire range of optimal
solutions to present them to the designer, but once the de-
signer has taught the system what it wants, the system may
only provide one level per run for its final purpose. How-
ever, I acknowledge that training the system will be difficult
if it produces solutions which are too similar, so I will need
to ensure that my proposed method is effective at finding
diverse solutions.

I have already created a PCG method based on Valtchanov
and Brown’s (2012) work with a genetic algorithm, though
my approach uses multiobjective optimization. Like To-
gelius et al. (2010), I believe that multiobjective optimiza-
tion allows for an algorithm to handle conflicting variables
while also reducing the burden on the designer to combine
variables together to form a rigid fitness function, though it
does require additional designer evaluation as not all mem-
bers of the Pareto front will be valuable. This additional
evaluation is discussed briefly in the ”PCG as an Appren-
tice” section.

Creating Fitness Variables

For designers to be able to create a wide variety of fitness
variables, they need to be presented with the abstract data
that the PCG system uses for evaluation and be able to ma-
nipulate that data to measure whatever they desire. I believe
I can leverage the designer’s existing perspective on classi-
fying levels to aid in this step. While the designer will still
need to create the fitness variables, the system should let
the designer be granular in their approach to keep individ-
ual variables fairly simple.

Preferably, this system would use a tiered ”vocabulary”.
The designer would be able to specify, for example, a ”Con-
nectivity” variable that would simply average the number of
occupied doors across some given set of tiles. They may also
be able to make a ”Linearity” variable that penalizes dead
ends, puts a bonus on hallway rooms, but applies a small
penalty for doors past two. Then, the designer could specify
a ”Clustered” variable which is sections of high ”Connectiv-
ity” interspersed between sections of high ”Linearity”, re-
sulting in a level with clusters of dense tiles connected by
more linear pathways. The necessity of making this a tiered
or layered system are clear: in order for the designer to cre-
ate the ”Clustered” variable, it should be built on the ”Con-
nectivity” and ”Linearity” variables. My eventual goal is to
allow the designer to create a variable for an abstract concept
like ”Pace” or ”Tension” in a PCG system by using multiple
layers of other, less abstract variables, and be able to see an
evaluation of levels based on their defined variables.

Ultimately, the idea of creating and layering variables
could be useful for automatic evaluation in many contexts.
However, the actual variable creation system created in this
specific work may not be useful outside of the limited scope
of PCG algorithms that generate content represented by
graphs. If the PCG output can be described by units that
have relationships with other units, then an evaluation sys-

tem which simply takes abstracted units, relationships, and
property sets as input could work for any of these systems.

PCG as an Apprentice

While a multiobjective algorithm will present many non-
dominated solutions which optimize the given variables, the
entire range of the Pareto front may not be suitable to the de-
signer. Namely, simply because a level exhibits a high value
of one variable despite exhibiting a low value of some other
variable doesn’t mean the level is necessarily what the de-
signer desires, even though such cases normally happen in
multiobjective optimization. Clearly, the designer needs to
be able to specify their own expectations. Once these expec-
tations are understood by the system, the system can produce
individual levels that meet these expectations.

When the algorithm runs, the designer trains the multiob-
jective optimization to find the right balance of fitness vari-
ables. The designer would begin my simply defining the fit-
ness variables and expressing whether they were positive or
negative. Upon running the system, it would output a set of
levels across the Pareto front for all of the designer’s vari-
ables. The designer could then express what they don’t like
about certain output levels in terms of their own variables,
informing the PCG algorithm of how to be more targeted in
its multiobjective search. There is further work to be done
to determine exactly how the algorithm should adjust based
on the designer’s feedback, but in its simplest and most ba-
sic form, the designer could point out levels where certain
variables were too high or too low and the algorithm could
constrain the allowed ranges of those variables. Variables
could then be automatically weighted and combined based
on the feedback from the designer. Eventually, if the de-
signer’s feedback is specific enough, the algorithm may be-
come similar or identical to a single-objective approach (i.e.
using a fitness function). Even if this is the final result, the
value in using multiobjective optimization would be to find
a function without the designer needing intricate knowledge
of how the variables interact.

This proposed system would hopefully give the designer
a better understanding of how the evaluation works. In
essence, this apprenticeship step makes the system more in-
tuitive. A level designer is likely not trained in how to arbi-
trarily combine different or conflicting fitness values that are
defined by an abstract evaluation function, but they should
be able to determine whether a level is within expectations.
I should be able to determine the effectiveness of this ap-
proach by running a study with the system on designers.
Ultimately, if I can leverage a level designer’s preexisting
expertise on evaluating levels, I should have more success in
creating levels that they would consider good.

Research Contributions

• Using multiobjective optimization to improve expressiv-
ity

• Allowing designers to create an evaluation vocabulary

• Creating a system where designers use PCG as an ”ap-
prentice”

214



References

Alvarez, A.; Dahlskog, S.; Font, J.; Holmberg, J.; Nolasco,
C.; and Österman, A. 2018. Fostering creativity in the
mixed-initiative evolutionary dungeon designer. In Proceed-
ings of the 13th International Conference on the Founda-
tions of Digital Games, FDG ’18, 50:1–50:8. New York,
NY, USA: ACM.
Baldwin, A.; Dahlskog, S.; Font, J. M.; and Holmberg, J.
2017. Towards pattern-based mixed-initiative dungeon gen-
eration. In Proceedings of the 12th International Conference
on the Foundations of Digital Games, FDG ’17, 74:1–74:10.
New York, NY, USA: ACM.
Gravina, D.; Khalifa, A.; Liapis, A.; Togelius, J.; and Yan-
nakakis, G. N. 2019. Procedural content generation through
quality diversity.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
FDG.
Preuss, M.; Liapis, A.; and Togelius, J. 2014. Searching for
good and diverse game levels. In 2014 IEEE Conference on
Computational Intelligence and Games, 1–8.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.;
Hagelbäck, J.; and Yannakakis, G. N. 2010. Multiobjec-
tive exploration of the starcraft map space. In Proceedings
of the 2010 IEEE Conference on Computational Intelligence
and Games, 265–272.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Togelius, J.; Preuss, M.; and Yannakakis, G. N. 2010. To-
wards multiobjective procedural map generation. In Pro-
ceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games, PCGames ’10, 3:1–3:8. New York, NY,
USA: ACM.
Valtchanov, V., and Brown, J. A. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the
Fifth International C* Conference on Computer Science and
Software Engineering, C3S2E ’12, 27–35. New York, NY,
USA: ACM.
van der Linden, R.; Lopes, R.; and Bidarra, R. 2014. Proce-
dural generation of dungeons. IEEE Transactions on Com-
putational Intelligence and AI in Games 6(1):78–89.
Volz, V.; Rudolph, G.; and Naujoks, B. 2016. Demonstrating
the feasibility of automatic game balancing. Proceedings of
the 2016 on Genetic and Evolutionary Computation Confer-
ence - GECCO ’16.

215


